-
Notifications
You must be signed in to change notification settings - Fork 16
/
inturbo.c
943 lines (852 loc) · 25.7 KB
/
inturbo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
#include "inturbo.h"
#include "bbc_options.h"
#include "cpu_driver.h"
#include "debug.h"
#include "defs_6502.h"
#include "interp.h"
#include "log.h"
#include "memory_access.h"
#include "os_alloc.h"
#include "state_6502.h"
#include "timing.h"
#include "util.h"
#include "asm/asm_common.h"
#include "asm/asm_defs_host.h"
#include "asm/asm_inturbo.h"
#include "asm/asm_inturbo_defs.h"
#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
struct inturbo_struct {
struct cpu_driver driver;
struct interp_struct* p_interp;
int is_interp_owned;
int is_ret_mode;
int do_write_invalidations;
int debug_subsystem_active;
struct os_alloc_mapping* p_mapping_base;
uint8_t* p_inturbo_base;
uint8_t use_interp_for_opcode[256];
};
static void
inturbo_generate_opcode(struct inturbo_struct* p_inturbo,
int* p_use_interp,
struct util_buffer* p_buf,
int is_debug,
int is_accurate,
uint8_t optype,
uint8_t opmode,
uint8_t opmem,
uint8_t opcycles,
uint16_t read_callback_from,
uint16_t write_callback_from) {
uint8_t opreg = 0;
uint16_t this_callback_from = read_callback_from;
uint8_t pc_advance = 0;
*p_use_interp = 0;
if (is_debug) {
asm_emit_inturbo_enter_debug(p_buf);
}
/* Preflight checks. Some opcodes or situations are tricky enough we want to
* go straight to the interpreter.
*/
switch (optype) {
case k_adc:
case k_sbc:
/* TODO: very lazy / slow to bounce to interpreter for BCD. */
asm_emit_inturbo_check_decimal(p_buf);
break;
case k_cli:
case k_plp:
case k_rti:
/* If the opcode could unmask an interrupt, bounce to interpreter. */
asm_emit_inturbo_check_interrupt(p_buf);
break;
default:
break;
}
if (opmem & k_opmem_write_flag) {
this_callback_from = write_callback_from;
}
/* Address calculation. */
switch (opmode) {
case k_nil:
case k_acc:
case k_imm:
case 0:
break;
case k_rel:
asm_emit_inturbo_mode_rel(p_buf);
break;
case k_zpg:
asm_emit_inturbo_mode_zpg(p_buf);
break;
case k_abs:
/* JSR is handled differently. */
if (optype == k_jsr) {
break;
}
asm_emit_inturbo_mode_abs(p_buf);
break;
case k_abx:
asm_emit_inturbo_mode_abx(p_buf);
break;
case k_aby:
asm_emit_inturbo_mode_aby(p_buf);
break;
case k_zpx:
asm_emit_inturbo_mode_zpx(p_buf);
break;
case k_zpy:
asm_emit_inturbo_mode_zpy(p_buf);
break;
case k_idx:
asm_emit_inturbo_mode_idx(p_buf);
break;
case k_idy:
asm_emit_inturbo_mode_idy(p_buf);
break;
case k_ind:
asm_emit_inturbo_mode_ind(p_buf);
break;
default:
assert(0);
break;
}
/* Check the address for special access (hardware register etc.). */
switch (opmode) {
case k_abs:
if (optype == k_jsr) {
break;
}
/* FALL THROUGH */
case k_abx:
case k_aby:
case k_idx:
case k_idy:
asm_emit_inturbo_check_special_address(p_buf, this_callback_from);
break;
default:
break;
}
/* Calculate the countdown baseline. Must be done before anything that might
* affect countdown, such as page crossing calculations.
