-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
21 lines (21 loc) · 50.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=2"><meta name="theme-color" content="#222"><meta name="generator" content="Hexo 4.2.0"><link rel="apple-touch-icon" sizes="180x180" href="/blog/blog/images/apple-touch-icon-next.png"><link rel="icon" type="image/png" sizes="32x32" href="/blog/blog/images/favicon-frog.png"><link rel="icon" type="image/png" sizes="16x16" href="/blog/blog/images/favicon-frog.png"><link rel="mask-icon" href="/blog/blog/images/logo.svg" color="#222"><link rel="stylesheet" href="/blog/css/main.css"><link rel="stylesheet" href="//fonts.googleapis.com/css?family=Comic Sans MS:300,300italic,400,400italic,700,700italic|Consolas:300,300italic,400,400italic,700,700italic&display=swap&subset=latin,latin-ext"><link rel="stylesheet" href="/blog/lib/font-awesome/css/font-awesome.min.css"><link rel="stylesheet" href="//cdn.jsdelivr.net/gh/fancyapps/fancybox@3/dist/jquery.fancybox.min.css"><link rel="stylesheet" href="/blog/lib/pace/pace-theme-minimal.min.css"><script src="/blog/lib/pace/pace.min.js"></script><script id="hexo-configurations">var NexT=window.NexT||{},CONFIG={hostname:"schtonn.github.io",root:"/blog/",scheme:"Muse",version:"7.8.0",exturl:!1,sidebar:{position:"left",display:"post",padding:18,offset:12,onmobile:!1},copycode:{enable:!0,show_result:!0,style:"flat"},back2top:{enable:!0,sidebar:!1,scrollpercent:!0},bookmark:{enable:!1,color:"#222",save:"auto"},fancybox:!0,mediumzoom:!1,lazyload:!0,pangu:!1,comments:{style:"tabs",active:"valine",storage:!0,lazyload:!1,nav:null},algolia:{hits:{per_page:10},labels:{input_placeholder:"Search for Posts",hits_empty:"We didn't find any results for the search: ${query}",hits_stats:"${hits} results found in ${time} ms"}},localsearch:{enable:!1,trigger:"auto",top_n_per_article:1,unescape:!1,preload:!1},motion:{enable:!0,async:!1,transition:{post_block:"fadeIn",post_header:"slideDownIn",post_body:"slideDownIn",coll_header:"slideLeftIn",sidebar:"slideUpIn"}}}</script><meta name="description" content="schtonn!blog"><meta property="og:type" content="website"><meta property="og:title" content="schtonn"><meta property="og:url" content="https://schtonn.github.io/blog/index.html"><meta property="og:site_name" content="schtonn"><meta property="og:description" content="schtonn!blog"><meta property="og:locale" content="en_US"><meta property="article:author" content="Alex"><meta property="article:tag" content="schtonn"><meta name="twitter:card" content="summary"><link rel="canonical" href="https://schtonn.github.io/blog/"><script id="page-configurations">CONFIG.page={sidebar:"",isHome:!0,isPost:!1,lang:"en"}</script><title>schtonn</title><noscript><style>.sidebar-inner,.use-motion .brand,.use-motion .collection-header,.use-motion .comments,.use-motion .menu-item,.use-motion .pagination,.use-motion .post-block,.use-motion .post-body,.use-motion .post-header{opacity:initial}.use-motion .site-subtitle,.use-motion .site-title{opacity:initial;top:initial}.use-motion .logo-line-before i{left:initial}.use-motion .logo-line-after i{right:initial}</style></noscript></head><body itemscope itemtype="http://schema.org/WebPage"><div class="container use-motion"><div class="headband"></div><header class="header" itemscope itemtype="http://schema.org/WPHeader"><div class="header-inner"><div class="site-brand-container"><div class="site-nav-toggle"><div class="toggle" aria-label="Toggle navigation bar"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div></div><div class="site-meta"><a href="/blog/" class="brand" rel="start"><span class="logo-line-before"><i></i></span><h1 class="site-title">schtonn</h1><span class="logo-line-after"><i></i></span></a><p class="site-subtitle" itemprop="description">schtonn</p></div><div class="site-nav-right"><div class="toggle popup-trigger"></div></div></div><nav class="site-nav"><ul id="menu" class="menu"><li class="menu-item menu-item-home"><a href="/blog/" rel="section"><i class="fa fa-fw fa-home"></i> Home</a></li><li class="menu-item menu-item-tags"><a href="/blog/tags/" rel="section"><i class="fa fa-fw fa-tags"></i> Tags</a></li><li class="menu-item menu-item-archives"><a href="/blog/archives/" rel="section"><i class="fa fa-fw fa-archive"></i> Archives</a></li><li class="menu-item menu-item-games"><a href="/blog/games/" rel="section"><i class="fa fa-fw fa-gamepad"></i> Games</a></li></ul></nav></div></header><div class="back-to-top"><i class="fa fa-arrow-up"></i> <span>0%</span></div><div class="reading-progress-bar"></div><main class="main"><div class="main-inner"><div class="content-wrap"><div class="content index posts-expand"><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/CRT/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/CRT/" class="post-title-link" itemprop="url">中国剩余定理</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2021-Jan-02 14:47:52 / Modified: 16:34:02" itemprop="dateCreated datePublished" datetime="2021-01-02T14:47:52+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>同余,逆元等数论基础。