diff --git a/.doctrees/_notebooks/Basic_usage.doctree b/.doctrees/_notebooks/Basic_usage.doctree index b9862e4..75dbdf4 100644 Binary files a/.doctrees/_notebooks/Basic_usage.doctree and b/.doctrees/_notebooks/Basic_usage.doctree differ diff --git a/.doctrees/_notebooks/Tutorial.doctree b/.doctrees/_notebooks/Tutorial.doctree index 4b9776a..20e3d59 100644 Binary files a/.doctrees/_notebooks/Tutorial.doctree and b/.doctrees/_notebooks/Tutorial.doctree differ diff --git a/.doctrees/_notebooks/Using_redflag_with_Pandas.doctree b/.doctrees/_notebooks/Using_redflag_with_Pandas.doctree index fe55001..a2138c9 100644 Binary files a/.doctrees/_notebooks/Using_redflag_with_Pandas.doctree and b/.doctrees/_notebooks/Using_redflag_with_Pandas.doctree differ diff --git a/.doctrees/_notebooks/Using_redflag_with_sklearn.doctree b/.doctrees/_notebooks/Using_redflag_with_sklearn.doctree index 0b995cf..f663cbf 100644 Binary files a/.doctrees/_notebooks/Using_redflag_with_sklearn.doctree and b/.doctrees/_notebooks/Using_redflag_with_sklearn.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index f4bb85b..77978d1 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree index 39842c6..bc86255 100644 Binary files a/.doctrees/index.doctree and b/.doctrees/index.doctree differ diff --git a/_images/450b80bfa0cd04cfa435ed31fc3779e5ef7129d75198face14a30712ac7fdac7.png b/_images/450b80bfa0cd04cfa435ed31fc3779e5ef7129d75198face14a30712ac7fdac7.png new file mode 100644 index 0000000..1116177 Binary files /dev/null and b/_images/450b80bfa0cd04cfa435ed31fc3779e5ef7129d75198face14a30712ac7fdac7.png differ diff --git a/_images/619414c4ee6362a53b781d50e5c574ec0322de8b96d3acf08b678a7b6b5504d6.png b/_images/619414c4ee6362a53b781d50e5c574ec0322de8b96d3acf08b678a7b6b5504d6.png deleted file mode 100644 index d7f3d3b..0000000 Binary files a/_images/619414c4ee6362a53b781d50e5c574ec0322de8b96d3acf08b678a7b6b5504d6.png and /dev/null differ diff --git a/_notebooks/Basic_usage.html b/_notebooks/Basic_usage.html index 952c00f..36e0b36 100644 --- a/_notebooks/Basic_usage.html +++ b/_notebooks/Basic_usage.html @@ -241,7 +241,7 @@
'0.4.0'
+'0.1.dev1+ga3e5e5e'
<matplotlib.lines.Line2D at 0x7f9d95c6a390>
+<matplotlib.lines.Line2D at 0x7fa5a8b9ddd0>
@@ -630,7 +630,7 @@ Outliers<seaborn.axisgrid.JointGrid at 0x7f9d5504d390>
+<seaborn.axisgrid.JointGrid at 0x7fa58c9b2690>
@@ -689,10 +689,10 @@ Outliers<seaborn.axisgrid.FacetGrid at 0x7f9d54f79690>
+<seaborn.axisgrid.FacetGrid at 0x7fa58c978950>
-
+
This truncated normal distribution has no outliers (there are only about 60, compared to the 100 we expect at this confidence level of 99% on this dataset of 10,000 records).
@@ -737,7 +737,7 @@ Clipping<seaborn.axisgrid.FacetGrid at 0x7f9d54f48d10>
+<seaborn.axisgrid.FacetGrid at 0x7fa58ca48950>
@@ -782,7 +782,7 @@ Distribution shape
-Distribution(name='gumbel_r', shape=[], loc=10.04057253630259, scale=4.93432972751726)
+Distribution(name='gumbel_r', shape=[], loc=10.040572536302586, scale=4.93432972751726)
@@ -798,7 +798,7 @@ Distribution shape<seaborn.axisgrid.FacetGrid at 0x7f9d54ce9fd0>
+<seaborn.axisgrid.FacetGrid at 0x7fa58c866d10>
@@ -947,7 +947,7 @@ Feature importance
-array([0.48750956, 0.22376372, 0.23550932, 0.05056213, 0. ])
+array([0.24840897, 0.34972206, 0.32817662, 0.07369235, 0. ])
@@ -974,7 +974,7 @@ Feature importance
-array([0, 2, 1])
+array([1, 2, 0])
@@ -992,7 +992,7 @@ Feature importance
-array([0.10075571, 0.36348681, 0.5105534 , 0.02520408, 0. ])
+array([0.08955964, 0.35788656, 0.525743 , 0.0268108 , 0. ])
diff --git a/_notebooks/Tutorial.html b/_notebooks/Tutorial.html
index dd81846..cbbfd42 100644
--- a/_notebooks/Tutorial.html
+++ b/_notebooks/Tutorial.html
@@ -318,7 +318,7 @@ A quick look at
-'0.4.0'
+'0.1.dev1+ga3e5e5e'
@@ -570,7 +570,7 @@ Clipping<seaborn.axisgrid.FacetGrid at 0x7f55b5cbd610>
+<seaborn.axisgrid.FacetGrid at 0x7f4a91901850>
@@ -623,7 +623,7 @@ Importance
-array([0.43341464, 0.16440126, 0.31468974, 0.08749436])
+array([0.40817216, 0.20385381, 0.31665051, 0.07132352])
@@ -733,7 +733,7 @@ Pipelines🚩 Feature 3 has low importance; check for relevance.
-ℹ️ Dummy classifier scores: {'f1': 0.25488459423559595, 'roc_auc': 0.5} (most_frequent strategy).
+ℹ️ Dummy classifier scores: {'f1': 0.2562046792503389, 'roc_auc': 0.4937139556627474} (stratified strategy).
Pipeline(steps=[('detector',
- Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f55b5bd7c40>,
+ Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f4a917bfce0>,
message='are negative')),
('svc', SVC())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.Pipeline(steps=[('detector',
- Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f55b5bd7c40>,
+ Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f4a917bfce0>,
message='are negative')),
- ('svc', SVC())])
Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f55b5bd7c40>,
+ ('svc', SVC())])
Detector(func=<function BaseRedflagDetector.__init__.<locals>.<lambda> at 0x7f4a917bfce0>,
message='are negative')
SVC()
The noise feature we added has negative values; the others are all positive, which is what we expect for these data.
diff --git a/_notebooks/Using_redflag_with_Pandas.html b/_notebooks/Using_redflag_with_Pandas.html
index 2e2510c..4ab23f2 100644
--- a/_notebooks/Using_redflag_with_Pandas.html
+++ b/_notebooks/Using_redflag_with_Pandas.html
@@ -234,7 +234,7 @@ 🚩 Using redf
-'0.4.0'
+'0.1.dev1+ga3e5e5e'
@@ -430,8 +430,8 @@ Series accessor
-{'f1': 0.25351640471373643,
- 'roc_auc': 0.494193275325803,
+{'f1': 0.24308613668344808,
+ 'roc_auc': 0.49544118310710333,
'strategy': 'stratified',
'task': 'classification'}
@@ -463,9 +463,9 @@ Series accessor
Continuous data suitable for regression
-Outliers: [ 34 35 136 140 141 142 143 145 147 175 180 181 182 532
- 583 633 662 768 769 801 1316 1547 1731 1732 1744 1754 1756 1778
- 1779 1780 1788 2884 2932 2973 2974 3004 3079 3080 3087 3109]
+Outliers: [ 34 35 140 141 142 143 175 182 532 581 583 633 662 757
+ 768 769 801 1316 1547 1744 1754 1756 1778 1779 1780 1784 1788 1808
+ 1812 2884 2932 2973 2974 3004 3079 3080 3087 3094 3109]
Correlated: True
Dummy scores:{'mean': {'mean_squared_error': 47528.78263092096, 'r2': 0.0}}
diff --git a/_notebooks/Using_redflag_with_sklearn.html b/_notebooks/Using_redflag_with_sklearn.html
index a859b19..0148a34 100644
--- a/_notebooks/Using_redflag_with_sklearn.html
+++ b/_notebooks/Using_redflag_with_sklearn.html
@@ -574,7 +574,7 @@ Using the pre-built 🚩 There are more outliers than expected in the training data (349 vs 31).
-ℹ️ Dummy classifier scores: {'f1': 0.2640071145283919, 'roc_auc': 0.5004869752654918} (stratified strategy).
+ℹ️ Dummy classifier scores: {'f1': 0.2553305717063476, 'roc_auc': 0.5040393210009199} (stratified strategy).
Pipeline(steps=[('standardscaler', StandardScaler()),
@@ -743,7 +743,7 @@ The imbalance comparator
🚩 There is a different number of minority classes (2) compared to the training data (4).
-🚩 The minority classes (dolomite, sandstone) are different from those in the training data (wackestone, dolomite, mudstone, sandstone).
+🚩 The minority classes (sandstone, dolomite) are different from those in the training data (wackestone, sandstone, dolomite, mudstone).
diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt
index 34829b6..52a12b3 100644
--- a/_sources/index.rst.txt
+++ b/_sources/index.rst.txt
@@ -6,14 +6,15 @@
`Fork on GitHub `_
-Redflag: An Entrance Exam for Data
-==================================
-
- | ``redflag`` aims to be an automatic safety net for
- | machine learning datasets. Given a ``DataFrame`` or
- | ``ndarray``, ``redflag`` will analyse each feature,
- | including aspects such as class imbalance, leakage, outliers,
- | anomalous data patterns, threats to the IID assumption, etc.
+Redflag: safer ML by design
+===========================
+
+ | ``redflag`` is a lightweight safety net for machine
+ | learning. Given a ``DataFrame`` or ``ndarray``,
+ | ``redflag`` will analyse the features and the target,
+ | and warn you about class imbalance, leakage, outliers,
+ | anomalous data patterns, threats to the IID assumption,
+ | and more.
Quick start
diff --git a/_static/agile-open-logo-nocircle-grey_40px.png b/_static/agile-open-logo-nocircle-grey_40px.png
deleted file mode 100644
index cab8c74..0000000
Binary files a/_static/agile-open-logo-nocircle-grey_40px.png and /dev/null differ
diff --git a/_static/redflag_social.svg b/_static/redflag_social.svg
index 70e4727..b6ca7a6 100644
--- a/_static/redflag_social.svg
+++ b/_static/redflag_social.svg
@@ -2,19 +2,20 @@
+ style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.4206px;font-family:'Mercury Text G4';-inkscape-font-specification:'Mercury Text G4, Normal';font-variant-ligatures:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-east-asian:normal;fill:#1866ac;fill-opacity:1;stroke-width:0.80938"
+ x="184.72946"
+ y="32.095646">a safety net for yourmachine learning data & pipelines scienxlab.org/redflag
diff --git a/index.html b/index.html
index 05f8da9..bf21931 100644
--- a/index.html
+++ b/index.html
@@ -223,15 +223,16 @@
-
-Redflag: An Entrance Exam for Data#
+
+Redflag: safer ML by design#
-redflag
aims to be an automatic safety net for
-machine learning datasets. Given a DataFrame
or
-ndarray
, redflag
will analyse each feature,
-including aspects such as class imbalance, leakage, outliers,
-anomalous data patterns, threats to the IID assumption, etc.