*/
asm_emit_inturbo_start_countdown(p_buf, opcycles);
/* If applicable, calculate non-branch page crossings. */
if ((opmem == k_opmem_read_flag) && is_accurate) {
switch (opmode) {
case k_abx:
asm_emit_inturbo_mode_abx_check_page_crossing(p_buf);
break;
case k_aby:
asm_emit_inturbo_mode_aby_check_page_crossing(p_buf);
break;
case k_idy:
asm_emit_inturbo_mode_idy_check_page_crossing(p_buf);
break;
default:
break;
}
}
/* For branches, calculate taken vs. not taken early. This is so that any
* taken branch can effect the countdown check. But we don't commit the PC
* change until after the check passes.
*/
switch (optype) {
case k_bcc:
if (is_accurate) {
asm_emit_instruction_BCC_interp_accurate(p_buf);
} else {
asm_emit_instruction_BCC_interp(p_buf);
}
break;
case k_bcs:
if (is_accurate) {
asm_emit_instruction_BCS_interp_accurate(p_buf);
} else {
asm_emit_instruction_BCS_interp(p_buf);
}
break;
case k_beq:
if (is_accurate) {
asm_emit_instruction_BEQ_interp_accurate(p_buf);
} else {
asm_emit_instruction_BEQ_interp(p_buf);
}
break;
case k_bmi:
if (is_accurate) {
asm_emit_instruction_BMI_interp_accurate(p_buf);
} else {
asm_emit_instruction_BMI_interp(p_buf);
}
break;
case k_bne:
if (is_accurate) {
asm_emit_instruction_BNE_interp_accurate(p_buf);
} else {
asm_emit_instruction_BNE_interp(p_buf);
}
break;
case k_bpl:
if (is_accurate) {
asm_emit_instruction_BPL_interp_accurate(p_buf);
} else {
asm_emit_instruction_BPL_interp(p_buf);
}
break;
case k_bvc:
if (is_accurate) {
asm_emit_instruction_BVC_interp_accurate(p_buf);
} else {
asm_emit_instruction_BVC_interp(p_buf);
}
break;
case k_bvs:
if (is_accurate) {
asm_emit_instruction_BVS_interp_accurate(p_buf);
} else {
asm_emit_instruction_BVS_interp(p_buf);
}
break;
default:
break;
}
/* Check for countdown expiry. */
asm_emit_inturbo_check_and_commit_countdown(p_buf);
switch (optype) {
case k_adc:
if (opmode == k_imm) {
asm_emit_instruction_ADC_imm_interp(p_buf);
} else {
asm_emit_instruction_ADC_scratch_interp(p_buf);
}
break;
case k_alr:
asm_emit_instruction_ALR_imm_interp(p_buf);
break;
case k_and:
if (opmode == k_imm) {
asm_emit_instruction_AND_imm_interp(p_buf);
} else {
asm_emit_instruction_AND_scratch_interp(p_buf);
}
break;
case k_asl:
if (opmode == k_acc) {
asm_emit_instruction_ASL_acc_interp(p_buf);
} else {
asm_emit_instruction_ASL_scratch_interp(p_buf);
}
break;
case k_bcc:
case k_bcs:
case k_beq:
case k_bmi:
case k_bne:
case k_bpl:
case k_bvc:
case k_bvs:
asm_emit_inturbo_commit_branch(p_buf);
break;
case k_bit:
asm_emit_instruction_BIT_interp(p_buf);
break;
case k_brk:
asm_emit_instruction_BRK_interp(p_buf);
opmode = 0;
break;
case k_clc:
asm_emit_instruction_CLC(p_buf);
break;
case k_cld:
asm_emit_instruction_CLD(p_buf);
break;
case k_cli:
asm_emit_instruction_CLI(p_buf);
break;
case k_clv:
asm_emit_instruction_CLV(p_buf);
break;
case k_cmp:
if (opmode == k_imm) {
asm_emit_instruction_CMP_imm_interp(p_buf);
} else {
asm_emit_instruction_CMP_scratch_interp(p_buf);
}
break;
case k_cpx:
if (opmode == k_imm) {
asm_emit_instruction_CPX_imm_interp(p_buf);
} else {
asm_emit_instruction_CPX_scratch_interp(p_buf);
}
break;
case k_cpy:
if (opmode == k_imm) {
asm_emit_instruction_CPY_imm_interp(p_buf);
} else {
asm_emit_instruction_CPY_scratch_interp(p_buf);
