-
Notifications
You must be signed in to change notification settings - Fork 0
/
sym.cpp
384 lines (321 loc) · 11.7 KB
/
sym.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*
Copyright (c) 2010-2013, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file sym.cpp
@brief file with definitions for symbol and symbol table classes.
*/
#include "sym.h"
#include "type.h"
#include "util.h"
#include <stdio.h>
///////////////////////////////////////////////////////////////////////////
// Symbol
Symbol::Symbol(const std::string &n, SourcePos p, const Type *t,
StorageClass sc)
: pos(p), name(n) {
storagePtr = NULL;
function = exportedFunction = NULL;
type = t;
constValue = NULL;
storageClass = sc;
varyingCFDepth = 0;
parentFunction = NULL;
}
///////////////////////////////////////////////////////////////////////////
// SymbolTable
SymbolTable::SymbolTable() {
PushScope();
}
SymbolTable::~SymbolTable() {
// Otherwise we have mismatched push/pop scopes
Assert(variables.size() == 1);
PopScope();
}
void
SymbolTable::PushScope() {
SymbolMapType *sm;
if (freeSymbolMaps.size() > 0) {
sm = freeSymbolMaps.back();
freeSymbolMaps.pop_back();
sm->erase(sm->begin(), sm->end());
}
else
sm = new SymbolMapType;
variables.push_back(sm);
}
void
SymbolTable::PopScope() {
Assert(variables.size() > 1);
freeSymbolMaps.push_back(variables.back());
variables.pop_back();
}
bool
SymbolTable::AddVariable(Symbol *symbol) {
Assert(symbol != NULL);
// Check to see if a symbol of the same name has already been declared.
for (int i = (int)variables.size() - 1; i >= 0; --i) {
SymbolMapType &sm = *(variables[i]);
if (sm.find(symbol->name) != sm.end()) {
if (i == (int)variables.size()-1) {
// If a symbol of the same name was declared in the
// same scope, it's an error.
Error(symbol->pos, "Ignoring redeclaration of symbol \"%s\".",
symbol->name.c_str());
return false;
}
else {
// Otherwise it's just shadowing something else, which
// is legal but dangerous..
Warning(symbol->pos,
"Symbol \"%s\" shadows symbol declared in outer scope.",
symbol->name.c_str());
(*variables.back())[symbol->name] = symbol;
return true;
}
}
}
// No matches, so go ahead and add it...
(*variables.back())[symbol->name] = symbol;
return true;
}
Symbol *
SymbolTable::LookupVariable(const char *name) {
// Note that we iterate through the variables vectors backwards, since
// we want to search from the innermost scope to the outermost, so that
// we get the right symbol if we have multiple variables in different
// scopes that shadow each other.
for (int i = (int)variables.size() - 1; i >= 0; --i) {
SymbolMapType &sm = *(variables[i]);
SymbolMapType::iterator iter = sm.find(name);
if (iter != sm.end())
return iter->second;
}
return NULL;
}
bool
SymbolTable::AddFunction(Symbol *symbol) {
const FunctionType *ft = CastType<FunctionType>(symbol->type);
Assert(ft != NULL);
if (LookupFunction(symbol->name.c_str(), ft) != NULL)
// A function of the same name and type has already been added to
// the symbol table
return false;
std::vector<Symbol *> &funOverloads = functions[symbol->name];
funOverloads.push_back(symbol);
return true;
}
bool
SymbolTable::LookupFunction(const char *name, std::vector<Symbol *> *matches) {
FunctionMapType::iterator iter = functions.find(name);
if (iter != functions.end()) {
if (matches == NULL)
return true;
else {
const std::vector<Symbol *> &funcs = iter->second;
for (int j = 0; j < (int)funcs.size(); ++j)
matches->push_back(funcs[j]);
}
}
return matches ? (matches->size() > 0) : false;
}
Symbol *
SymbolTable::LookupFunction(const char *name, const FunctionType *type) {
FunctionMapType::iterator iter = functions.find(name);
if (iter != functions.end()) {
std::vector<Symbol *> funcs = iter->second;
for (int j = 0; j < (int)funcs.size(); ++j) {
if (Type::Equal(funcs[j]->type, type))
return funcs[j];
}
}
return NULL;
}
bool
SymbolTable::AddType(const char *name, const Type *type, SourcePos pos) {
const Type *t = LookupType(name);
if (t != NULL && CastType<UndefinedStructType>(t) == NULL) {
// If we have a previous declaration of anything other than an
// UndefinedStructType with this struct name, issue an error. If
// we have an UndefinedStructType, then we'll fall through to the
// code below that adds the definition to the type map.
Error(pos, "Ignoring redefinition of type \"%s\".", name);
return false;
}
types[name] = type;
return true;
}
const Type *
SymbolTable::LookupType(const char *name) const {
// Again, search through the type maps backward to get scoping right.