+redflag
is a lightweight safety net for machine
+learning. Given a DataFrame
or ndarray
,
+redflag
will analyse the features and the target,
+and warn you about class imbalance, leakage, outliers,
+anomalous data patterns, threats to the IID assumption,
+and more.
diff --git a/installation.html b/installation.html
index b3440e9..8794d99 100644
--- a/installation.html
+++ b/installation.html
@@ -3,7 +3,7 @@
-
+
🚩 Installation - redflag documentation
diff --git a/objects.inv b/objects.inv
index d37d202..5e7071c 100644
Binary files a/objects.inv and b/objects.inv differ
diff --git a/searchindex.js b/searchindex.js
index 39b1634..1bf46b7 100644
--- a/searchindex.js
+++ b/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["_notebooks/Basic_usage", "_notebooks/Tutorial", "_notebooks/Using_redflag_with_Pandas", "_notebooks/Using_redflag_with_sklearn", "authors", "changelog", "contributing", "development", "index", "installation", "license", "redflag"], "filenames": ["_notebooks/Basic_usage.ipynb", "_notebooks/Tutorial.ipynb", "_notebooks/Using_redflag_with_Pandas.ipynb", "_notebooks/Using_redflag_with_sklearn.ipynb", "authors.md", "changelog.md", "contributing.md", "development.md", "index.rst", "installation.md", "license.md", "redflag.rst"], "titles": ["\ud83d\udea9 Basic usage", "\ud83d\udea9 Tutorial", "\ud83d\udea9 Using redflag
with Pandas", "\ud83d\udea9 Using redflag
with sklearn
", "Authors", "Changelog", "Contributing", "Development", "Redflag: An Entrance Exam for Data", "\ud83d\udea9 Installation", "License", "redflag package"], "terms": {"welcom": [0, 2], "redflag": [0, 5, 7, 9], "It": [0, 1, 5, 11], "": [0, 1, 2, 3, 5, 6, 7, 10, 11], "still": [0, 3, 5], "earli": [0, 5], "dai": 0, "thi": [0, 1, 2, 3, 5, 6, 7, 10, 11], "librari": [0, 1, 8], "ar": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11], "few": [0, 3], "thing": [0, 1, 3], "you": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11], "can": [0, 1, 2, 3, 5, 6, 7, 9, 11], "do": [0, 1, 5, 8, 10, 11], "detect": [0, 1, 3, 5, 11], "label": [0, 1, 3, 5, 11], "ani": [0, 1, 3, 5, 10, 11], "other": [0, 1, 3, 5, 6, 7, 10, 11], "variabl": [0, 3, 11], "rf": [0, 1, 2, 3, 8], "__version__": [0, 1, 2], "0": [0, 1, 2, 3, 10, 11], "4": [0, 1, 2, 3, 11], "panda": [0, 1, 3, 5, 8], "pd": [0, 1, 2, 3, 11], "df": [0, 1, 2, 3, 8], "read_csv": [0, 1, 2, 3], "http": [0, 1, 2, 3, 10, 11], "geocomp": [0, 1, 2, 3], "s3": [0, 1, 2, 3], "amazonaw": [0, 1, 2, 3], "com": [0, 1, 2, 3, 11], "panoma_training_data": [0, 1, 2, 3], "csv": [0, 1, 2, 3], "look": [0, 2, 3, 8], "transpos": [0, 3], "summari": [0, 3], "each": [0, 3, 5, 8, 10, 11], "column": [0, 1, 3, 5, 11], "datafram": [0, 3, 8], "i": [0, 1, 2, 3, 5, 6, 7, 9, 10, 11], "row": [0, 3, 5, 11], "here": [0, 3, 6], "describ": [0, 3, 10], "t": [0, 1, 3, 5, 7, 11], "count": [0, 3, 11], "mean": [0, 1, 2, 3, 5, 10, 11], "std": [0, 3], "min": [0, 1, 3, 11], "25": [0, 3, 11], "50": [0, 3, 10], "75": [0, 3, 11], "max": [0, 1, 3, 11], "depth": [0, 1, 2, 3], "3966": [0, 3], "882": [0, 3], "674555": [0, 3], "40": [0, 3, 11], "150056": [0, 3], "784": [0, 3], "402800": [0, 3], "858": [0, 3], "012000": [0, 3], "888": [0, 3], "339600": [0, 3], "913": [0, 3], "028400": [0, 3], "963": [0, 3], "320400": [0, 3], "relpo": [0, 1, 2, 3], "524999": [0, 3], "286375": [0, 3], "010000": [0, 3], "282000": [0, 3], "531000": [0, 3], "773000": [0, 3], "1": [0, 1, 2, 3, 10, 11], "000000": [0, 3], "marin": [0, 1, 2, 3], "325013": [0, 3], "589539": [0, 3], "2": [0, 1, 2, 3, 10, 11], "gr": [0, 1, 2, 3, 11], "64": [0, 1, 3], "367899": [0, 3], "28": [0, 3], "414603": [0, 3], "12": [0, 1, 2, 3, 11], "036000": [0, 3], "45": [0, 1, 2, 3, 11], "311250": [0, 3], "840000": [0, 3], "78": [0, 1, 2, 3], "809750": [0, 3], "200": [0, 3, 11], "ild": [0, 1, 2, 3], "5": [0, 1, 2, 3, 5, 11], "240308": [0, 3], "3": [0, 1, 2, 3, 11], "190416": [0, 3], "340408": [0, 3], "169567": [0, 3], "305266": [0, 3], "6": [0, 1, 2, 3, 11], "664234": [0, 3], "32": [0, 3], "136605": [0, 3], "deltaphi": [0, 1, 2, 3], "469088": [0, 3], "922310": [0, 3], "21": [0, 3], "832000": [0, 3], "292500": [0, 3], "124750": [0, 3], "18": [0, 3], "600000": [0, 3], "phind": [0, 1, 2, 3], "13": [0, 1, 2, 3, 11], "008807": [0, 3], "936391": [0, 3], "550000": [0, 3], "8": [0, 1, 2, 3, 11], "196250": [0, 3], "11": [0, 1, 2, 3, 11], "781500": [0, 3], "16": [0, 3], "050000": [0, 3], "52": [0, 3], "369000": [0, 3], "pe": [0, 1, 2, 3], "686427": [0, 3], "815113": [0, 3], "200000": [0, 3], "123000": [0, 3], "514500": [0, 3], "241750": [0, 3], "094000": [0, 3], "faci": [0, 1, 2, 3], "471004": [0, 3], "406180": [0, 3], "9": [0, 1, 2, 3, 10, 11], "latitud": [0, 1, 2, 3], "37": [0, 1, 2, 3], "632575": [0, 3], "299398": [0, 3], "180732": [0, 3], "356426": [0, 3], "500380": [0, 3], "910583": [0, 3], "38": [0, 3], "063373": [0, 3], "longitud": [0, 1, 2, 3], "101": [0, 3], "294895": [0, 3], "230454": [0, 3], "646452": [0, 3], "389189": [0, 3], "325130": [0, 3], "106045": [0, 3], "100": [0, 1, 2, 3, 11], "987305": [0, 1, 2, 3], "ild_log10": [0, 1, 2, 3], "648860": [0, 3], "251542": [0, 3], "468000": [0, 3], "501000": [0, 3], "634000": [0, 3], "823750": [0, 3], "507000": [0, 3], "rhob": [0, 1, 2, 3], "2288": [0, 3], "861692": [0, 3], "218": [0, 3], "038459": [0, 3], "1500": [0, 3], "2201": [0, 3], "007475": [0, 3], "2342": [0, 3], "202051": [0, 3], "2434": [0, 3], "166399": [0, 3], "2802": [0, 3], "871147": [0, 3], "fairli": 0, "easi": [0, 1], "tell": [0, 1, 11], "numer": [0, 5, 11], "harder": 0, "decid": [0, 3, 11], "we": [0, 1, 2, 3, 5, 6, 11], "us": [0, 1, 5, 7, 8, 9, 10, 11], "is_continu": [0, 5, 11], "check": [0, 1, 3, 5, 11], "target": [0, 2, 3, 5, 8], "heurist": [0, 3, 5], "definit": [0, 5, 10, 11], "foolproof": 0, "intern": 0, "sometim": [0, 11], "how": [0, 1, 3, 5, 6], "treat": 0, "col": 0, "print": [0, 2, 5, 11], "f": 0, "20": [0, 3, 11], "well": [0, 1, 2, 3, 11], "name": [0, 1, 2, 3, 5, 10, 11], "fals": [0, 1, 5, 11], "true": [0, 1, 2, 3, 5, 11], "format": [0, 1, 2, 11], "lithologi": [0, 1, 2, 3], "mineralogi": [0, 1, 2], "siliciclast": [0, 1, 2], "These": [0, 1, 5], "all": [0, 1, 3, 5, 7, 9, 10, 11], "correct": [0, 11], "first": [0, 1, 2, 3, 11], "ll": [0, 1, 3], "measur": [0, 1, 3, 5, 11], "class_imbal": [0, 5], "For": [0, 1, 2, 3, 5, 9, 10, 11], "binari": [0, 11], "imbalac": 0, "ratio": [0, 1, 11], "between": [0, 5, 11], "major": [0, 1, 11], "minor": [0, 1, 3, 11], "class": [0, 1, 5, 8, 11], "multiclass": [0, 11], "degre": [0, 1, 5, 11], "ortigosa": [0, 11], "hernandez": [0, 11], "et": [0, 11], "al": [0, 11], "2017": [0, 11], "singl": [0, 3, 5, 11], "valu": [0, 1, 3, 5, 11], "explain": [0, 3], "mani": [0, 3, 5, 11], "b": [0, 10, 11], "skew": 0, "support": [0, 1, 3, 5, 10], "imbalance_degre": [0, 1, 2, 5, 8, 11], "378593040846633": [0, 1, 2], "To": [0, 1, 3, 5, 7, 11], "interpret": [0, 1], "number": [0, 1, 3, 5, 11], "two": [0, 1, 3, 7, 11], "part": [0, 1, 3, 5, 6, 10, 11], "The": [0, 1, 2, 4, 5, 7, 8, 10, 11], "integ": [0, 1, 5, 11], "equal": [0, 1], "m": [0, 1, 3, 5, 7, 11], "where": [0, 1, 5, 10, 11], "fraction": [0, 1, 11], "378": [0, 1], "amount": [0, 1], "dataset": [0, 1, 3, 5, 8, 11], "balanc": [0, 1], "perfectli": [0, 1], "999": [0, 1, 11], "realli": [0, 1, 5], "bad": [0, 1], "If": [0, 1, 3, 5, 6, 7, 9, 10, 11], "have": [0, 1, 2, 3, 4, 5, 10, 11], "In": [0, 1, 3, 5, 10, 11], "gener": [0, 1, 3, 5, 6, 7, 10, 11], "statist": [0, 1, 3, 11], "more": [0, 1, 2, 3, 5, 7, 10, 11], "inform": [0, 1, 3, 10], "than": [0, 1, 3, 5, 11], "commonli": [0, 1], "imbalance_ratio": [0, 1, 5, 11], "which": [0, 1, 3, 5, 7, 10, 11], "maximum": [0, 1, 11], "minimum": [0, 1, 3], "regard": [0, 1, 10], "get": [0, 1, 2, 7, 11], "those": [0, 1, 3, 10], "fewer": [0, 1, 11], "sampl": [0, 1, 3, 11], "expect": [0, 1, 3, 5, 11], "return": [0, 1, 3, 5, 11], "order": [0, 1, 3, 4, 5, 11], "smallest": [0, 1], "minority_class": [0, 1, 3, 5, 11], "dolomit": [0, 1, 3], "sandston": [0, 1, 3], "mudston": [0, 1, 3], "wackeston": [0, 1, 3], "dtype": [0, 1, 3, 11], "u10": [0, 1], "empir": [0, 3, 11], "observ": [0, 5, 11], "frequenc": [0, 11], "\u03b6": [0, 11], "e": [0, 1, 3, 5, 8, 11], "empirical_distribut": [0, 11], "39989914": 0, "18582955": 0, "15834594": 0, "04790721": 0, "13691377": 0, "07110439": 0, "same": [0, 1, 3, 5, 11], "uniqu": [0, 11], "note": [0, 3, 5, 11], "differ": [0, 1, 