}
break;
case k_dec:
asm_emit_instruction_DEC_scratch_interp(p_buf);
break;
case k_dex:
asm_emit_inturbo_DEX(p_buf);
break;
case k_dey:
asm_emit_inturbo_DEY(p_buf);
break;
case k_eor:
if (opmode == k_imm) {
asm_emit_instruction_EOR_imm_interp(p_buf);
} else {
asm_emit_instruction_EOR_scratch_interp(p_buf);
}
break;
case k_inc:
asm_emit_instruction_INC_scratch_interp(p_buf);
break;
case k_inx:
asm_emit_inturbo_INX(p_buf);
break;
case k_iny:
asm_emit_inturbo_INY(p_buf);
break;
case k_jmp:
asm_emit_instruction_JMP_scratch_interp(p_buf);
opmode = 0;
break;
case k_jsr:
asm_emit_instruction_JSR_scratch_interp(p_buf);
opmode = 0;
break;
case k_lda:
if (opmode == k_imm) {
asm_emit_instruction_LDA_imm_interp(p_buf);
} else {
asm_emit_instruction_LDA_scratch_interp(p_buf);
}
opreg = k_a;
break;
case k_ldx:
if (opmode == k_imm) {
asm_emit_instruction_LDX_imm_interp(p_buf);
} else {
asm_emit_instruction_LDX_scratch_interp(p_buf);
}
opreg = k_x;
break;
case k_ldy:
if (opmode == k_imm) {
asm_emit_instruction_LDY_imm_interp(p_buf);
} else {
asm_emit_instruction_LDY_scratch_interp(p_buf);
}
opreg = k_y;
break;
case k_lsr:
if (opmode == k_acc) {
asm_emit_instruction_LSR_acc_interp(p_buf);
} else {
asm_emit_instruction_LSR_scratch_interp(p_buf);
}
break;
case k_nop:
break;
case k_ora:
if (opmode == k_imm) {
asm_emit_instruction_ORA_imm_interp(p_buf);
} else {
asm_emit_instruction_ORA_scratch_interp(p_buf);
}
break;
case k_pha:
asm_emit_instruction_PHA(p_buf);
break;
case k_php:
asm_emit_instruction_PHP(p_buf);
break;
case k_pla:
asm_emit_instruction_PLA(p_buf);
opreg = k_a;
break;
case k_plp:
asm_emit_instruction_PLP(p_buf);
break;
case k_rol:
if (opmode == k_acc) {
asm_emit_instruction_ROL_acc_interp(p_buf);
} else {
asm_emit_instruction_ROL_scratch_interp(p_buf);
}
break;
case k_ror:
if (opmode == k_acc) {
asm_emit_instruction_ROR_acc_interp(p_buf);
} else {
asm_emit_instruction_ROR_scratch_interp(p_buf);
}
break;
case k_rti:
asm_emit_instruction_RTI_interp(p_buf);
opmode = 0;
break;
case k_rts:
asm_emit_instruction_RTS_interp(p_buf);
opmode = 0;
break;
case k_sax:
asm_emit_instruction_SAX_scratch_interp(p_buf);
break;
case k_sbc:
if (opmode == k_imm) {
asm_emit_instruction_SBC_imm_interp(p_buf);
} else {
asm_emit_instruction_SBC_scratch_interp(p_buf);
}
break;
case k_sec:
asm_emit_instruction_SEC(p_buf);
break;
case k_sed:
asm_emit_instruction_SED(p_buf);
break;
case k_sei:
asm_emit_instruction_SEI(p_buf);
break;
case k_slo:
asm_emit_instruction_SLO_scratch_interp(p_buf);
break;
case k_sta:
asm_emit_instruction_STA_scratch_interp(p_buf);
break;
case k_stx:
asm_emit_instruction_STX_scratch_interp(p_buf);
break;
case k_sty:
asm_emit_instruction_STY_scratch_interp(p_buf);
break;
case k_tax:
asm_emit_instruction_TAX(p_buf);
opreg = k_x;
break;
case k_tay:
asm_emit_instruction_TAY(p_buf);
opreg = k_y;
break;
case k_tsx:
asm_emit_instruction_TSX(p_buf);
opreg = k_x;
break;
case k_txa:
asm_emit_instruction_TXA(p_buf);
opreg = k_a;
break;
case k_txs:
asm_emit_instruction_TXS(p_buf);
break;
case k_tya:
asm_emit_instruction_TYA(p_buf);
opreg = k_a;
break;
default:
/* Let the interpreter crash out on unknown opcodes. This is also a way
* of handling the really weird opcodes by letting the interpreter deal
* with them.