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>我们来看这样一个问题:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?——《孙子算经》</p><p>即:</p><p class="katex-block"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable width="100%"><mtr><mtd width="50%"></mtd><mtd><mrow><mo fence="true">{</mo><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>x</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>≡</mo><mn>2</mn><mspace></mspace><mspace width="1em"><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333333333333333em"><mn>3</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>x</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>≡</mo><mn>3</mn><mspace></mspace><mspace width="1em"><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333333333333333em"><mn>5</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mi>x</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>≡</mo><mn>2</mn><mspace></mspace><mspace width="1em"><mo stretchy="false">(</mo><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">d</mi></mrow><mspace width="0.3333333333333333em"><mn>7</mn><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr></mtable></mrow></mtd><mtd width="50%"></mtd><mtd><mtext>(1.0)</mtext></mtd></mtr></mtable><annotation encoding="application/x-tex">\left\{ \begin{aligned} x&\equiv 2\pmod {3}\\ x&\equiv 3\pmod {5}\\ x&\equiv 2\pmod {7} \end{aligned} \right.\tag{1.0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.500000000000002em;vertical-align:-2.000000000000001em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em"><span style="top:-2.19999em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19999em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.1500100000000004em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.30001em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em"><span style="top:-4.66em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-1.6599999999999993em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em"><span style="top:-4.66em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mord">2</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathrm">m</span><span class="mord mathrm">o</span><span class="mord mathrm">d</span></span></span><span class="mspace" style="margin-right:.3333333333333333em"></span><span class="mord">3</span><span class="mclose">)</span></span></span><span style="top:-3.16em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mord">3</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathrm">m</span><span class="mord mathrm">o</span><span class="mord mathrm">d</span></span></span><span class="mspace" style="margin-right:.3333333333333333em"></span><span class="mord">5</span><span class="mclose">)</span></span></span><span style="top:-1.6599999999999993em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mrel">≡</span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mord">2</span><span class="mspace allowbreak"></span><span class="mspace" style="margin-right:1em"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathrm">m</span><span class="mord mathrm">o</span><span class="mord mathrm">d</span></span></span><span class="mspace" style="margin-right:.3333333333333333em"></span><span class="mord">7</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height:4.500000000000002em;vertical-align:-2.000000000000001em"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">.