3, 5, 10, 11], "from": [0, 1, 3, 5, 8, 10, 11], "np": [0, 1, 3, 11], "sort": [0, 11], "siltston": [0, 1, 2, 3], "limeston": [0, 1], "object": [0, 1, 2, 3, 5, 10, 11], "also": [0, 1, 3, 5, 11], "inspect": [0, 5, 11], "displai": [0, 10], "ax": [0, 3], "value_count": 0, "plot": 0, "kind": [0, 1, 3, 5, 10, 11], "bar": 0, "add": [0, 1, 3, 5, 6, 9, 10, 11], "line": [0, 9], "level": [0, 3, 11], "axhlin": 0, "len": [0, 1, 11], "c": [0, 3, 5, 9, 10, 11], "r": [0, 11], "matplotlib": 0, "line2d": 0, "0x7f9d95c6a390": 0, "get_outli": [0, 3, 5, 11], "function": [0, 1, 2, 3, 5, 7, 8, 11], "indic": [0, 3, 10, 11], "point": [0, 3, 11], "301": 0, "302": 0, "303": 0, "415": 0, "416": 0, "417": 0, "418": 0, "799": 0, "896": 0, "897": 0, "898": 0, "899": [0, 3], "996": 0, "997": 0, "1843": 0, "1844": 0, "2278": 0, "2279": 0, "2280": 0, "2638": 0, "2639": 0, "2640": 0, "2641": 0, "2642": 0, "2643": 0, "2920": 0, "2921": 0, "2922": 0, "3070": 0, "3071": 0, "3074": 0, "3075": 0, "3076": 0, "3079": [0, 2], "3080": [0, 2], "3081": 0, "3580": 0, "3581": 0, "3582": 0, "3583": 0, "see": [0, 1, 2, 3, 5, 6, 7, 11], "lie": [0, 11], "seaborn": [0, 1, 3], "sn": [0, 1, 3], "kdeplot": [0, 3], "rugplot": 0, "loc": [0, 1, 3, 11], "c1": 0, "lw": 0, "alpha": 0, "is_categorical_dtyp": [0, 1, 3], "deprec": [0, 1, 3, 5, 11], "remov": [0, 1, 3, 5], "futur": [0, 1, 2, 3, 5, 9, 11], "version": [0, 1, 3, 5, 7, 10, 11], "isinst": [0, 1, 3], "categoricaldtyp": [0, 1, 3], "instead": [0, 1, 3, 5, 11], "use_inf_as_na": [0, 1, 3], "option": [0, 1, 3, 7, 8, 11], "convert": [0, 1, 3, 11], "inf": [0, 1, 3], "nan": [0, 1, 3, 11], "befor": [0, 1, 3, 11], "oper": [0, 1, 3], "xlabel": [0, 3], "ylabel": [0, 3], "densiti": [0, 5, 11], "By": [0, 6, 11], "default": [0, 3, 5, 11], "an": [0, 2, 3, 5, 6, 9, 10, 11], "isol": [0, 3, 11], "forest": [0, 3, 11], "99": [0, 3, 11], "confid": [0, 3, 11], "opt": [0, 3], "local": [0, 1, 3, 7, 11], "factor": [0, 11], "ellipt": [0, 11], "envelop": [0, 11], "mahalanobi": [0, 5, 11], "distanc": [0, 3, 5, 11], "set": [0, 3, 9, 11], "choos": [0, 10], "equival": [0, 11], "threshold": [0, 1, 3, 5, 11], "standard": [0, 1, 3, 5, 11], "deviat": [0, 3, 5, 11], "awai": [0, 3], "signal": 0, "accept": [0, 10, 11], "univari": [0, 5, 11], "multivari": [0, 3, 5, 11], "method": [0, 2, 3, 5, 11], "mah": [0, 3, 11], "jointplot": 0, "x": [0, 1, 3, 5, 8, 11], "y": [0, 1, 3, 5, 8, 11], "hue": 0, "index_to_bool": [0, 11], "n": [0, 11], "axisgrid": [0, 1], "jointgrid": 0, "0x7f9d5504d390": 0, "A": [0, 3, 8, 10, 11], "helper": [0, 5], "comput": [0, 5, 10, 11], "given": [0, 3, 8, 11], "size": [0, 1, 11], "assum": [0, 5, 10, 11], "gaussian": [0, 3, 11], "expected_outli": [0, 3, 11], "80": [0, 3, 11], "44": 0, "so": [0, 1, 3, 5, 9], "becaus": [0, 1, 3, 5, 11], "ha": [0, 1, 2, 3, 7, 10, 11], "lot": [0, 1, 3, 5, 11], "truncat": 0, "tail": 0, "test": [0, 3, 5, 8, 9, 11], "directli": [0, 2, 3, 5, 11], "has_outli": [0, 3, 5, 11], "compar": [0, 5, 8, 11], "result": [0, 3, 5, 10, 11], "numpi": [0, 1, 3, 11], "random": [0, 1, 3, 11], "normal": [0, 1, 5, 10, 11], "10_000": [0, 11], "d": [0, 1, 3, 7, 10, 11], "p": [0, 3, 11], "displot": [0, 1, 3], "facetgrid": [0, 1], "0x7f9d54f79690": 0, "onli": [0, 1, 2, 3, 5, 10, 11], "about": [0, 5, 7, 8, 11], "60": 0, "10": [0, 1, 2, 11], "000": [0, 1, 2, 11], "record": [0, 1, 3, 5, 11], "been": [0, 1, 3, 5, 10], "multipl": [0, 1, 5, 11], "instanc": [0, 1, 11], "its": [0, 1, 2, 5, 10, 11], "There": [0, 1, 3, 6, 7, 8], "legitim": [0, 1], "reason": [0, 1, 3, 5, 10], "why": [0, 1, 3, 11], "might": [0, 1, 3], "happen": [0, 1, 7], "exampl": [0, 1, 2, 3, 5, 6, 7, 10, 11], "mai": [0, 1, 2, 3, 10, 11], "natur": [0, 1, 3], "bound": [0, 1, 11], "g": [0, 1, 3, 5, 8, 11], "poros": [0, 1], "alwai": [0, 1, 5], "greater": [0, 1], "deliber": [0, 1, 10], "prepar": [0, 1, 10], "process": [0, 1], "is_clip": [0, 1, 5, 11], "0x7f9d54f48d10": 0, "tri": [0, 5], "guess": [0, 5], "follow": [0, 1, 3, 4, 7, 10, 11], "scipi": [0, 11], "stat": [0, 11], "norm": [0, 11], "cosin": 0, "expon": 0, "exponpow": 0, "gamma": [0, 1], "gumbel_l": 0, "gumbel_r": 0, "powerlaw": 0, "triang": [0, 11], "trapz": 0, "uniform": [0, 11], "along": [0, 3, 10], "paramet": [0, 3, 11], "locat": [0, 3, 11], "scale": [0, 1, 3, 11], "spite": 0, "find": [0, 1, 3, 5, 11], "nearli": 0, "best_distribut": [0, 11], "36789939485628": 0, "411020184908292": 0, "contrast": 0, "andbest": 0, "model": [0, 1, 3, 5, 11], "gumbel": 0, "04057253630259": 0, "93432972751726": 0, "0x7f9d54ce9fd0": 0, "often": [0, 1, 3], "like": [0, 1, 2, 3, 5, 7, 9, 11], "implicit": 0, "our": [0, 1, 3, 11], "across": [0, 5, 11], "variou": [0, 1, 5], "respect": [0, 6], "both": [0, 3, 5, 7, 11], "wasserstein": [0, 3, 5, 11], "facilit": 0, "calcul": [0, 11], "aka": [0, 11], "earth": [0, 3], "mover": [0, 3], "train": [0, 1, 3, 5, 11], "score": [0, 1, 2, 3, 5, 11], "substanti": 0, "w": 0, "25985545": 0, "28404634": 0, "49139232": 0, "33701782": 0, "22736457": 0, "13473663": 0, "33672956": 0, "20969657": 0, "41216725": 0, "34568777": 0, "39729747": 0, "48092099": 0, "0801856": 0, "10675027": 0, "13740318": 0, "10325295": 0, "19913347": 0, "21828753": 0, "26995735": 0, "33063277": 0, "24612402": 0, "23889923": 0, "26699721": 0, "2350674": 0, "20666445": 0, "44112543": 0, "16229232": 0, "63527036": 0, "18187639": 0, "34992043": 0, "19400917": 0, "74988182": 0, "31761526": 0, "27206283": 0, "30255291": 0, "24779581": 0, "could": [0, 3], "heatmap": 0, "yticklabel": 0, "xticklabel": 0, "show": [0, 1, 3, 5, 11], "u": [0, 1, 11], "log": [0, 1, 3], "7": [0, 3, 11], "somewhat": 0, "anomal": [0, 5, 8], "suggest": [0, 11], "cross": [0, 1, 10, 11], "h": 0, "cattl": 0, "sklearn": [0, 1, 2, 5, 8], "model_select": [0, 1], "train_test_split": [0, 1], "preprocess": [0, 1, 3], "standardscal": [0, 1, 3], "x_train": [0, 1, 3, 11], "x_": 0, "test_siz": 0, "random_st": [0, 11], "42": [0, 1, 11], "re": [0, 1, 3, 6, 11], "illustr": 0, "purpos": [0, 10], "valid": [0, 1, 3, 11], "wai": [0, 1, 2, 3, 5, 6, 8, 11], "indeped": 0, "x_val": [0, 11], "x_test": [0, 1, 3], "should": [0, 1, 3, 5, 7, 11], "scaler": [0, 1], "fit_transform": [0, 8, 11], "transform": [0, 1, 5, 8, 10, 11], "case": [0, 5, 11], "pass": [0, 3, 5, 11], "them": [0, 3, 5, 11], "list": [0, 10, 11], "tupl": [0, 11], "03860982": 0, "02506236": 0, "04321734": 0, "03437337": 0, "04402681": 0, "02528225": 0, "0385111": 0, "05694201": 0, "04388196": 0, "049464": 0, "05560379": 0, "04002712": 0, "quit": [0, 5], "low": [0, 1, 3, 5, 11], "randomli": [0, 1, 3, 11], "correl": [0, 1, 2, 3, 11], "lag": [0, 1], "shift": [0, 1, 3], "itself": [0, 1, 3, 6, 11], "sever": [0, 1, 3, 5, 6], "themselv": [0, 1, 3, 11], "is_correl": [0, 1, 11], "depend": [0, 1, 5, 8, 11], "That": [0, 1, 3, 11], "shuffl": [0, 1], "doe": [0, 1, 3, 5, 10, 11], "to_numpi": [0, 1], "copi": [0, 1, 5, 10], "know": [0, 3, 5], "most": [0, 3, 5, 7, 11], "seri": [0, 5, 8, 11], "your": [0, 5, 8, 10], "assess": [0, 11], "averag": [0, 11], "serv": [0, 5], "control": [0, 10], "let": [0, 1, 2, 3], "small": [0, 3, 5, 11], "come": [0, 2, 5, 11], "veri": [0, 1, 2, 3, 5], "close": [0, 5, 11], "zero": [0, 11], "constant": 0, "classif": [0, 2, 5, 11], "task": [0, 1, 2, 5, 11], "imagin": 0, "try": [0, 1, 2, 3, 11], "predict": [0, 1, 3, 5, 11], "feature_import": [0, 1, 5, 11], "48750956": 0, "22376372": 0, "23550932": 0, "05056213": 0, "unsurprisingli": 0, "useless": 0, "help": [0, 1, 5, 6, 7, 9], "least": [0, 1, 5, 10, 11], "least_important_featur": [0, 5, 11], "And": 0, "complementari": [0, 5], "report": [0, 2, 5, 6, 11], "most_important_featur": [0, 5, 11], "now": [0, 1, 2, 3, 5], "regress": [0, 2, 5, 11], "includ": [0, 1, 3, 5, 8, 10, 11], "dummi": [0, 1, 2, 3, 5, 11], "10075571": 0, "36348681": 0, "5105534": 0, "02520408": 0, "less": [0, 5, 11], "again": 0, "go": 1, "featur": [1, 2, 3, 5, 6, 8, 11], "problem": [1, 3, 11], "machin": [1, 8], "learn": [1, 3, 5, 8, 11], "need": [1, 5, 7, 11], "packag": [1, 3, 5, 8, 9], "run": [1, 3, 5, 7, 11], "code": [1, 5, 10, 11], "burn": 1, "ourselv": 1, "19": [1, 11], "23": 1, "35": [1, 2, 11], "59": 1, "31": [1, 3, 11], "rai": 1, "ss": 1, "svm": [1, 3, 5], "svc": [1, 3], "clf": 1, "kernel": [1, 5, 11], "linear": 1, "fit": [1, 3, 10, 11], "arrai": [1, 3, 5, 11], "u2": 1, "far": [1, 3], "good": [1, 11], "everyth": 1, "work": [1, 3, 5, 10, 11], "someon": 1, "x_scale": 