*/
*p_use_interp = 1;
break;
}
switch (opreg) {
case k_a:
asm_emit_instruction_A_NZ_flags(p_buf);
break;
case k_x:
asm_emit_instruction_X_NZ_flags(p_buf);
break;
case k_y:
asm_emit_instruction_Y_NZ_flags(p_buf);
break;
default:
break;
}
/* Invalidation of JIT code on writes, iff we're supporting the JIT. */
if (p_inturbo->do_write_invalidations && (opmem & k_opmem_write_flag)) {
asm_emit_inturbo_do_write_invalidation(p_buf);
}
switch (opmode) {
case 0:
case k_rel:
pc_advance = 0;
break;
case k_nil:
case k_acc:
pc_advance = 1;
break;
case k_imm:
case k_zpg:
case k_zpx:
case k_zpy:
case k_idx:
case k_idy:
pc_advance = 2;
break;
case k_abs:
case k_abx:
case k_aby:
case k_ind:
pc_advance = 3;
break;
default:
assert(0);
break;
}
/* Advance PC, load next opcode, jump to correct opcode handler. */
if (!p_inturbo->is_ret_mode) {
asm_emit_inturbo_advance_pc_and_next(p_buf, pc_advance);
} else {
asm_emit_inturbo_advance_pc_and_ret(p_buf, pc_advance);
}
}
static void
inturbo_fill_tables(struct inturbo_struct* p_inturbo) {
uint32_t i;
uint8_t* p_opcode_types;
uint8_t* p_opcode_modes;
uint8_t* p_opcode_mem;
uint8_t* p_opcode_cycles;
uint16_t read_callback_from;
uint16_t write_callback_from;
uint32_t epilog_len;
uint8_t buf[256];
struct util_buffer* p_buf = util_buffer_create();
uint8_t* p_inturbo_base = p_inturbo->p_inturbo_base;
struct bbc_options* p_options = p_inturbo->driver.p_extra->p_options;
int is_accurate = p_options->accurate;
int is_debug = p_inturbo->debug_subsystem_active;
struct memory_access* p_memory_access =
p_inturbo->driver.p_extra->p_memory_access;
void* p_memory_object = p_memory_access->p_callback_obj;
read_callback_from = p_memory_access->memory_read_needs_callback_from(
p_memory_object);
write_callback_from = p_memory_access->memory_write_needs_callback_from(
p_memory_object);
p_inturbo->driver.p_funcs->get_opcode_maps(&p_inturbo->driver,
&p_opcode_types,
&p_opcode_modes,
&p_opcode_mem,
&p_opcode_cycles);
/* Get epilog length. */
util_buffer_setup(p_buf, &buf[0], 256);
util_buffer_set_base_address(p_buf, p_inturbo_base);
asm_emit_inturbo_epilog(p_buf);
epilog_len = util_buffer_get_pos(p_buf);
for (i = 0; i < 256; ++i) {
uint32_t opcode_len;
int use_interp;
uint8_t* p_inturbo_opcodes_ptr =
(p_inturbo_base + (i * K_INTURBO_OPCODE_SIZE));
/* Render the opcode implementation into a "large" 256 byte buffer.
