-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheyring_model.py
413 lines (295 loc) · 18 KB
/
eyring_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# EyringModel class
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from exceptions import *
# Define global constants
global kB
kB = 1.380649 * 10**-23 # Boltzmann (m^2 kg / s^2 K)
global h
h = 6.62607 * 10**-34 # Planck (m^2 kg / s)
global R
R = 1.9858775 * 10**-3 # universal gas (kcal / mol K)
class EyringModel:
def __init__(self, T=300, A=1e7):
''' Eyring model for transport through a membrane assuming many parallel paths with separate permeabilities P_i
:param T: temperature (K), default=300
:param A: unit area of the membrane (Angstroms^2), default is 0.1 micrometer^2 (corresponding to ~2000 paths), default=1e7
:type T: float
:type A: float
'''
self.paths = []
self.T = T
self.permeabilities = None
self.deltas = []
self.area = A
self.areas = []
def add_Path(self, dist='normal', dist_params={'mu': 0, 'sigma' : 1}, n_jumps=200, lam=2, area=19.635, barrier_sm=5, barrier_ms=5):
''' Add path to the Eyring model with a given distribution of membrane barriers
:param dist: distribution from which to draw the membrane barriers, default='normal'
:param dist_params: parameters for the membrane barrier distribution, default={'mu' : 0, 'sigma': 1}
:param n_jumps: number of membrane jumps in direction of transport, default=200
:param lam: average membrane jump length (Angstroms), default=2
:param area: cross-sectional area for the path (Angstroms^2), default corresponds to a circular pore with diameter 5 Angstroms, default=19.635
:param barrier_sm: barrier for the solution-membrane interface, default=5 (becomes 5*R*T)
:param barrier_ms: barrier for the membrane-solution interface, default=5 (becomes 5*R*T)
:type dist: str
:type dist_params: dict
:type n_jumps: int
:type lam: float
:type area: float
:type barrier_sm: float
:type barrier_ms: float
'''
p = Path(T=self.T, dist=dist, dist_params=dist_params, # membrane barriers
n_jumps=n_jumps, lam=lam, # jump length distribution
area=area, # cross-sectional area
barrier_sm=barrier_sm*R*self.T, barrier_ms=barrier_ms*R*self.T) # interfacial barriers
self.paths.append(p)
self.deltas.append(p.jump_lengths.sum())
self.n_paths = len(self.paths)
def get_lambda(self):
''' Get average jump length from the single paths'''
return np.array([p.jump_lengths.mean() for p in self.paths]).mean()
def calculate_permeability(self):
''' Calculate overall permeability as a mean of single path permeabilities'''
self.permeabilities = np.zeros(self.n_paths)
self.areas = np.zeros(self.n_paths)
for n,p in enumerate(self.paths):
self.permeabilities[n] = p.calculate_permeability()
self.areas[n] = p.area
self.permeability = np.sum(self.permeabilities*self.areas) / self.area # units work as long as EyringModel area and Path area are same units
return self.permeability
def calculate_effective_barrier(self):
''' Calculate overall effective barrier'''
lam_avg = self.get_lambda()
delta = np.array(self.deltas).mean()
num = (delta / lam_avg**2) * (self.paths[0].lam_sm / self.paths[0].lam_sm) #* np.array([p.area/self.area for p in self.paths])
den = np.array([self.area / p.area * np.sum( np.exp(p.membrane_barriers / (R*self.T)) / p.jump_lengths ) for p in self.paths])
self.effective_barrier = -R*self.T * np.log(np.sum(num / den)) + self.paths[0].barrier_sm - self.paths[0].barrier_ms
return self.effective_barrier
class Path:
def __init__(self, T=300, dist='normal', dist_params={'mu': 0, 'sigma' : 1}, n_jumps=200, lam=2, area=19.635, barrier_sm=5, barrier_ms=5):
''' Single path of the Eyring model for transport through a membrane as a series of molecular jumps (see original citation: https://doi.org/10.1021/j150474a012)
:param T: temperature (K), default=300
:param dist: distribution from which to draw the membrane barriers, default='normal'
:param dist_params: parameters for the membrane barrier distribution, default={'mu' : 0, 'sigma': 1}
:param n_jumps: number of membrane jumps in direction of transport, default=200
:param lam: average membrane jump length (Angstroms), default=2
:param area: cross-sectional area for the path (Angstroms^2), default corresponds to a circular pore with diameter 5 Angstroms, default=19.635
:param barrier_sm: barrier for the solution-membrane interface, default=5
:param barrier_ms: barrier for the membrane-solution interface, default=5
:type T: float
:type dist: str
:type dist_params: dict
:type n_jumps: int
:type lam: float
:type area: float
:type barrier_sm: float
:type barrier_ms: float
'''
# Initialize based on inputs
self.T = T
self.n_jumps = n_jumps
self.lam = lam
self.area = area
# Set some initial values
self.seed = None
self.membrane_barriers = None
self.enthalpic_barriers = None
self.entropic_barriers = None
# Default values for some parameters
self.generate_membrane_barriers(dist=dist, dist_params=dist_params)
self.generate_jump_distribution(dist_params={'mu' : lam}) # jump length distributions