1, "oop": 1, "unscal": 1, "easili": [1, 3, 5], "done": 1, "peopl": [1, 4], "stack": [1, 11], "overflow": 1, "wonder": 1, "thei": [1, 2, 3, 5, 11], "ve": 1, "someth": [1, 3, 5, 11], "even": [1, 2, 10], "easier": [1, 5], "common": [1, 5, 10, 11], "pattern": [1, 8, 11], "y_train": [1, 3, 11], "y_test": [1, 3], "x_train_scal": 1, "x_test_scal": 1, "three": [1, 3, 8, 11], "block": [1, 5], "split": [1, 3, 5, 11], "total": [1, 5, 11], "stratifi": [1, 2, 3, 5, 11], "preserv": 1, "wa": [1, 5, 10, 11], "entir": [1, 5, 11], "leak": 1, "hidden": 1, "cannot": [1, 3, 10, 11], "plenti": 1, "too": [1, 3, 5, 11], "reproduc": [1, 5, 10], "enough": [1, 3], "etc": [1, 3, 8, 11], "error": 1, "everywher": [1, 6], "want": [1, 3, 9, 11], "chang": [1, 3, 5, 10], "sure": [1, 3, 5], "v0": 1, "otherwis": [1, 10, 11], "python": [1, 3, 5, 7, 8], "pip": [1, 7, 8, 9], "instal": [1, 2, 5, 8], "environ": [1, 3, 5, 9], "head": [1, 2], "shrimplin": [1, 2], "851": [1, 2], "3064": [1, 2], "a1": [1, 2], "sh": [1, 2], "77": [1, 2, 3], "613176": [1, 2], "915": [1, 2], "978076": [1, 2], "664": [1, 2], "2393": [1, 2], "499945": [1, 2], "4588": [1, 2], "979": [1, 2], "26": [1, 2], "581419": [1, 2], "14": [1, 2], "565": [1, 2], "661": [1, 2], "2416": [1, 2], "119814": [1, 2], "6112": [1, 2], "957": [1, 2], "79": [1, 2], "05": [1, 2, 11], "549881": [1, 2], "050": [1, 2], "658": [1, 2], "2404": [1, 2], "576056": [1, 2], "7636": [1, 2], "936": [1, 2], "86": [1, 2], "518559": [1, 2], "115": [1, 2], "655": [1, 2], "249071": [1, 2], "9160": [1, 2], "74": [1, 2], "58": [1, 2], "436086": [1, 2], "300": [1, 2], "647": [1, 2], "2382": [1, 2], "602601": [1, 2], "later": [1, 3, 11], "spuriou": 1, "rng": [1, 11], "default_rng": [1, 11], "nois": [1, 3], "algorithm": 1, "flag": [1, 3, 11], "outlier": [1, 2, 3, 5, 8], "distribut": [1, 3, 5, 8, 10], "shape": [1, 3, 8, 11], "0x7f55b5cbd610": 1, "But": [1, 3], "around": 1, "issu": [1, 3, 5, 6, 10, 11], "43341464": 1, "16440126": 1, "31468974": 1, "08749436": 1, "As": [1, 2, 3, 8], "hope": 1, "attribut": [1, 10, 11], "shown": 1, "possibl": [1, 3, 5, 10], "would": [1, 11], "nice": 1, "smoke": [1, 8], "alarm": [1, 5, 11], "prebuilt": 1, "won": 1, "abl": 1, "catch": 1, "howev": [1, 5, 10], "hard": [1, 5], "spot": 1, "self": [1, 3, 11], "alert": [1, 11], "user": 1, "potenti": [1, 11], "provid": [1, 3, 5, 10, 11], "wrap": [1, 5, 11], "anywai": 1, "sensibl": 1, "test_wel": [1, 3], "crawford": [1, 3], "stuart": [1, 3], "test_flag": [1, 3], "isin": [1, 3], "step": [1, 3, 11], "x27": [1, 3], "imbalancedetector": [1, 5, 8, 11], "clipdetector": [1, 5, 11], "correlationdetector": [1, 5, 11], "multimod": [1, 3, 5, 11], "multimodalitydetector": [1, 3, 5, 11], "outlierdetector": [1, 5, 11], "distributioncompar": [1, 5, 11], "importancedetector": [1, 5, 11], "dummypredictor": [1, 3, 11], "jupyt": [1, 3], "pleas": [1, 3, 6, 7, 9, 11], "rerun": [1, 3], "cell": [1, 3], "html": [1, 3, 7], "represent": [1, 3], "trust": [1, 3], "notebook": [1, 3, 5], "On": [1, 3], "github": [1, 3, 7, 8, 11], "unabl": [1, 3], "render": [1, 3], "page": [1, 3, 5, 7, 8], "nbviewer": [1, 3], "org": [1, 3, 10, 11], "pipelinepipelin": [1, 3], "imbalancedetectorimbalancedetector": [1, 3], "clipdetectorclipdetector": [1, 3], "correlationdetectorcorrelationdetector": [1, 3], "multimodalitydetectormultimodalitydetector": [1, 3], "outlierdetectoroutlierdetector": [1, 3], "distributioncomparatordistributioncompar": [1, 3], "importancedetectorimportancedetector": [1, 3], "dummypredictordummypredictor": [1, 3], "make_pipelin": [1, 3, 11], "pipe": [1, 3, 11], "standardscalerstandardscal": [1, 3], "svcsvc": [1, 3], "imbalanc": [1, 3, 11], "420": [1, 3], "400": [1, 3], "minority_classes_": [1, 3, 11], "\u2139": [1, 3], "succeed": [1, 3], "group": [1, 3, 5, 11], "316": 1, "v": [1, 3, 11], "relev": [1, 5], "classifi": [1, 3, 5], "f1": [1, 2, 3, 5, 11], "25488459423559595": 1, "roc_auc": [1, 2, 3, 11], "most_frequ": [1, 5, 11], "strategi": [1, 2, 3, 5, 11], "643721188696941": 1, "detector": [1, 5, 8, 11], "def": [1, 3], "has_neg": [1, 11], "bool": [1, 3, 11], "trigger": [1, 3, 5, 11], "neg": [1, 3, 11], "negative_detector": [1, 3], "nb": 1, "func": [1, 3, 11], "lt": [1, 3], "baseredflagdetector": [1, 3, 11], "__init__": [1, 3], "gt": [1, 3], "lambda": [1, 3, 11], "0x7f55b5bd7c40": 1, "messag": [1, 3, 5, 11], "detectordetector": [1, 3], "ad": [1, 5], "posit": [1, 5, 11], "what": [1, 5, 8, 11], "care": [1, 5], "basic_usag": [2, 3, 5], "ipynb": [2, 3, 5], "using_redflag_with_panda": 2, "some": [2, 3, 5, 6, 8, 11], "give": [2, 3, 5, 10], "access": [2, 5], "almost": [2, 5], "were": [2, 3, 5, 11], "best": [2, 5, 11], "idea": [2, 3], "though": 2, "import": [2, 3, 5, 6, 8, 10], "long": 2, "regist": 2, "data": [2, 3, 5, 11], "time": [2, 3, 11], "being": [2, 3, 11], "call": [2, 3, 5, 11], "simplic": 2, "notic": [2, 10], "extra": 2, "insert": 2, "Or": [2, 9], "ask": 2, "new": [2, 3, 5, 6, 7], "dummy_scor": [2, 5, 11], "25351640471373643": 2, "494193275325803": 2, "mean_squared_error": [2, 11], "47528": 2, "78263092096": 2, "r2": [2, 5, 11], "simpl": [2, 8], "continu": [2, 5, 8, 11], "suitabl": [2, 5], "34": 2, "136": 2, "140": 2, "141": 2, "142": 2, "143": 2, "145": 2, "147": 2, "175": 2, "180": 2, "181": 2, "182": 2, "532": 2, "583": 2, "633": 2, "662": 2, "768": 2, "769": 2, "801": 2, "1316": 2, "1547": 2, "1731": 2, "1732": 2, "1744": 2, "1754": 2, "1756": 2, "1778": 2, "1779": 2, "1780": 2, "1788": 2, "2884": 2, "2932": 2, "2973": 2, "2974": 2, "3004": 2, "3087": 2, "3109": 2, "experiment": [2, 5], "releas": [2, 5, 7], "feedback": 2, "soon": [2, 5], "rais": [3, 11], "red": 3, "load": [3, 8], "independ": [3, 5, 8], "furthermor": 3, "clip": [3, 5, 8, 11], "histplot": 3, "hostedtoolcach": 3, "x64": 3, "lib": 3, "python3": 3, "site": 3, "_oldcor": 3, "py": [3, 5, 11], "1498": 3, "futurewarn": 3, "api": [3, 11], "type": [3, 10, 11], "vector": [3, 11], "1119": 3, "option_context": 3, "mode": 3, "main": [3, 5, 7, 8], "subsequ": [3, 5, 10, 11], "product": [3, 5, 10], "mostli": [3, 5], "unsupervis": [3, 11], "iid": [3, 8], "particular": [3, 10], "univariateoutlierdetector": [3, 11], "consid": [3, 5, 6, 11], "separ": [3, 10, 11], "usual": 3, "probabl": [3, 5, 11], "multivariateoutlierdetector": [3, 11], "togeth": [3, 11], "dure": [3, 11], "word": [3, 5, 11], "examin": 3, "final": [3, 11], "one": [3, 5, 10, 11], "bit": [3, 5], "supervis": 3, "base": [3, 10, 11], "fulli": 3, "triger": 3, "similar": [3, 5], "seen": 3, "ordinari": 3, "rfpipelin": [3, 5, 11], "contain": [3, 5, 7, 10, 11], "out": [3, 10], "read": [3, 6, 7, 9], "compat": 3, "requir": [3, 5, 7, 10, 11], "comparison": [3, 5], "avail": [3, 10], "anoth": [3, 6, 11], "compos": 3, "multi": [3, 11], "make_rf_pipelin": [3, 5, 11], "just": [3, 5, 7, 11], "carri": [3, 8, 10], "phase": 3, "categor": [3, 5, 8, 11], "input": [3, 11], "349": 3, "2640071145283919": 3, "5004869752654918": 3, "3682141715600706": 3, "when": [3, 5, 11], "categori": [3, 11], "y_pred": 3, "30": [3, 11], "argument": [3, 5, 11], "element": [3, 11], "redflag_pipelin": 3, "compon": [3, 5, 8, 11], "yet": [3, 5], "sensit": [3, 11], "instanti": [3, 5, 11], "construct": [3, 11], "drop": 3, "leav": 3, "don": [3, 7, 11], "think": 3, "troubl": 3, "lower": [3, 11], "qualifi": 3, "rememb": 3, "longer": [3, 5], "839": 3, "626": 3, "154443705823081": 3, "higher": 3, "fail": [3, 5], "mention": 3, "whether": [3, 10, 11], "never": 3, "rfpipelinerfpipelin": 3, "imbalancecomparatorimbalancecompar": 3, "therefor": [3, 11], "infer": [3, 11], "66": 3, "276": 3, "2359": 3, "73324716": 3, "591": 3, "252": 3, "2354": 3, "54679144": 3, "341": 3, "82": 3, "2330": 3, "35783664": 3, "064": 3, "90": [3, 11], "49": [3, 11], "2193": 3, "06953439": 3, "168": 3, "975": 3, "2192": 3, "32922081": 3, "154": 3, "108": 3, "2176": 3, "62535394": 3, "125": 3, "emit": [3, 5, 11], "has_nan": [3, 5, 11], "isnan": 3, "0x7ff170f47560": 3, "make_detector_pipelin": [3, 5, 11], "combin": [3, 10, 11], "ab": [3, 11], "custom": [3, 5, 11], "0x7ff170f472e0": 3, "0x7ff170f47740": 3, "class_count": [3, 11], "worri": 3, "concern": 3, "seem": [3, 5, 11], "lose": 3, "dynam": 3, "rang": [3, 5, 11], "daili": 3, "temperatur": [3, 11], "europ": 3, "deg": 3, "dealt": 3, "attenu": 3, "larg": [3, 6, 11], "sens": [3, 5, 11], "simpli": 3, "suspici": 3, "without": [3, 10], "perform": [3, 