* Later, we stuff it into a smaller buffer for compact L1 icache usage
* (currently 128 bytes bytes). However, some may not fit in the smaller
* buffer (e.g. BRK can be big). If any opcode goes past the threshold, it
* is handed to the interpreter for now.
*/
util_buffer_setup(p_buf, &buf[0], 256);
util_buffer_set_base_address(p_buf, p_inturbo_opcodes_ptr);
if (p_inturbo->use_interp_for_opcode[i]) {
use_interp = 1;
} else {
inturbo_generate_opcode(p_inturbo,
&use_interp,
p_buf,
is_debug,
is_accurate,
p_opcode_types[i],
p_opcode_modes[i],
p_opcode_mem[i],
p_opcode_cycles[i],
read_callback_from,
write_callback_from);
}
opcode_len = (util_buffer_get_pos(p_buf) + epilog_len);
if (opcode_len > K_INTURBO_OPCODE_SIZE) {
log_do_log(k_log_perf,
k_log_info,
"inturbo opcode $%.02X excessive len %"PRIu32,
i,
opcode_len);
use_interp = 1;
}
util_buffer_set_pos(p_buf, 0);
if (use_interp) {
if (is_debug) {
asm_emit_inturbo_enter_debug(p_buf);
}
if (!p_inturbo->is_ret_mode) {
asm_emit_inturbo_call_interp(p_buf);
} else {
asm_emit_inturbo_call_interp_and_ret(p_buf);
}
} else {
/* Re-write the opcode because writing to a potentially smaller buffer
* might change some offsets.
*/
util_buffer_setup(p_buf, &buf[0], K_INTURBO_OPCODE_SIZE);
util_buffer_set_base_address(p_buf, p_inturbo_opcodes_ptr);
inturbo_generate_opcode(p_inturbo,
&use_interp,
p_buf,
is_debug,
is_accurate,
p_opcode_types[i],
p_opcode_modes[i],
p_opcode_mem[i],
p_opcode_cycles[i],
read_callback_from,
write_callback_from);
}
asm_fill_with_trap(p_buf);
(void) memcpy(p_inturbo_opcodes_ptr, &buf[0], K_INTURBO_OPCODE_SIZE);
if (!use_interp) {
void* p_epilog = (p_inturbo_opcodes_ptr +
K_INTURBO_OPCODE_SIZE -
epilog_len);
util_buffer_setup(p_buf, p_epilog, epilog_len);
asm_emit_inturbo_epilog(p_buf);
}
}
util_buffer_destroy(p_buf);
}
static int
inturbo_interp_instruction_callback(void* p,
uint16_t next_pc,
uint8_t done_opcode,
uint16_t done_addr,
int next_is_irq,
int irq_pending) {
struct inturbo_struct* p_inturbo;
(void) p;
(void) next_pc;
(void) done_opcode;
(void) done_addr;
if (next_is_irq || irq_pending) {
/* Keep interpreting to handle the IRQ. */
return 0;
}
/* We stay in interp indefinitely if we're syncing the 6502 writes to video
* 6845 reads. This is denoted by the presence of a memory written handler.