</span><span class="mord">0</span></span><span class="mord">)</span></span></span></span></span></span></p><div class="post-button"> <a class="btn" href="/blog/posts/CRT/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/combination/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/combination/" class="post-title-link" itemprop="url">求组合数</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2021-Jan-01 20:26:59" itemprop="dateCreated datePublished" datetime="2021-01-01T20:26:59+08:00">2021-Jan-01</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-06 22:45:55" itemprop="dateModified" datetime="2021-01-06T22:45:55+08:00">2021-Jan-06</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>中国剩余定理,</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>从 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">n</span></span></span></span> 个不同元素中取出 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">m</span></span></span></span> 个元素的组合数,即 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mi>m</mi></msubsup></mrow><annotation encoding="application/x-tex">C_n^m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.93033em;vertical-align:-.247em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:.664392em"><span style="top:-2.4530000000000003em;margin-left:-.07153em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span><span style="top:-3.063em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:.247em"><span></span></span></span></span></span></span></span></span></span>,是从 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">n</span></span></span></span> 个不同元素中,取出 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">m</span></span></span></span> 个元素所形成的组合个数。</p><p>我们需要使用各种方式求 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mi>m</mi></msubsup></mrow><annotation encoding="application/x-tex">C_n^m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.93033em;vertical-align:-.247em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:.07153em">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:.664392em"><span style="top:-2.4530000000000003em;margin-left:-.07153em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span><span style="top:-3.063em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:.247em"><span></span></span></span></span></span></span></span></span></span>,每个方式难度,速度和空间都有不同。</p><div class="post-button"> <a class="btn" href="/blog/posts/combination/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/plan-2020-7/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/plan-2020-7/" class="post-title-link" itemprop="url">2020/7 计划</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Dec-26 12:07:13" itemprop="dateCreated datePublished" datetime="2020-12-26T12:07:13+08:00">2020-Dec-26</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2020-Dec-29 23:31:55" itemprop="dateModified" datetime="2020-12-29T23:31:55+08:00">2020-Dec-29</time></span></div></header><div class="post-body" itemprop="articleBody"><p>This page is locked.</p><div class="post-button"> <a class="btn" href="/blog/posts/plan-2020-7/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/ex-KMP/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/ex-KMP/" class="post-title-link" itemprop="url">拓展 KMP</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Dec-16 22:40:10" itemprop="dateCreated datePublished" datetime="2020-12-16T22:40:10+08:00">2020-Dec-16</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-01 22:00:39" itemprop="dateModified" datetime="2021-01-01T22:00:39+08:00">2021-Jan-01</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>字符串基础操作;强烈建议先学习 <a href="/blog/posts/KMP">KMP</a> 和 <a href="/blog/posts/manacher">manacher</a>,对理解有很大帮助。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>假设模式串是 <code>pat</code>,文本串是 <code>txt</code>。</p><p>拓展 KMP,有时也叫 Z 函数,是求 <code>pat</code> 和 <code>txt</code> 的(所有)后缀的最大公共前缀长度,用 <code>z[i]</code> 表示。</p><div class="post-button"> <a class="btn" href="/blog/posts/ex-KMP/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/KMP/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/KMP/" class="post-title-link" itemprop="url">KMP</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Dec-16 18:42:34" itemprop="dateCreated datePublished" datetime="2020-12-16T18:42:34+08:00">2020-Dec-16</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:12" itemprop="dateModified" datetime="2021-01-02T10:38:12+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>字符串基础操作。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>KMP 是一种字符串匹配算法,意思就是说给出模式串 <code>pat</code> 和文本串 <code>txt</code>(长度各为 <code>m</code> 和 <code>n</code>),找出模式串在文本串中出现的所有位置。</p><p>考虑用暴力来解决这一问题,那么:</p><p>对于文本串的每一位置,循序匹配模式串,遇到不匹配就退出。此算法时间复杂度 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>m</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(mn)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mord mathdefault">m</span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span>。</p><p>KMP算法则用了一 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span> 的预处理将时间复杂度缩减到了 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span>。