5, 10, 11], "awar": 3, "research": 3, "contigu": 3, "space": 3, "spatial": [3, 11], "rock": 3, "properti": [3, 11], "assumpt": [3, 8, 11], "One": 3, "big": 3, "pitfal": 3, "non": [3, 5, 10], "must": [3, 10, 11], "leakag": [3, 8], "thu": [3, 11], "over": [3, 11], "optimist": 3, "evaul": 3, "date": [3, 10], "patient": 3, "id": [3, 11], "borehol": 3, "implement": [3, 5, 11], "robust": [3, 11], "covari": [3, 11], "insensit": 3, "dimension": 3, "analog": [3, 11], "varianc": [3, 11], "certain": 3, "fall": 3, "centr": 3, "within": [3, 10, 11], "sd": [3, 11], "1000": [3, 11], "val": 3, "iso": [3, 11], "okai": 3, "keep": 3, "bin": [3, 11], "No": [3, 5, 11], "evalu": [3, 5], "turn": [3, 11], "treatment": 3, "crack": 3, "sign": 3, "violat": 3, "ident": [3, 8, 11], "current": [3, 5, 11], "visual": 3, "especi": 3, "ignor": [3, 11], "forget": 3, "appli": [3, 5, 10, 11], "domain": 3, "geograph": 3, "widget": 3, "select": 3, "unintend": 3, "classic": 3, "medic": 3, "diagnosi": 3, "encod": 3, "hand": [3, 11], "distract": 3, "improv": [3, 5, 6, 10], "desir": 3, "contribut": [4, 8, 10], "project": [4, 6, 7], "alphabet": 4, "matt": 4, "hall": 4, "agil": [4, 6], "scientif": 4, "canada": 4, "orcid": 4, "0000": 4, "0002": 4, "4054": 4, "8295": 4, "conda": [5, 7, 8, 9], "manag": [5, 10], "forg": [5, 8, 9], "warn": [5, 8, 11], "valueexcept": 5, "allow": [5, 11], "build": 5, "pipelin": [5, 8, 11], "break": 5, "is_ord": [5, 11], "markov": [5, 8], "chain": [5, 11], "analysi": 5, "chi": [5, 11], "squar": [5, 11], "transit": [5, 11], "matrix": [5, 11], "boolean": [5, 11], "perhap": 5, "below": [5, 8, 10, 11], "is_multimod": [5, 11], "present": [5, 11], "modal": 5, "partit": [5, 11], "insufficientdatadetector": [5, 11], "regressionmultimodaldetector": 5, "multimodaldetector": 5, "accessor": [5, 8, 11], "via": 5, "subject": [5, 10], "make": [5, 6, 7, 8, 10, 11], "text": [5, 10], "document": [5, 6, 7, 9, 10], "dummy_classification_scor": [5, 11], "dummy_regression_scor": [5, 11], "naiv": [5, 11], "mse": [5, 11], "roc": [5, 11], "auc": [5, 11], "addition": 5, "emploi": 5, "suit": [5, 11], "appropri": [5, 10, 11], "move": 5, "update_p": [5, 11], "util": [5, 8], "is_imbalanc": [5, 11], "imbal": [5, 8], "up": [5, 11], "debat": 5, "has_low_distance_stdev": 5, "resembl": 5, "semant": 5, "success": 5, "1d": [5, 11], "write": [5, 6, 10], "own": [5, 8, 10], "take": [5, 11], "sequenc": [5, 11], "map": 5, "scikit": [5, 8, 11], "unimod": 5, "redefin": 5, "is_standard": [5, 11], "is_standard_norm": [5, 11], "kolmogorov": [5, 11], "smirnov": [5, 11], "reliabl": 5, "exactli": [5, 11], "roughli": 5, "slightli": 5, "exist": 5, "none": [5, 11], "eg": 5, "sinc": 5, "knn": [5, 11], "estim": [5, 11], "third": [5, 10, 11], "unstabl": 5, "caus": [5, 10], "erron": 5, "consecut": [5, 11], "tutori": [5, 6, 8], "doc": 5, "button": 5, "half": [5, 11], "high": [5, 11], "imbalancecompar": [5, 11], "throw": 5, "garden": 5, "special": [5, 10], "straight": 5, "fork": [5, 8], "claus": [5, 11], "bsd": [5, 11], "licens": [5, 8, 11], "using_redflag_with_sklearn": 5, "buggi": 5, "convers": [5, 10, 11], "discret": [5, 11], "ones": [5, 11], "test_redflag": 5, "file": [5, 7, 10], "wherea": 5, "doctest": [5, 7], "onc": 5, "pytest": [5, 7], "coverag": 5, "94": 5, "excess": [5, 11], "reorgan": 5, "modul": [5, 8], "namespac": 5, "doesn": 5, "affect": 5, "confus": 5, "either": [5, 7, 10, 11], "conveni": [5, 11], "oneclasssvm": 5, "ellipticenvelop": 5, "zscore_outli": 5, "kde_peak": [5, 11], "peak": [5, 11], "fit_kd": [5, 11], "get_kd": [5, 11], "find_large_peak": [5, 11], "bandwidth": [5, 11], "bw_silverman": [5, 11], "bw_scott": [5, 11], "overrid": 5, "fix": [5, 6], "bug": [5, 6], "using_redflag": 5, "has_monoton": [5, 11], "has_flat": [5, 11], "interpol": 5, "iter_group": [5, 11], "ecdf": [5, 11], "flatten": [5, 11], "stdev_to_proport": [5, 11], "proportion_to_stdev": [5, 11], "wrote": 5, "95": [5, 11], "has_few_sampl": [5, 11], "appear": [5, 10, 11], "z": [5, 11], "goe": 5, "ci": 5, "workflow": [5, 7, 8], "stabl": 5, "flail": 5, "auto": [5, 11], "thank": 6, "submit": [6, 10], "request": [6, 7], "propos": 6, "pull": [6, 7], "typo": 6, "fortun": 6, "profession": 6, "commun": [6, 10], "mutual": 6, "consider": 6, "scienxlab": 6, "protect": 6, "everyon": 6, "wish": 6, "identifi": [6, 11], "author": [6, 8, 10], "yourself": 6, "md": [6, 7], "agre": [6, 10], "shall": [6, 10], "govern": 6, "term": [6, 10], "unless": [6, 10], "specif": [6, 11], "agreement": [6, 10], "made": [6, 10, 11], "start": [7, 11], "dev": [7, 9], "back": [7, 11], "cov": 7, "docstr": 7, "further": 7, "folder": 7, "repo": 7, "pep": 7, "518": 7, "style": 7, "tar": 7, "gz": 7, "whl": 7, "command": [7, 9], "cd": 7, "sphinx": 7, "manual": 7, "stuff": 7, "makefil": 7, "script": 7, "updat": [7, 11], "publish": [7, 11], "action": 7, "push": 7, "upload": 7, "pypi": 7, "interfac": [7, 10, 11], "aim": 8, "automat": [8, 11], "safeti": 8, "net": 8, "ndarrai": [8, 11], "analys": 8, "aspect": 8, "threat": 8, "channel": [8, 9], "program": 8, "standalon": 8, "explor": 8, "basic": 8, "usag": 8, "metric": [8, 11], "pre": 8, "built": [8, 11], "ml": 8, "submodul": 8, "content": [8, 10], "develop": [8, 9], "changelog": 8, "index": [8, 11], "search": [8, 11], "At": 9, "sourc": [9, 10], "config": 9, "channel_prior": 9, "strict": 9, "apach": 10, "januari": 10, "2004": 10, "www": 10, "AND": 10, "condit": [10, 11], "FOR": 10, "reproduct": 10, "defin": [10, 11], "section": 10, "through": 10, "licensor": 10, "copyright": 10, "owner": 10, "entiti": 10, "grant": 10, "legal": 10, "union": [10, 11], "act": 10, "under": [10, 11], "power": 10, "direct": [10, 11], "indirect": 10, "contract": 10, "ii": 10, "ownership": 10, "fifti": 10, "percent": 10, "outstand": 10, "share": 10, "iii": 10, "benefici": 10, "individu": 10, "exercis": 10, "permiss": 10, "form": 10, "prefer": 10, "modif": 10, "limit": 10, "softwar": 10, "configur": 10, "mechan": 10, "translat": 10, "compil": 10, "media": 10, "authorship": 10, "attach": 10, "appendix": 10, "deriv": [10, 11], "editori": 10, "revis": 10, "annot": 10, "elabor": 10, "repres": [10, 11], "whole": [10, 11], "origin": [10, 11], "remain": 10, "mere": 10, "link": 10, "bind": 10, "thereof": 10, "addit": [10, 11], "intention": 10, "inclus": 10, "behalf": 10, "electron": 10, "verbal": 10, "written": 10, "sent": 10, "mail": 10, "system": [10, 11], "track": 10, "discuss": 10, "exclud": 10, "conspicu": 10, "mark": [10, 11], "design": 10, "Not": [10, 11], "contributor": [10, 11], "whom": 10, "receiv": 10, "incorpor": 10, "herebi": 10, "perpetu": 10, "worldwid": 10, "exclus": 10, "charg": 10, "royalti": 10, "free": 10, "irrevoc": 10, "publicli": 10, "sublicens": 10, "patent": 10, "except": 10, "state": [10, 11], "offer": 10, "sell": 10, "transfer": 10, "claim": 10, "necessarili": 10, "infring": 10, "alon": 10, "institut": 10, "litig": 10, "against": [10, 11], "counterclaim": 10, "lawsuit": 10, "alleg": 10, "constitut": 10, "contributori": 10, "termin": 10, "redistribut": 10, "medium": 10, "meet": [10, 11], "recipi": 10, "modifi": 10, "promin": 10, "retain": 10, "trademark": 10, "pertain": 10, "readabl": 10, "place": 10, "wherev": 10, "parti": 10, "alongsid": 10, "addendum": 10, "constru": 10, "statement": 10, "compli": 10, "submiss": 10, "explicitli": 10, "notwithstand": 10, "abov": [10, 11], "noth": [10, 11], "herein": 10, "supersed": 10, "execut": 10, "trade": 10, "servic": 10, "customari": 10, "disclaim": 10, "warranti": 10, "applic": 10, "law": 10, "AS": 10, "basi": 10, "OR": 10, "OF": 10, "express": [10, 11], "impli": 10, "titl": 10, "merchant": 10, "sole": 10, "respons": 10, "determin": [10, 11], "risk": 10, "associ": 10, "liabil": 10, "event": [10, 11], "theori": 10, "tort": 10, "neglig": 10, "grossli": 10, "liabl": 10, "damag": 10, "incident": 10, "consequenti": 10, "charact": [10, 11], "aris": 10, "inabl": 10, "loss": 10, "goodwil": 10, "stoppag": 10, "failur": 10, "malfunct": 10, "commerci": 10, "advis": 10, "while": [10, 11], "fee": 10, "indemn": 10, "oblig": 10, "right": 10, "consist": 10, "indemnifi": 10, "defend": 10, "hold": 10, "harmless": 10, "incur": 10, "assert": 10, "end": [10, 11], "relat": 11, "understand": 11, "_supportsarrai": 11, "_nestedsequ": 11, "int": 11, "float": 11, "complex": 11, "str": 11, "byte": 11, "namedtupl": 11, "histogram": 