*/
p_inturbo = (struct inturbo_struct*) p;
if (interp_has_memory_written_callback(p_inturbo->p_interp)) {
return 0;
}
/* Stop interpreting, i.e. bounce back to inturbo. */
return 1;
}
struct inturbo_enter_interp_ret {
int64_t countdown;
int64_t exited;
};
static void
inturbo_enter_interp(struct inturbo_struct* p_inturbo,
struct inturbo_enter_interp_ret* p_ret,
int64_t countdown) {
uint32_t cpu_driver_flags;
struct cpu_driver* p_inturbo_cpu_driver = &p_inturbo->driver;
struct interp_struct* p_interp = p_inturbo->p_interp;
countdown = interp_enter_with_countdown(p_interp, countdown);
cpu_driver_flags =
p_inturbo_cpu_driver->p_funcs->get_flags(p_inturbo_cpu_driver);
p_ret->countdown = countdown;
p_ret->exited = !!(cpu_driver_flags & k_cpu_flag_exited);
}
static void
inturbo_destroy(struct cpu_driver* p_cpu_driver) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
if (p_inturbo->is_interp_owned) {
struct cpu_driver* p_interp_cpu_driver =
(struct cpu_driver*) p_inturbo->p_interp;
p_interp_cpu_driver->p_funcs->destroy(p_interp_cpu_driver);
}
os_alloc_free_mapping(p_inturbo->p_mapping_base);
asm_inturbo_destroy();
util_free(p_inturbo);
}
static int
inturbo_enter(struct cpu_driver* p_cpu_driver) {
int64_t countdown;
int exited;
struct state_6502* p_state_6502 = p_cpu_driver->abi.p_state_6502;
uint16_t addr_6502 = state_6502_get_pc(p_state_6502);
uint8_t* p_mem_read = p_cpu_driver->p_extra->p_memory_access->p_mem_read;
struct timing_struct* p_timing = p_cpu_driver->p_extra->p_timing;
uint8_t opcode = p_mem_read[addr_6502];
void* p_start_address =
(void*) (uintptr_t) (K_INTURBO_ADDR +
(opcode * K_INTURBO_OPCODE_SIZE));
countdown = timing_get_countdown(p_timing);
/* The memory must be aligned to at least 0x10000 so that our register access
* tricks work.
*/
assert((K_BBC_MEM_READ_FULL_ADDR & 0xff) == 0);
/* The inturbo uses the 6502 PC host register as a direct pointer, so mix
* in the memory base address.
*/
p_state_6502->abi_state.reg_pc += K_BBC_MEM_READ_FULL_ADDR;
exited = asm_inturbo_enter(p_cpu_driver,
p_start_address,
countdown,
p_mem_read);
assert(exited == 1);
return exited;
}
static void
inturbo_set_reset_callback(struct cpu_driver* p_cpu_driver,
void (*do_reset_callback)(void* p, uint32_t flags),
void* p_do_reset_callback_object) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
p_interp_driver->p_funcs->set_reset_callback(p_interp_driver,
do_reset_callback,
p_do_reset_callback_object);
}
static void
inturbo_set_memory_written_callback(struct cpu_driver* p_cpu_driver,
void (*memory_written_callback)(void* p),
void* p_memory_written_callback_object) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
p_interp_driver->p_funcs->set_memory_written_callback(
p_interp_driver,
memory_written_callback,
p_memory_written_callback_object);
}
static void
inturbo_apply_flags(struct cpu_driver* p_cpu_driver,
uint32_t flags_set,
uint32_t flags_clear) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
p_interp_driver->p_funcs->apply_flags(p_interp_driver,
flags_set,
flags_clear);
}
static uint32_t
inturbo_get_flags(struct cpu_driver* p_cpu_driver) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
return p_interp_driver->p_funcs->get_flags(p_interp_driver);
}
static uint32_t
inturbo_get_exit_value(struct cpu_driver* p_cpu_driver) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
return p_interp_driver->p_funcs->get_exit_value(p_interp_driver);
}
static void
inturbo_set_exit_value(struct cpu_driver* p_cpu_driver, uint32_t exit_value) {