TypeMapType::const_iterator iter = types.find(name);
if (iter != types.end())
return iter->second;
return NULL;
}
bool
SymbolTable::ContainsType(const Type *type) const {
TypeMapType::const_iterator iter = types.begin();
while (iter != types.end()) {
if (iter->second == type) {
return true;
}
iter++;
}
return false;
}
std::vector<std::string>
SymbolTable::ClosestVariableOrFunctionMatch(const char *str) const {
// This is a little wasteful, but we'll look through all of the
// variable and function symbols and compute the edit distance from the
// given string to them. If the edit distance is under maxDelta, then
// it goes in the entry of the matches[] array corresponding to its
// edit distance.
const int maxDelta = 2;
std::vector<std::string> matches[maxDelta+1];
for (int i = 0; i < (int)variables.size(); ++i) {
const SymbolMapType &sv = *(variables[i]);
SymbolMapType::const_iterator iter;
for (iter = sv.begin(); iter != sv.end(); ++iter) {
const Symbol *sym = iter->second;
int dist = StringEditDistance(str, sym->name, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(sym->name);
}
}
FunctionMapType::const_iterator iter;
for (iter = functions.begin(); iter != functions.end(); ++iter) {
int dist = StringEditDistance(str, iter->first, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(iter->first);
}
// Now, return the first entry of matches[] that is non-empty, if any.
for (int i = 0; i <= maxDelta; ++i) {
if (matches[i].size())
return matches[i];
}
// Otherwise, no joy.
return std::vector<std::string>();
}
std::vector<std::string>
SymbolTable::ClosestTypeMatch(const char *str) const {
return closestTypeMatch(str, true);
}
std::vector<std::string>
SymbolTable::ClosestEnumTypeMatch(const char *str) const {
return closestTypeMatch(str, false);
}
std::vector<std::string>
SymbolTable::closestTypeMatch(const char *str, bool structsVsEnums) const {
// This follows the same approach as ClosestVariableOrFunctionMatch()
// above; compute all edit distances, keep the ones shorter than
// maxDelta, return the first non-empty vector of one or more sets of
// alternatives with minimal edit distance.
const int maxDelta = 2;
std::vector<std::string> matches[maxDelta+1];
TypeMapType::const_iterator iter;
for (iter = types.begin(); iter != types.end(); ++iter) {
// Skip over either StructTypes or EnumTypes, depending on the
// value of the structsVsEnums parameter
bool isEnum = (CastType<EnumType>(iter->second) != NULL);
if (isEnum && structsVsEnums)
continue;
else if (!isEnum && !structsVsEnums)
continue;
int dist = StringEditDistance(str, iter->first, maxDelta+1);
if (dist <= maxDelta)
matches[dist].push_back(iter->first);
}
for (int i = 0; i <= maxDelta; ++i) {
if (matches[i].size())
return matches[i];
}
return std::vector<std::string>();
}
void
SymbolTable::Print() {
int depth = 0;
fprintf(stderr, "Variables:\n----------------\n");
for (int i = 0; i < (int)variables.size(); ++i) {
SymbolMapType &sm = *(variables[i]);
SymbolMapType::iterator iter;
for (iter = sm.begin(); iter != sm.end(); ++iter) {
fprintf(stderr, "%*c", depth, ' ');
Symbol *sym = iter->second;
fprintf(stderr, "%s [%s]", sym->name.c_str(),
sym->type->GetString().c_str());
}
fprintf(stderr, "\n");
depth += 4;
}
fprintf(stderr, "Functions:\n----------------\n");
FunctionMapType::iterator fiter = functions.begin();
while (fiter != functions.end()) {
fprintf(stderr, "%s\n", fiter->first.c_str());
std::vector<Symbol *> &syms = fiter->second;
for (unsigned int j = 0; j < syms.size(); ++j)
fprintf(stderr, " %s\n", syms[j]->type->GetString().c_str());
++fiter;
}
depth = 0;
fprintf(stderr, "Named types:\n---------------\n");
TypeMapType::iterator siter = types.begin();
while (siter != types.end()) {
fprintf(stderr, "%*c", depth, ' ');
fprintf(stderr, "%s -> %s\n", siter->first.c_str(),
siter->second->GetString().c_str());
++siter;
}
}
inline int ispcRand() {
#ifdef ISPC_IS_WINDOWS
return rand();
#else
return lrand48();
#endif
}
Symbol *
SymbolTable::RandomSymbol() {
int v = ispcRand() % variables.size();
if (variables[v]->size() == 0)
return NULL;
int count = ispcRand() % variables[v]->size();
SymbolMapType::iterator iter = variables[v]->begin();
while (count-- > 0) {
++iter;
Assert(iter != variables[v]->end());
}
return iter->second;
}
const Type *
SymbolTable::RandomType() {
int count = types.size();
TypeMapType::iterator iter = types.begin();
while (count-- > 0) {
++iter;
Assert(iter != types.end());
}
return iter->second;
}