11, "8771812708978117": 11, "5001419889107208": 11, "3286356643172673": 11, "3406453953773365": 11, "scott": 11, "6162678270732356": 11, "1e": 11, "silverman": 11, "bw": 11, "1981": 11, "investig": 11, "journal": 11, "royal": 11, "societi": 11, "vol": 11, "43": 11, "pp": 11, "97": 11, "581810759152688": 11, "cv_kde": 11, "n_bandwidth": 11, "cv": 11, "grid": 11, "optim": 11, "fold": 11, "5212113989811242": 11, "traceback": 11, "recent": 11, "last": 11, "valueerror": 11, "largest": 11, "amplitud": 11, "cut": 11, "off": 11, "smaller": 11, "x_peak": 11, "y_peak": 11, "15": 11, "kde": 11, "2124714013056916": 11, "014367259502733645": 11, "rule": 11, "thumb": 11, "354649738246933": 11, "162332012191087": 11, "per": 11, "concaten": 11, "67243035": 11, "88998226": 11, "22014721": 11, "19729456": 11, "ovr": 11, "reduc": 11, "callabl": 11, "ovo": 11, "full": 11, "axi": 11, "wasserstein_ovo": 11, "2d": 11, "latter": 11, "implicitli": 11, "reshap": 11, "97490053": 11, "1392715": 11, "11417203": 11, "69635752": 11, "22475": 11, "39754762": 11, "71161667": 11, "24495": 11, "wasserstein_multi": 11, "pairwis": 11, "squareform": 11, "match": 11, "k": 11, "55708601": 11, "39271504": 11, "83562902": 11, "wasserstein_ovr": 11, "rest": 11, "refer": 11, "jonathan": 11, "inaki": 11, "inza": 11, "jose": 11, "lozano": 11, "extent": 11, "recognit": 11, "letter": 11, "98": 11, "doi": 11, "1016": 11, "j": 11, "patrec": 11, "08": 11, "002": 11, "dict": 11, "counter": 11, "recommend": 11, "omit": 11, "encount": 11, "diverg": 11, "helling": 11, "string": 11, "euclidean": 11, "manhattan": 11, "kl": 11, "tv": 11, "actual": 11, "zeta": 11, "equat": 11, "length": 11, "discov": 11, "furthest_distribut": 11, "ir": 11, "furthest": 11, "reflect": 11, "minu": 11, "accord": 11, "eq": 11, "mathrm": 11, "frac": 11, "d_": 11, "delta": 11, "mathbf": 11, "iota": 11, "_m": 11, "l1": 11, "l2": 11, "variat": 11, "kullback": 11, "leibner": 11, "generate_data": 11, "288": 11, "round": 11, "76": 11, "629": 11, "333": 11, "511": 11, "81": 11, "61": 11, "73": 11, "65": 11, "major_minor": 11, "maj": 11, "logist": 11, "permut": 11, "lasso": 11, "cluster": 11, "highest": 11, "kept": 11, "55": 11, "85": 11, "99416839": 11, "00583161": 11, "x0": 11, "x1": 11, "x2": 11, "cutoff": 11, "01": 11, "24": 11, "int64": 11, "revers": 11, "chunk": 11, "agilescientif": 11, "striplog": 11, "markov_chain": 11, "observed_count": 11, "include_self": 11, "chi_squar": 11, "q": 11, "critic": 11, "bigger": 11, "second": 11, "reject": 11, "hypothesi": 11, "degrees_of_freedom": 11, "expected_freq": 11, "classmethod": 11, "from_sequ": 11, "strings_are_st": 11, "pars": 11, "specifi": 11, "upward": 11, "inner": 11, "token": 11, "sst": 11, "mud": 11, "lst": 11, "previou": 11, "dimens": 11, "generate_st": 11, "current_st": 11, "next": 11, "normalized_differ": 11, "observed_freq": 11, "hollow_matrix": 11, "hollow": 11, "diagon": 11, "arg": 11, "seq_of_seq": 11, "regular": 11, "plu": 11, "atleast_2d": 11, "137": 11, "contamin": 11, "approxim": 11, "lof": 11, "ee": 11, "mahanalobi": 11, "inlier": 11, "convent": 11, "four": 11, "33": 11, "multipli": 11, "rousseeuw": 11, "van": 11, "driessen": 11, "n_sampl": 11, "n_featur": 11, "6583124": 11, "1055416": 11, "5527708": 11, "01173463": 11, "67448975": 11, "33724488": 11, "mahalanobis_outli": 11, "stdev": 11, "outsid": 11, "70": 11, "89163847": 11, "million": 11, "datapoint": 11, "billion": 11, "seriesaccessor": 11, "pandas_obj": 11, "null_decor": 11, "decor": 11, "kwarg": 11, "baseestim": 11, "transformermixin": 11, "fit_param": 11, "n_output": 11, "x_new": 11, "n_features_new": 11, "sin": 11, "linspac": 11, "38077051": 11, "42977406": 11, "05260728": 11, "92571458": 11, "81188195": 11, "7482485": 11, "84147098": 11, "warn_if_zero": 11, "memori": 11, "expens": 11, "anyth": 11, "bother": 11, "min_class_diff": 11, "imbalance_": 11, "adjust": 11, "unusu": 11, "difficult": 11, "suffici": 11, "mutlivari": 11, "1_000": 11, "12573022": 11, "13210486": 11, "64042265": 11, "10490012": 11, "53566937": 11, "36159505": 11, "24972527": 11, "75063397": 11, "55581573": 11, "01881162": 11, "90942756": 11, "36922933": 11, "outliers_": 11, "beyond": 11, "covarianc": 11, "verbos": 11, "adapt": 11, "handl": 11, "prior": 11, "iter": 11, "fulfil": 11, "xt": 11, "n_transformed_featur": 11, "formatwarn": 11, "presenc": 11, "mappabl": 11, "correspond": 11, "safer": 11, "shorthand": 11, "constructor": 11, "permit": 11, "lowercas": 11, "joblib": 11, "cach": 11, "path": 11, "directori": 11, "enabl": 11, "clone": 11, "named_step": 11, "advantag": 11, "consum": 11, "elaps": 11, "complet": 11, "baselin": 11, "dummyclassifi": 11, "dictionari": 11, "seed": 11, "3333333333333333": 11, "20000000000000004": 11, "35654761904761906": 11, "dummyregressor": 11, "tomorrow": 11, "rain": 11, "cloud": 11, "sun": 11, "is_binari": 11, "root": 11, "whichev": 11, "arr": 11, "randint": 11, "is_multiclass": 11, "is_multioutput": 11, "output": 11, "typeerror": 11, "top": 11, "middl": 11, "bottom": 11, "n_class": 11, "bool_to_index": 11, "cond": 11, "get_idx": 11, "_type": 11, "_array_lik": 11, "_nested_sequ": 11, "nonetyp": 11, "stepsiz": 11, "coeffici": 11, "decim": 11, "5163977794943222": 11, "instruct": 11, "param": 11, "human": 11, "friendli": 11, "migrat": 11, "add_proxi": 11, "asap": 11, "downsampl": 11, "cdf": 11, "switch": 11, "weight": 11, "mid": 11, "halfwai": 11, "formal": 11, "unbias": 11, "everi": 11, "foo": 11, "l": 11, "toler": 11, "flat": 11, "interv": 11, "monoton": 11, "idx": 11, "is_numer": 11, "atol": 11, "001": 11, "faster": 11, "isclos": 11, "\u03bc": 11, "\u03c3": 11, "allclos": 11, "absolut": 11, "yield": 11, "mask": 11, "ordered_uniqu": 11, "item": 11, "unord": 11, "fast": 11, "reli": 11, "job": 11, "slow": 11, "1000000000": 11, "invers": 11, "magnif": 11, "hyperellipsoid": 11, "sdhe": 11, "proport": 11, "2816": 11, "tabl": 11, "1371": 11, "pone": 11, "0118537": 11, "decent": 11, "precis": 11, "1e9": 11, "575829302496098": 11, "039137525465009": 11, "8000000000000003": 11, "split_and_standard": 11, "y_val": 11, "whose": 11, "68": 11, "27": 11, "39": 11, "signific": 11, "figur": 11, "beta": 11, "paper": 11, "poseidon": 11, "csd": 11, "auth": 11, "pdf": 11, "ververidis08a": 11, "exact": 11, "6826894921370859": 11, "6826894916531445": 11, "9973002039367398": 11, "9973002039633309": 11, "39346933952920327": 11, "9946544947734935": 11, "bayesian": 11, "rate": 11, "posterior": 11, "4999999999999998": 11, "zscore": 11, "54919334": 11, "161895": 11, "77459667": 11, "38729833": 11}, "objects": {"": [[11, 0, 0, "-", "redflag"]], "redflag": [[11, 0, 0, "-", "distributions"], [11, 0, 0, "-", "imbalance"], [11, 0, 0, "-", "importance"], [11, 0, 0, "-", "independence"], [11, 0, 0, "-", "markov"], [11, 0, 0, "-", "outliers"], [11, 0, 0, "-", "pandas"], [11, 0, 0, "-", "sklearn"], [11, 0, 0, "-", "target"], [11, 0, 0, "-", "utils"]], "redflag.distributions": [[11, 1, 1, "", "best_distribution"], [11, 1, 1, "", "bw_scott"], [11, 1, 1, "", "bw_silverman"], [11, 1, 1, "", "cv_kde"], [11, 1, 1, "", "find_large_peaks"], [11, 1, 1, "", "fit_kde"], [11, 1, 1, "", "get_kde"], [11, 1, 1, "", "is_multimodal"], [11, 1, 1, "", "kde_peaks"], [11, 1, 1, "", "wasserstein"], [11, 1, 1, "", "wasserstein_multi"], [11, 1, 1, "", "wasserstein_ovo"], [11, 1, 1, "", "wasserstein_ovr"]], "redflag.imbalance": [[11, 1, 1, "", "class_counts"], [11, 1, 1, "", "divergence"], [11, 1, 1, "", "empirical_distribution"], [11, 1, 1, "", "furthest_distribution"], [11, 1, 1, "", "imbalance_degree"], [11, 1, 1, "", "imbalance_ratio"], [11, 1, 1, "", "is_imbalanced"], [11, 1, 1, "", "major_minor"], [11, 1, 1, "", "minority_classes"]], "redflag.importance": [[11, 1, 1, "", "feature_importances"], [11, 1, 1, "", "least_important_features"], [11, 1, 1, "", "most_important_features"]], "redflag.independence": [[11, 1, 1, "", "is_correlated"]], "redflag.markov": [[11, 2, 1, "", "Markov_chain"], [11, 1, 1, "", "hollow_matrix"], [11, 1, 1, "", "observations"], [11, 1, 1, "", "regularize"]], "redflag.markov.Markov_chain": [[11, 3, 1, "", "chi_squared"], [11, 4, 1, "", "degrees_of_freedom"], [11, 4, 1, "", "expected_freqs"], [11, 3, 1, "", "from_sequence"], [11, 3, 1, "", "generate_states"], [11, 4, 1, "", "normalized_difference"], [11, 4, 1, "", "observed_freqs"]], "redflag.outliers": [[11, 