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct cpu_driver* p_interp_driver = (struct cpu_driver*) p_inturbo->p_interp;
p_interp_driver->p_funcs->set_exit_value(p_interp_driver, exit_value);
}
static char*
inturbo_get_address_info(struct cpu_driver* p_cpu_driver, uint16_t addr) {
(void) p_cpu_driver;
(void) addr;
return "TRBO";
}
static void
inturbo_init(struct cpu_driver* p_cpu_driver) {
struct interp_struct* p_interp;
struct inturbo_struct* p_inturbo = (struct inturbo_struct*) p_cpu_driver;
struct state_6502* p_state_6502 = p_cpu_driver->abi.p_state_6502;
struct memory_access* p_memory_access =
p_cpu_driver->p_extra->p_memory_access;
struct timing_struct* p_timing = p_cpu_driver->p_extra->p_timing;
struct bbc_options* p_options = p_cpu_driver->p_extra->p_options;
struct debug_struct* p_debug = p_options->p_debug_object;
struct cpu_driver_funcs* p_funcs = p_cpu_driver->p_funcs;
p_funcs->destroy = inturbo_destroy;
p_funcs->set_reset_callback = inturbo_set_reset_callback;
p_funcs->set_memory_written_callback = inturbo_set_memory_written_callback;
p_funcs->enter = inturbo_enter;
p_funcs->apply_flags = inturbo_apply_flags;
p_funcs->get_flags = inturbo_get_flags;
p_funcs->get_exit_value = inturbo_get_exit_value;
p_funcs->set_exit_value = inturbo_set_exit_value;
p_funcs->get_address_info = inturbo_get_address_info;
p_cpu_driver->abi.p_debug_asm = asm_debug_trampoline;
if (p_inturbo->is_ret_mode) {
p_cpu_driver->abi.p_interp_asm = asm_inturbo_interp_trampoline_ret;
} else {
p_cpu_driver->abi.p_interp_asm = asm_inturbo_interp_trampoline;
}
p_inturbo->debug_subsystem_active = debug_subsystem_active(p_debug);
/* The inturbo mode uses an interpreter to handle complicated situations,
* such as IRQs, hardware accesses, etc.
*/
if (p_inturbo->p_interp == NULL) {
p_interp = (struct interp_struct*) cpu_driver_alloc(k_cpu_mode_interp,
0,
p_state_6502,
p_memory_access,
p_timing,
p_options);
if (p_interp == NULL) {
util_bail("couldn't allocate interp_struct");
}
p_inturbo->p_interp = p_interp;
p_inturbo->is_interp_owned = 1;
interp_set_instruction_callback(p_interp,
inturbo_interp_instruction_callback,
p_inturbo);
}
cpu_driver_init((struct cpu_driver*) p_inturbo->p_interp);
p_inturbo->driver.abi.p_interp_callback = inturbo_enter_interp;
p_inturbo->driver.abi.p_interp_object = p_inturbo;
p_inturbo->p_mapping_base = os_alloc_get_mapping((void*) K_INTURBO_ADDR,
K_INTURBO_SIZE);
p_inturbo->p_inturbo_base =
os_alloc_get_mapping_addr(p_inturbo->p_mapping_base);
asm_inturbo_init();
inturbo_fill_tables(p_inturbo);
os_alloc_make_mapping_read_exec(p_inturbo->p_inturbo_base, K_INTURBO_SIZE);
}
struct cpu_driver*
inturbo_create(struct cpu_driver_funcs* p_funcs) {
struct inturbo_struct* p_inturbo;
if (!asm_inturbo_is_enabled()) {
return NULL;
}
p_inturbo = util_mallocz(sizeof(struct inturbo_struct));
p_funcs->init = inturbo_init;
return &p_inturbo->driver;
}
void
inturbo_set_interp(struct inturbo_struct* p_inturbo,
struct interp_struct* p_interp) {
assert(p_inturbo->p_interp == NULL);
assert(p_inturbo->is_interp_owned == 0);
p_inturbo->p_interp = p_interp;
}
void
inturbo_set_ret_mode(struct inturbo_struct* p_inturbo) {
p_inturbo->is_ret_mode = 1;
}
void
inturbo_set_do_write_invalidation(struct inturbo_struct* p_inturbo,
uint32_t* p_code_ptrs) {
p_inturbo->do_write_invalidations = 1;
p_inturbo->driver.abi.p_util_private = p_code_ptrs;
}
void
inturbo_set_use_interp_for_opcode(struct inturbo_struct* p_inturbo,
uint8_t opcode) {
p_inturbo->use_interp_for_opcode[opcode] = 1;
}