self.lam_sm = lam # solution-membrane jump length
self.lam_ms = lam # membrane-solution jump length
self.barrier_sm = barrier_sm # solution-membrane barrier
self.barrier_ms = barrier_ms # membrane-solution barrier
def generate_membrane_barriers(self, dist='normal', dist_params={'mu': 0, 'sigma' : 1}, multi=False, seed=None):
'''Generate a distribution of membrane barriers
:param dist: distribution from which to draw the membrane barriers, default='normal'
:param dist_params: parameters for the membrane barrier distribution, default={'mu' : 0, 'sigma': 1}
:param seed: seed for the random number generator, default=None
:type dist: str
:type dist_params: dict
:type seed: int
'''
# dictionary error
if not isinstance(dist_params, dict):
raise DistributionError('Provide distribution parameters as a dictionary')
# create random number generator
rng = np.random.default_rng(seed)
if multi and dist in ['normal', 'N', 'norm']: # multivariate normal distribution of barriers
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for a multivariate normal distribution")
elif 'cov' not in dist_params.keys():
raise DistributionError("'cov' must be a key in distribution parameters for a multivariate normal distribution")
# generate enthalpy and entropy distributions
multi_norm = rng.multivariate_normal(mean=dist_params['mu'], cov=dist_params['cov'], size=self.n_jumps)
self.enthalpic_barriers = multi_norm[:,0]
self.entropic_barriers = multi_norm[:,1]
self.membrane_barriers = self.enthalpic_barriers - self.T*self.entropic_barriers # calculate dG from dH and dS
elif multi and dist in ['exponential', 'exp']: # multiple exponential distributions of barriers
# Raise an error if the correct parameters are not provided
if 'beta' not in dist_params.keys():
raise DistributionError("'beta' must be a key in distribution parameters for an exponential distribution")
# NOTE: assuming no covariance here, so drawing from two independent exponential distributions with means beta
# generate enthalpy and entropy distributions
self.enthalpic_barriers = rng.exponential(scale=dist_params['beta'][0], size=self.n_jumps)
self.entropic_barriers = -rng.exponential(scale=-dist_params['beta'][1], size=self.n_jumps)
self.membrane_barriers = self.enthalpic_barriers - self.T*self.entropic_barriers # calculate dG
elif multi and dist in ['equal', 'single', 'none', None]: # no distribution of barriers -- assumes single barrier
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for no distribution of barriers")
# generate barrier distributions
self.enthalpic_barriers = np.ones(self.n_jumps) * dist_params['mu'][0]
self.entropic_barriers = np.ones(self.n_jumps) * dist_params['mu'][1]
self.membrane_barriers = self.enthalpic_barriers - self.T*self.entropic_barriers
elif dist in ['normal', 'N', 'norm']: # normal distribution of barriers
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for a normal distribution")
elif 'sigma' not in dist_params.keys():
raise DistributionError("'sigma' must be a key in distribution parameters for a normal distribution")
# generate barrier distribution
self.membrane_barriers = rng.normal(loc=dist_params['mu'], scale=dist_params['sigma'], size=self.n_jumps)
elif dist in ['exponential', 'exp']: # exponential distribution of barriers
# Raise an error if the correct parameters are not provided
if 'beta' not in dist_params.keys():
raise DistributionError("'beta' must be a key in distribution parameters for an exponential distribution")
# generate barrier distribution
self.membrane_barriers = rng.exponential(scale=dist_params['beta'], size=self.n_jumps)
elif dist in ['uniform', 'uni']: # uniform distribution of barriers
# Raise an error if the correct parameters are not provided
if 'a' not in dist_params.keys():
raise DistributionError("'a' must be a key in distribution parameters for a normal distribution")
elif 'b' not in dist_params.keys():
raise DistributionError("'b' must be a key in distribution parameters for a normal distribution")
# generate barrier distribution
self.membrane_barriers = rng.uniform(low=dist_params['a'], high=dist_params['b'], size=self.n_jumps)
elif dist in ['equal', 'single', 'none', None]: # no distribution of barriers -- assumes single barrier
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for no distribution of barriers")
# generate barrier distribution
self.membrane_barriers = np.ones(self.n_jumps) * dist_params['mu']
else: # other distributions not implemented
# Raise an error if other distribution is provided
dist_options = ['normal', 'exponential', 'uniform', 'equal']
raise DistributionError('{} is not currently implemented. Try one of {}'.format(dist, dist_options))
if not multi:
return self.membrane_barriers
else:
return self.membrane_barriers, self.enthalpic_barriers, self.entropic_barriers
def generate_jump_distribution(self, dist=None, dist_params={'mu' : 2}, seed=None):
'''Generate a distribution of jump lengths