</p><div class="post-button"> <a class="btn" href="/blog/posts/KMP/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/quick-pow/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/quick-pow/" class="post-title-link" itemprop="url">快速幂</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Nov-17 21:33:40" itemprop="dateCreated datePublished" datetime="2020-11-17T21:33:40+08:00">2020-Nov-17</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:15" itemprop="dateModified" datetime="2021-01-02T10:38:15+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>快速幂是一种效率极高,以至于题目中不得不取模防止数据越界的求幂算法。计算 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>a</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">a^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.664392em;vertical-align:0"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:.664392em"><span style="top:-3.063em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span> 的复杂度为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>log</mi><mo></mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(\log n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mop">lo<span style="margin-right:.01389em">g</span></span><span class="mspace" style="margin-right:.16666666666666666em"></span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span>。</p><div class="post-button"> <a class="btn" href="/blog/posts/quick-pow/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/num-convert/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/num-convert/" class="post-title-link" itemprop="url">进制转换</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Jul-28 20:44:27" itemprop="dateCreated datePublished" datetime="2020-07-28T20:44:27+08:00">2020-Jul-28</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:14" itemprop="dateModified" datetime="2021-01-02T10:38:14+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>说起进制,大家应该都不陌生。今天来讲一讲进制转换。</p><div class="post-button"> <a class="btn" href="/blog/posts/num-convert/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/domino/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/domino/" class="post-title-link" itemprop="url">各种奇奇怪怪的多米诺骨牌</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Jun-21 12:22:19" itemprop="dateCreated datePublished" datetime="2020-06-21T12:22:19+08:00">2020-Jun-21</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:45" itemprop="dateModified" datetime="2021-01-02T10:38:45+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>动态规划,二进制基础知识。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>假设我们有一个矩形的棋盘,里面有 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">n</span></span></span></span> 行 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">m</span></span></span></span> 列的 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo>×</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1\times1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.72777em;vertical-align:-.08333em"></span><span class="mord">1</span><span class="mspace" style="margin-right:.2222222222222222em"></span><span class="mbin">×</span><span class="mspace" style="margin-right:.2222222222222222em"></span></span><span class="base"><span class="strut" style="height:.64444em;vertical-align:0"></span><span class="mord">1</span></span></span></span> 的方格,现在我们要往里面放 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo>×</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">1\times2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.72777em;vertical-align:-.08333em"></span><span class="mord">1</span><span class="mspace" style="margin-right:.2222222222222222em"></span><span class="mbin">×</span><span class="mspace" style="margin-right:.2222222222222222em"></span></span><span class="base"><span class="strut" style="height:.64444em;vertical-align:0"></span><span class="mord">2</span></span></span></span> 的多米诺骨牌。要求骨牌不能重叠,正好填满棋盘的所有方格。求所有方案数。</p><p>这时我们可以利用状态压缩,对每一层进行动态规划。</p><div class="post-button"> <a class="btn" href="/blog/posts/domino/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/manacher/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/manacher/" class="post-title-link" itemprop="url">manacher</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Jun-14 22:47:39" itemprop="dateCreated datePublished" datetime="2020-06-14T22:47:39+08:00">2020-Jun-14</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:45" itemprop="dateModified" datetime="2021-01-02T10:38:45+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>字符串基础操作。