($\text{C}^m_n$ 代表从
($\sum\limits_{i=0}^n\text{f}(i)$ 表示从
(约定
引理:n 次方差公式
$$(m+1)^{k+1}-m^{k+1}=\sum_{i=0}^{k}\text{C}^i_{k+1}m^i$$
证:
$$=\text{C}^k_{k+1}\left(\sum^n_{m=1}m^k\right)+\sum^{k-1}{i=1}\text{C}^i{k+1}\left(\sum^n_{m=1}m^i\right)$$
因此有
$$\sum^n_{m=1}m^k=\dfrac{1}{\text{C}^k_{k+1}}\left[(n+1)^{k+1}-1-\sum^{k-1}{i=0}\text{C}^i{k+1}\left(\sum^n_{m=1}m^i\right)\right]$$