forked from antao97/dgcnn.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
283 lines (242 loc) · 10.2 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: Yue Wang
@Contact: [email protected]
@File: data.py
@Time: 2018/10/13 6:21 PM
Modified by
@Author: An Tao
@Contact: [email protected]
@Time: 2020/2/27 9:32 PM
"""
import os
import sys
import glob
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset
def download_modelnet40():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def download_shapenetpart():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data')):
www = 'https://shapenet.cs.stanford.edu/media/shapenet_part_seg_hdf5_data.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], os.path.join(DATA_DIR, 'shapenet_part_seg_hdf5_data')))
os.system('rm %s' % (zipfile))
def download_S3DIS():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data')):
www = 'https://shapenet.cs.stanford.edu/media/indoor3d_sem_seg_hdf5_data.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
if not os.path.exists(os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version')):
if not os.path.exists(os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version.zip')):
print('Please download Stanford3dDataset_v1.2_Aligned_Version.zip \
from https://goo.gl/forms/4SoGp4KtH1jfRqEj2 and place it under data/')
sys.exit(0)
else:
zippath = os.path.join(DATA_DIR, 'Stanford3dDataset_v1.2_Aligned_Version.zip')
os.system('unzip %s' % (zippath))
os.system('rm %s' % (zippath))
def load_data_cls(partition):
download_modelnet40()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40*hdf5_2048', '*%s*.h5'%partition)):
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def load_data_partseg(partition):
download_shapenetpart()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
all_data = []
all_label = []
all_seg = []
if partition == 'trainval':
file = glob.glob(os.path.join(DATA_DIR, 'shapenet*hdf5*', '*train*.h5')) \
+ glob.glob(os.path.join(DATA_DIR, 'shapenet*hdf5*', '*val*.h5'))
else:
file = glob.glob(os.path.join(DATA_DIR, 'shapenet*hdf5*', '*%s*.h5'%partition))
for h5_name in file:
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
seg = f['pid'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_seg.append(seg)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
all_seg = np.concatenate(all_seg, axis=0)
return all_data, all_label, all_seg
def prepare_test_data_semseg():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(os.path.join(DATA_DIR, 'stanford_indoor3d')):
os.system('python prepare_data/collect_indoor3d_data.py')
if not os.path.exists(os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_test')):
os.system('python prepare_data/gen_indoor3d_h5.py')
def load_data_semseg(partition, test_area):
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
download_S3DIS()
prepare_test_data_semseg()
if partition == 'train':
data_dir = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data')
else:
data_dir = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_test')
with open(os.path.join(data_dir, "all_files.txt")) as f:
all_files = [line.rstrip() for line in f]
with open(os.path.join(data_dir, "room_filelist.txt")) as f:
room_filelist = [line.rstrip() for line in f]
data_batchlist, label_batchlist = [], []
for f in all_files:
file = h5py.File(os.path.join(DATA_DIR, f), 'r+')
data = file["data"][:]
label = file["label"][:]
data_batchlist.append(data)
label_batchlist.append(label)
data_batches = np.concatenate(data_batchlist, 0)
seg_batches = np.concatenate(label_batchlist, 0)
test_area_name = "Area_" + test_area
train_idxs, test_idxs = [], []
for i, room_name in enumerate(room_filelist):
if test_area_name in room_name:
test_idxs.append(i)
else:
train_idxs.append(i)
if partition == 'train':
all_data = data_batches[train_idxs, ...]
all_seg = seg_batches[train_idxs, ...]
else:
all_data = data_batches[test_idxs, ...]
all_seg = seg_batches[test_idxs, ...]
return all_data, all_seg
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
def rotate_pointcloud(pointcloud):
theta = np.pi*2 * np.random.uniform()
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z)
return pointcloud
class ModelNet40(Dataset):
def __init__(self, num_points, partition='train'):
self.data, self.label = load_data_cls(partition)
self.num_points = num_points
self.partition = partition
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
if self.partition == 'train':
pointcloud = translate_pointcloud(pointcloud)
np.random.shuffle(pointcloud)
return pointcloud, label
def __len__(self):
return self.data.shape[0]
class ShapeNetPart(Dataset):
def __init__(self, num_points, partition='train', class_choice=None):
self.data, self.label, self.seg = load_data_partseg(partition)
self.cat2id = {'airplane': 0, 'bag': 1, 'cap': 2, 'car': 3, 'chair': 4,
'earphone': 5, 'guitar': 6, 'knife': 7, 'lamp': 8, 'laptop': 9,
'motor': 10, 'mug': 11, 'pistol': 12, 'rocket': 13, 'skateboard': 14, 'table': 15}
self.seg_num = [4, 2, 2, 4, 4, 3, 3, 2, 4, 2, 6, 2, 3, 3, 3, 3]
self.index_start = [0, 4, 6, 8, 12, 16, 19, 22, 24, 28, 30, 36, 38, 41, 44, 47]
self.num_points = num_points
self.partition = partition
self.class_choice = class_choice
if self.class_choice != None:
id_choice = self.cat2id[self.class_choice]
indices = (self.label == id_choice).squeeze()
self.data = self.data[indices]
self.label = self.label[indices]
self.seg = self.seg[indices]
self.seg_num_all = self.seg_num[id_choice]
self.seg_start_index = self.index_start[id_choice]
else:
self.seg_num_all = 50
self.seg_start_index = 0
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
label = self.label[item]
seg = self.seg[item][:self.num_points]
if self.partition == 'train':
# pointcloud = translate_pointcloud(pointcloud)
indices = list(range(pointcloud.shape[0]))
np.random.shuffle(indices)
pointcloud = pointcloud[indices]
seg = seg[indices]
return pointcloud, label, seg
def __len__(self):
return self.data.shape[0]
class S3DIS(Dataset):
def __init__(self, num_points=4096, partition='train', test_area='1'):
self.data, self.seg = load_data_semseg(partition, test_area)
self.num_points = num_points
self.partition = partition
def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
seg = self.seg[item][:self.num_points]
if self.partition == 'train':
indices = list(range(pointcloud.shape[0]))
np.random.shuffle(indices)
pointcloud = pointcloud[indices]
seg = seg[indices]
seg = torch.LongTensor(seg)
return pointcloud, seg
def __len__(self):
return self.data.shape[0]
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
data, label = train[0]
print(data.shape)
print(label.shape)
trainval = ShapeNetPart(2048, 'trainval')
test = ShapeNetPart(2048, 'test')
data, label, seg = trainval[0]
print(data.shape)
print(label.shape)
print(seg.shape)
train = S3DIS(4096)
test = S3DIS(4096, 'test')
data, seg = train[0]
print(data.shape)
print(seg.shape)