1, 1, "", "expected_outliers"], [11, 1, 1, "", "get_outliers"], [11, 1, 1, "", "has_outliers"], [11, 1, 1, "", "mahalanobis"], [11, 1, 1, "", "mahalanobis_outliers"]], "redflag.pandas": [[11, 2, 1, "", "SeriesAccessor"], [11, 1, 1, "", "null_decorator"]], "redflag.pandas.SeriesAccessor": [[11, 3, 1, "", "dummy_scores"], [11, 3, 1, "", "imbalance_degree"], [11, 3, 1, "", "is_ordered"], [11, 3, 1, "", "minority_classes"], [11, 3, 1, "", "report"]], "redflag.sklearn": [[11, 2, 1, "", "BaseRedflagDetector"], [11, 2, 1, "", "ClipDetector"], [11, 2, 1, "", "CorrelationDetector"], [11, 2, 1, "", "Detector"], [11, 2, 1, "", "DistributionComparator"], [11, 2, 1, "", "DummyPredictor"], [11, 2, 1, "", "ImbalanceComparator"], [11, 2, 1, "", "ImbalanceDetector"], [11, 2, 1, "", "ImportanceDetector"], [11, 2, 1, "", "InsufficientDataDetector"], [11, 2, 1, "", "MultimodalityDetector"], [11, 2, 1, "", "MultivariateOutlierDetector"], [11, 2, 1, "", "OutlierDetector"], [11, 2, 1, "", "RfPipeline"], [11, 2, 1, "", "UnivariateOutlierDetector"], [11, 1, 1, "", "formatwarning"], [11, 1, 1, "", "make_detector_pipeline"], [11, 1, 1, "", "make_rf_pipeline"]], "redflag.sklearn.BaseRedflagDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.DistributionComparator": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.DummyPredictor": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImbalanceComparator": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImbalanceDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImportanceDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.InsufficientDataDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.MultimodalityDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.MultivariateOutlierDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.OutlierDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.RfPipeline": [[11, 3, 1, "", "transform"]], "redflag.target": [[11, 1, 1, "", "dummy_classification_scores"], [11, 1, 1, "", "dummy_regression_scores"], [11, 1, 1, "", "dummy_scores"], [11, 1, 1, "", "is_binary"], [11, 1, 1, "", "is_continuous"], [11, 1, 1, "", "is_multiclass"], [11, 1, 1, "", "is_multioutput"], [11, 1, 1, "", "is_ordered"], [11, 1, 1, "", "n_classes"]], "redflag.utils": [[11, 1, 1, "", "bool_to_index"], [11, 1, 1, "", "clipped"], [11, 1, 1, "", "consecutive"], [11, 1, 1, "", "cv"], [11, 1, 1, "", "deprecated"], [11, 1, 1, "", "ecdf"], [11, 1, 1, "", "flatten"], [11, 1, 1, "", "generate_data"], [11, 1, 1, "", "get_idx"], [11, 1, 1, "", "has_few_samples"], [11, 1, 1, "", "has_flat"], [11, 1, 1, "", "has_monotonic"], [11, 1, 1, "", "has_nans"], [11, 1, 1, "", "index_to_bool"], [11, 1, 1, "", "is_clipped"], [11, 1, 1, "", "is_numeric"], [11, 1, 1, "", "is_standard_normal"], [11, 1, 1, "", "is_standardized"], [11, 1, 1, "", "iter_groups"], [11, 1, 1, "", "ordered_unique"], [11, 1, 1, "", "proportion_to_stdev"], [11, 1, 1, "", "split_and_standardize"], [11, 1, 1, "", "stdev_to_proportion"], [11, 1, 1, "", "update_p"], [11, 1, 1, "", "zscore"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"]}, "titleterms": {"basic": 0, "usag": 0, "load": [0, 1], "some": [0, 1], "data": [0, 1, 8], "categor": 0, "continu": [0, 7], "imbal": [0, 1, 3, 11], "metric": [0, 1], "outlier": [0, 11], "clip": [0, 1], "distribut": [0, 11], "shape": 0, "ident": 0, "assumpt": [0, 1], "alreadi": 0, "split": 0, "out": 0, "group": 0, "arrai": 0, "independ": [0, 1, 11], "featur": 0, "import": [0, 1, 11], "tutori": 1, "A": 1, "simpl": 1, "ml": 1, "workflow": 1, "quick": [1, 8], "look": 1, "redflag": [1, 2, 3, 8, 11], "pipelin": [1, 3], "make": [1, 3], "your": [1, 3], "own": [1, 3], "test": [1, 7], "us": [2, 3], "panda": [2, 11], "seri": 2, "accessor": 2, "datafram": 2, "sklearn": [3, 11], "The": 3, "detector": 3, "class": 3, "pre": 3, "built": 3, "transform": 3, "compar": 3, "smoke": 3, "what": 3, "do": 3, "about": 3, "warn": 3, "imbalancedetector": 3, "imbalancecompar": 3, "clipdetector": 3, "correlationdetector": 3, "outlierdetector": 3, "distributioncompar": 3, "importancedetector": 3, "author": 4, "changelog": 5, "0": 5, "4": 5, "28": 5, "septemb": 5, "2023": 5, "3": 5, "21": 5, "2": 5, "1": 5, "10": 5, "novemb": 5, "2022": 5, "9": 5, "25": 5, "august": 5, "8": 5, "juli": 5, "7": 5, "11": 5, "februari": 5, "31": 5, "januari": 5, "30": 5, "contribut": [6, 7], "code": 6, "conduct": 6, "authorship": 6, "licens": [6, 10], "develop": 7, "instal": [7, 9], "build": 7, "packag": [7, 11], "doc": 7, "integr": 7, "an": 8, "entranc": 8, "exam": 8, "start": 8, "user": 8, "guid": 8, "api": 8, "refer": 8, "other": 8, "resourc": 8, "indic": 8, "tabl": 8, "option": 9, "depend": 9, "submodul": 11, "modul": 11, "markov": 11, "target": 11, "util": 11, "content": 11}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"\ud83d\udea9 Basic usage": [[0, "basic-usage"]], "Load some data": [[0, "load-some-data"], [1, "load-some-data"]], "Categorical or continuous?": [[0, "categorical-or-continuous"]], "Imbalance metrics": [[0, "imbalance-metrics"], [1, "imbalance-metrics"]], "Outliers": [[0, "outliers"]], "Clipping": [[0, "clipping"], [1, "clipping"]], "Distribution shape": [[0, "distribution-shape"]], "Identical distribution assumption": [[0, "identical-distribution-assumption"]], "Already split out group arrays": [[0, "already-split-out-group-arrays"]], "Independence assumption": [[0, "independence-assumption"], [1, "independence-assumption"]], "Feature importance": [[0, "feature-importance"]], "\ud83d\udea9 Tutorial": [[1, "tutorial"]], "A simple ML workflow": [[1, "a-simple-ml-workflow"]], "A quick look at redflag": [[1, "a-quick-look-at-redflag"]], "Importance": [[1, "importance"]], "Pipelines": [[1, "pipelines"]], "Making your own tests": [[1, "making-your-own-tests"]], "\ud83d\udea9 Using redflag with Pandas": [[2, "using-redflag-with-pandas"]], "Series accessor": [[2, "series-accessor"]], "DataFrame accessor": [[2, "dataframe-accessor"]], "\ud83d\udea9 Using redflag with sklearn": [[3, "using-redflag-with-sklearn"]], "The redflag detector classes": [[3, "the-redflag-detector-classes"]], "Using the pre-built redflag pipeline": [[3, "using-the-pre-built-redflag-pipeline"]], "Using the \u2018detector\u2019 transformers": [[3, "using-the-detector-transformers"]], "The imbalance comparator": [[3, "the-imbalance-comparator"]], "Making your own smoke detector": [[3, "making-your-own-smoke-detector"]], "What to do about the warnings": [[3, "what-to-do-about-the-warnings"]], "ImbalanceDetector and ImbalanceComparator": [[3, "imbalancedetector-and-imbalancecomparator"]], "ClipDetector": [[3, "clipdetector"]], "CorrelationDetector": [[3, "correlationdetector"]], "OutlierDetector": [[3, "outlierdetector"]], "DistributionComparator": [[3, "distributioncomparator"]], "ImportanceDetector": [[3, "importancedetector"]], "Authors": [[4, "authors"]], "Changelog": [[5, "changelog"]], "0.4.0, 28 September 2023": [[5, "september-2023"]], "0.3.0, 21 September 2023": [[5, "id1"]], "0.2.0, 4 September 2023": [[5, "id2"]], "0.1.10, 21 November 2022": [[5, "november-2022"]], "0.1.9, 25 August 2022": [[5, "august-2022"]], "0.1.8, 8 July 2022": [[5, "july-2022"]], "0.1.3 to 0.1.7, 9\u201311 February 2022": [[5, "to-0-1-7-911-february-2022"]], "0.1.2, 1 February 2022": [[5, "february-2022"]], "0.1.1, 31 January 2022": [[5, "january-2022"]], "0.1.0, 30 January 2022": [[5, "id3"]], "Contributing": [[6, "contributing"], [7, "contributing"]], "Code of conduct": [[6, "code-of-conduct"]], "Authorship": [[6, "authorship"]], "License": [[6, "license"], [10, "license"]], "Development": [[7, "development"]], "Installation": [[7, "installation"]], "Testing": [[7, "testing"]], "Building the package": [[7, "building-the-package"]], "Building the docs": [[7, "building-the-docs"]], "Continuous integration": [[7, "continuous-integration"]], "Redflag: An Entrance Exam for Data": [[8, "redflag-an-entrance-exam-for-data"]], "Quick start": [[8, "quick-start"]], "User guide": [[8, "user-guide"], [8, null]], "API reference": [[8, "api-reference"], [8, null]], "Other resources": [[8, "other-resources"], [8, null]], "Indices and tables": [[8, "indices-and-tables"]], "\ud83d\udea9 Installation": [[9, "installation"]], "Optional dependencies": [[9, "optional-dependencies"]], "redflag