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>回文串,即 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>s</mi><mo>=</mo><msub><mi>s</mi><mrow><mi>r</mi><mi>e</mi><mi>v</mi></mrow></msub></mrow><annotation encoding="application/x-tex">s=s_{rev}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">s</span><span class="mspace" style="margin-right:.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:.58056em;vertical-align:-.15em"></span><span class="mord"><span class="mord mathdefault">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:.151392em"><span style="top:-2.5500000000000003em;margin-left:0;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:.02778em">r</span><span class="mord mathdefault mtight">e</span><span class="mord mathdefault mtight" style="margin-right:.03588em">v</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:.15em"><span></span></span></span></span></span></span></span></span></span>,也就是本身与反转相等。</p><p>想要找到字符串 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0"></span><span class="mord mathdefault">s</span></span></span></span> 中最大的回文子串,很容易想到的是一种复杂度为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:.8141079999999999em"><span style="top:-3.063em;margin-right:.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> 的朴素算法,也就是对于每一个点都向外扩展。</p><p>这里介绍一种复杂度为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-.25em"></span><span class="mord mathdefault" style="margin-right:.02778em">O</span><span class="mopen">(</span><span class="mord mathdefault">n</span><span class="mclose">)</span></span></span></span> 的最大回文子串算法,叫做 Manacher。</p><div class="post-button"> <a class="btn" href="/blog/posts/manacher/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><article itemscope itemtype="http://schema.org/Article" class="post-block" lang="en"><link itemprop="mainEntityOfPage" href="https://schtonn.github.io/blog/posts/hamilton/"><span hidden itemprop="author" itemscope itemtype="http://schema.org/Person"><meta itemprop="image" content="/blog/images/avatar.gif"><meta itemprop="name" content="Alex"><meta itemprop="description" content="schtonn!blog"></span><script type="text/javascript" src="/blog/js/md5.js"></script><script></script><script>document.oncopy=function(e){window.event&&(e=window.event);try{var t=e.srcElement;return"INPUT"==t.tagName&&"text"==t.type.toLowerCase()||"TEXTAREA"==t.tagName}catch(e){return!1}}</script><span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization"><meta itemprop="name" content="schtonn"></span><header class="post-header"><h2 class="post-title" itemprop="name headline"> <a href="/blog/posts/hamilton/" class="post-title-link" itemprop="url">哈密尔顿回路</a></h2><div class="post-meta"><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-o"></i></span> <span class="post-meta-item-text">Posted on</span> <time title="Created: 2020-Jun-14 22:03:13" itemprop="dateCreated datePublished" datetime="2020-06-14T22:03:13+08:00">2020-Jun-14</time></span><span class="post-meta-item"><span class="post-meta-item-icon"><i class="fa fa-calendar-check-o"></i></span> <span class="post-meta-item-text">Edited on</span> <time title="Modified: 2021-Jan-02 10:38:11" itemprop="dateModified" datetime="2021-01-02T10:38:11+08:00">2021-Jan-02</time></span></div></header><div class="post-body" itemprop="articleBody"><h3 id="前置知识"><a class="markdownIt-Anchor" href="#前置知识"></a> 前置知识</h3><p>图论,动态规划,二进制基础知识。</p><h3 id="引入"><a class="markdownIt-Anchor" href="#引入"></a> 引入</h3><p>大家都很了解欧拉回路,也就是经过每条边正好一遍的路径。</p><p>哈密尔顿回路和欧拉回路很像,但是需要经过每个点正好一遍。</p><p>欧拉回路有稳定的解法,然而哈密尔顿回路是 <code>NPC</code> 的,没有多项式时间解法。</p><p>我们使用动态规划来解决哈密尔顿回路问题。</p><div class="post-button"> <a class="btn" href="/blog/posts/hamilton/#more" rel="contents">Read more »</a></div></div><footer class="post-footer"><div class="post-eof"></div></footer></article><nav class="pagination"> <span class="page-number current">1</span><a class="page-number" href="/blog/page/2/">2</a><a class="extend next" rel="next" href="/blog/page/2/"><i class="fa fa-angle-right" aria-label="Next page"></i></a></nav></div><script>
window.addEventListener('tabs:register', () => {
let { activeClass } = CONFIG.comments;
if (CONFIG.comments.storage) {
activeClass = localStorage.getItem('comments_active') || activeClass;
}
if (activeClass) {
let activeTab = document.querySelector(`a[href="#comment-${activeClass}"]`);
if (activeTab) {
activeTab.click();
}
}
});
if (CONFIG.comments.storage) {
window.addEventListener('tabs:click', event => {