:param dist: distribution from which to draw the jump lengths, default=None (which means all jump lengths are the same)
:param dist_params: parameters for the membrane barrier distribution, default={'mu' : 2}
:param seed: seed for the random number generator
:type dist: str
:type dist_params: dict
:type seed: int
'''
# dictionary error
if not isinstance(dist_params, dict):
raise DistributionError('Provide distribution parameters as a dictionary')
# create random number generator
rng = np.random.default_rng(seed)
if dist in ['equal', 'single', 'none', None]: # all the same length
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for a normal distribution")
self.jump_lengths = np.ones(self.n_jumps) * dist_params['mu']
elif dist in ['normal', 'N', 'norm']: # normal distribution of barriers
# Raise an error if the correct parameters are not provided
if 'mu' not in dist_params.keys():
raise DistributionError("'mu' must be a key in distribution parameters for a normal distribution")
elif 'sigma' not in dist_params.keys():
raise DistributionError("'sigma' must be a key in distribution parameters for a normal distribution")
# generate barrier distribution
self.jump_lengths = rng.normal(loc=dist_params['mu'], scale=dist_params['sigma'], size=self.n_jumps)
elif dist in ['exponential', 'exp']: # exponential distribution of barriers
# Raise an error if the correct parameters are not provided
if 'beta' not in dist_params.keys():
raise DistributionError("'beta' must be a key in distribution parameters for an exponential distribution")
# generate barrier distribution
self.jump_lengths = rng.exponential(scale=dist_params['beta'], size=self.n_jumps)
elif dist in ['uniform', 'uni']: # uniform distribution of barriers
# Raise an error if the correct parameters are not provided
if 'a' not in dist_params.keys():
raise DistributionError("'a' must be a key in distribution parameters for a normal distribution")
elif 'b' not in dist_params.keys():
raise DistributionError("'b' must be a key in distribution parameters for a normal distribution")
# generate barrier distribution
self.jump_lengths = rng.uniform(low=dist_params['a'], high=dist_params['b'], size=self.n_jumps)
else: # other distributions not implemented
# Raise an error if other distribution is provided
dist_options = ['normal', 'exponential', 'uniform', 'equal']
raise DistributionError('{} is not currently implemented. Try one of {}'.format(dist, dist_options))
# print('Generated {} distribution of jump lengths with mean {:.4f} and stdev {:.4f}'.format(dist, self.jump_lengths.mean(), self.jump_lengths.std()))
def _P_membrane_barriers(self, T=None):
'''Calculate membrane transport contribution to permeability from distribution of jump lengths and barriers
:param T: temperature (K), default=None (use self.T)
:type T: float
'''
if self.membrane_barriers is None:
raise DistributionError('No membrane barrier distribution. Use generate_membrane_barriers method')
if T is None:
temp = self.T
else:
temp = T
A = h / (kB*temp) / 60 / 60
lam = self.jump_lengths / 10**10
exp = np.exp(- self.membrane_barriers / (R*temp))
return A*np.sum( 1 / (lam * exp) ) # units = h / m
def _P_interfacial_barriers(self, T=None):
'''Calculate membrane partitioning contribution to permeability from interfacial barriers
:param T: temperature (K), default=None (use self.T)
:type T: float
'''
if self.membrane_barriers is None:
raise DistributionError('No membrane barrier distribution. Use generate_membrane_barriers method')
if T is None:
temp = self.T
else:
temp = T
A = self.lam_sm/self.lam_ms
exp = np.exp((self.barrier_ms - self.barrier_sm) / R / temp)
return A * exp # unitless
def calculate_permeability(self, T=None):
'''Calculate permeabilitty from membrane barriers
:param T: temperature (K), default=None (use self.T)
:type T: float
'''
num = self._P_interfacial_barriers(T=T)
den = self._P_membrane_barriers(T=T)
self.permeability = num / den * 1000
return num / den * 1000 # units = L / m^2 / h
def calculate_effective_barrier(self, T=None):
'''Calculate the effective barrier that is experimentally observed from membrane barriers
:param T: temperature (K), default=None (use self.T)
:type T: float
'''
if T is None:
temp = self.T
else:
temp = T
delta = self.jump_lengths.sum()
lam_avg = self.jump_lengths.mean()
num = (delta / lam_avg**2) * (self.lam_sm / self.lam_ms)
den = np.sum( np.exp(self.membrane_barriers / (R*temp)) / self.jump_lengths)
return -np.log(num / den) * R*temp + self.barrier_sm - self.barrier_ms
def plot_distribution(self, bw=None, hist=False, n_bins=50, binwidth=None, label=None, fill=True, ax=None, color=None):
if ax is None:
fig, ax = plt.subplots(1,1, figsize=(10,6))
if hist:
sns.histplot(self.membrane_barriers, bins=n_bins, binwidth=binwidth, edgecolor='black',
stat='density', ax=ax, color=color, alpha=0.5, label=label)
else:
sns.kdeplot(self.membrane_barriers, bw_method=bw, label=label, fill=fill, ax=ax, color=color)
plt.xlabel('$\Delta G_{M,j}$')
return ax
if __name__ == '__main__':
T = 300