if (!event.target.matches('.tabs-comment .tab-content .tab-pane')) return;
let commentClass = event.target.classList[1];
localStorage.setItem('comments_active', commentClass);
});
}
</script></div><div class="toggle sidebar-toggle"><span class="toggle-line toggle-line-first"></span><span class="toggle-line toggle-line-middle"></span><span class="toggle-line toggle-line-last"></span></div><aside class="sidebar"><div class="sidebar-inner"><ul class="sidebar-nav motion-element"><li class="sidebar-nav-toc"> Table of Contents</li><li class="sidebar-nav-overview"> Overview</li></ul><div class="post-toc-wrap sidebar-panel"></div><div class="site-overview-wrap sidebar-panel"><div class="site-author motion-element" itemprop="author" itemscope itemtype="http://schema.org/Person"><p class="site-author-name" itemprop="name">Alex</p><div class="site-description" itemprop="description">schtonn!blog</div></div><div class="site-state-wrap motion-element"><nav class="site-state"><div class="site-state-item site-state-posts"> <a href="/blog/archives"><span class="site-state-item-count">20</span> <span class="site-state-item-name">posts</span></a></div><div class="site-state-item site-state-tags"> <a href="/blog/tags/"><span class="site-state-item-count">6</span> <span class="site-state-item-name">tags</span></a></div></nav></div><div class="links-of-author motion-element"><span class="links-of-author-item"><a href="https://github.com/schtonn" title="GitHub → https://github.com/schtonn" rel="noopener" target="_blank"><i class="fa fa-fw fa-github"></i> GitHub</a></span><span class="links-of-author-item"><a href="mailto:[email protected]" title="E-Mail → mailto:[email protected]" rel="noopener" target="_blank"><i class="fa fa-fw fa-envelope"></i> E-Mail</a></span></div><div class="links-of-blogroll motion-element"><div class="links-of-blogroll-title"><i class="fa fa-fw fa-link"></i> Links</div><ul class="links-of-blogroll-list"><li class="links-of-blogroll-item"> <a href="https://yonghong.github.io/" title="https://yonghong.github.io" rel="noopener" target="_blank">Yonghong</a></li><li class="links-of-blogroll-item"> <a href="https://source.unsplash.com/random/1600x900" title="https://source.unsplash.com/random/1600x900" rel="noopener" target="_blank">Background</a></li></ul></div></div><div id="treefrog" style="text-align:center;margin-top:18px"><object type="application/x-shockwave-flash" style="outline:0" data="/blog/flash/treefrog.swf?up_bodyColor=444444&up_pattern=0&up_flyColor=777777&up_tongueColor=555555&up_patternColor=000000&up_releaseFly=0&up_frogName=Froggie&up_backgroundImage=http://&up_bellySize=.5&up_footColor=444444&up_eyeColor=444444&up_backgroundColor=222222&" width="300" height="600"><param name="movie" value="http://cdn.abowman.com/widgets/treefrog/treefrog.swf?up_bodyColor=444444&up_pattern=0&up_flyColor=777777&up_tongueColor=555555&up_patternColor=000000&up_releaseFly=0&up_frogName=Froggie&up_backgroundImage=http://&up_bellySize=.5&up_footColor=444444&up_eyeColor=444444&up_backgroundColor=222222&"><param name="AllowScriptAccess" value="always"><param name="wmode" value="opaque"><param name="scale" value="noscale"><param name="salign" value="tl"></object></div></div></aside><div id="sidebar-dimmer"></div></div></main><footer class="footer"><div class="footer-inner"><div class="copyright"> © 2019 – <span itemprop="copyrightYear">2021</span><span class="with-love"><i class="fa fa-user"></i></span> <span class="author" itemprop="copyrightHolder">Alexander</span></div></div></footer></div><script src="/blog/lib/anime.min.js"></script><script src="//cdn.jsdelivr.net/npm/jquery@3/dist/jquery.min.js"></script><script src="//cdn.jsdelivr.net/gh/fancyapps/fancybox@3/dist/jquery.fancybox.min.js"></script><script src="//cdn.jsdelivr.net/npm/lozad@1/dist/lozad.min.js"></script><script src="/blog/lib/velocity/velocity.min.js"></script><script src="/blog/lib/velocity/velocity.ui.min.js"></script><script src="/blog/js/utils.js"></script><script src="/blog/js/motion.js"></script><script src="/blog/js/schemes/muse.js"></script><script src="/blog/js/next-boot.js"></script><script>!function(){var t=document.createElement("script"),e=window.location.protocol.split(":")[0];t.src="https"===e?"https://zz.bdstatic.com/linksubmit/push.js":"http://push.zhanzhang.baidu.com/push.js";var s=document.getElementsByTagName("script")[0];s.parentNode.insertBefore(t,s)}()</script><link rel="stylesheet" href="//cdn.jsdelivr.net/npm/katex@0/dist/katex.min.css"></body></html>