package": [[11, "redflag-package"]], "Submodules": [[11, "submodules"]], "redflag.distributions module": [[11, "module-redflag.distributions"]], "redflag.imbalance module": [[11, "module-redflag.imbalance"]], "redflag.importance module": [[11, "module-redflag.importance"]], "redflag.independence module": [[11, "module-redflag.independence"]], "redflag.markov module": [[11, "module-redflag.markov"]], "redflag.outliers module": [[11, "module-redflag.outliers"]], "redflag.pandas module": [[11, "module-redflag.pandas"]], "redflag.sklearn module": [[11, "module-redflag.sklearn"]], "redflag.target module": [[11, "module-redflag.target"]], "redflag.utils module": [[11, "module-redflag.utils"]], "Module contents": [[11, "module-redflag"]]}, "indexentries": {"baseredflagdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.BaseRedflagDetector"]], "clipdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ClipDetector"]], "correlationdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.CorrelationDetector"]], "detector (class in redflag.sklearn)": [[11, "redflag.sklearn.Detector"]], "distributioncomparator (class in redflag.sklearn)": [[11, "redflag.sklearn.DistributionComparator"]], "dummypredictor (class in redflag.sklearn)": [[11, "redflag.sklearn.DummyPredictor"]], "imbalancecomparator (class in redflag.sklearn)": [[11, "redflag.sklearn.ImbalanceComparator"]], "imbalancedetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ImbalanceDetector"]], "importancedetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ImportanceDetector"]], "insufficientdatadetector (class in redflag.sklearn)": [[11, "redflag.sklearn.InsufficientDataDetector"]], "markov_chain (class in redflag.markov)": [[11, "redflag.markov.Markov_chain"]], "multimodalitydetector (class in redflag.sklearn)": [[11, "redflag.sklearn.MultimodalityDetector"]], "multivariateoutlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.MultivariateOutlierDetector"]], "outlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.OutlierDetector"]], "rfpipeline (class in redflag.sklearn)": [[11, "redflag.sklearn.RfPipeline"]], "seriesaccessor (class in redflag.pandas)": [[11, "redflag.pandas.SeriesAccessor"]], "univariateoutlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.UnivariateOutlierDetector"]], "best_distribution() (in module redflag.distributions)": [[11, "redflag.distributions.best_distribution"]], "bool_to_index() (in module redflag.utils)": [[11, "redflag.utils.bool_to_index"]], "bw_scott() (in module redflag.distributions)": [[11, "redflag.distributions.bw_scott"]], "bw_silverman() (in module redflag.distributions)": [[11, "redflag.distributions.bw_silverman"]], "chi_squared() (redflag.markov.markov_chain method)": [[11, "redflag.markov.Markov_chain.chi_squared"]], "class_counts() (in module redflag.imbalance)": [[11, "redflag.imbalance.class_counts"]], "clipped() (in module redflag.utils)": [[11, "redflag.utils.clipped"]], "consecutive() (in module redflag.utils)": [[11, "redflag.utils.consecutive"]], "cv() (in module redflag.utils)": [[11, "redflag.utils.cv"]], "cv_kde() (in module redflag.distributions)": [[11, "redflag.distributions.cv_kde"]], "degrees_of_freedom (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.degrees_of_freedom"]], "deprecated() (in module redflag.utils)": [[11, "redflag.utils.deprecated"]], "divergence() (in module redflag.imbalance)": [[11, "redflag.imbalance.divergence"]], "dummy_classification_scores() (in module redflag.target)": [[11, "redflag.target.dummy_classification_scores"]], "dummy_regression_scores() (in module redflag.target)": [[11, "redflag.target.dummy_regression_scores"]], "dummy_scores() (in module redflag.target)": [[11, "redflag.target.dummy_scores"]], "dummy_scores() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.dummy_scores"]], "ecdf() (in module redflag.utils)": [[11, "redflag.utils.ecdf"]], "empirical_distribution() (in module redflag.imbalance)": [[11, "redflag.imbalance.empirical_distribution"]], "expected_freqs (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.expected_freqs"]], "expected_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.expected_outliers"]], "feature_importances() (in module redflag.importance)": [[11, "redflag.importance.feature_importances"]], "find_large_peaks() (in module redflag.distributions)": [[11, "redflag.distributions.find_large_peaks"]], "fit() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.fit"]], "fit() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.fit"]], "fit() (redflag.sklearn.dummypredictor method)": [[11, "redflag.sklearn.DummyPredictor.fit"]], "fit() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.fit"]], "fit() (redflag.sklearn.imbalancedetector method)": [[11, "redflag.sklearn.ImbalanceDetector.fit"]], "fit() (redflag.sklearn.importancedetector method)": [[11, "redflag.sklearn.ImportanceDetector.fit"]], "fit() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.fit"]], "fit() (redflag.sklearn.multimodalitydetector method)": [[11, "redflag.sklearn.MultimodalityDetector.fit"]], "fit() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.fit"]], "fit() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.fit"]], "fit_kde() (in module redflag.distributions)": [[11, "redflag.distributions.fit_kde"]], "fit_transform() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.fit_transform"]], "fit_transform() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.fit_transform"]], "fit_transform() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.fit_transform"]], "fit_transform() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.fit_transform"]], "fit_transform() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.fit_transform"]], "fit_transform() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.fit_transform"]], "flatten() (in module redflag.utils)": [[11, "redflag.utils.flatten"]], "formatwarning() (in module redflag.sklearn)": [[11, "redflag.sklearn.formatwarning"]], "from_sequence() (redflag.markov.markov_chain class method)": [[11, "redflag.markov.Markov_chain.from_sequence"]], "furthest_distribution() (in module redflag.imbalance)": [[11, "redflag.imbalance.furthest_distribution"]], "generate_data() (in module redflag.utils)": [[11, "redflag.utils.generate_data"]], "generate_states() (redflag.markov.markov_chain method)": [[11, "redflag.markov.Markov_chain.generate_states"]], "get_idx() (in module redflag.utils)": [[11, "redflag.utils.get_idx"]], "get_kde() (in module redflag.distributions)": [[11, "redflag.distributions.get_kde"]], "get_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.get_outliers"]], "has_few_samples() (in module redflag.utils)": [[11, "redflag.utils.has_few_samples"]], "has_flat() (in module redflag.utils)": [[11, "redflag.utils.has_flat"]], "has_monotonic() (in module redflag.utils)": [[11, "redflag.utils.has_monotonic"]], "has_nans() (in module redflag.utils)": [[11, "redflag.utils.has_nans"]], "has_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.has_outliers"]], "hollow_matrix() (in module redflag.markov)": [[11, "redflag.markov.hollow_matrix"]], "imbalance_degree() (in module redflag.imbalance)": [[11, "redflag.imbalance.imbalance_degree"]], "imbalance_degree() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.imbalance_degree"]], "imbalance_ratio() (in module redflag.imbalance)": [[11, "redflag.imbalance.imbalance_ratio"]], "index_to_bool() (in module redflag.utils)": [[11, "redflag.utils.index_to_bool"]], "is_binary() (in module redflag.target)": [[11, "redflag.target.is_binary"]], "is_clipped() (in module redflag.utils)": [[11, "redflag.utils.is_clipped"]], "is_continuous() (in module redflag.target)": [[11, "redflag.target.is_continuous"]], "is_correlated() (in module redflag.independence)": [[11, "redflag.independence.is_correlated"]], "is_imbalanced() (in module redflag.imbalance)": [[11, "redflag.imbalance.is_imbalanced"]], "is_multiclass() (in module redflag.target)": [[11, "redflag.target.is_multiclass"]], "is_multimodal() (in module redflag.distributions)": [[11, "redflag.distributions.is_multimodal"]], "is_multioutput() (in module redflag.target)": [[11, "redflag.target.is_multioutput"]], "is_numeric() (in module redflag.utils)": [[11, "redflag.utils.is_numeric"]], "is_ordered() (in module redflag.target)": [[11, "redflag.target.is_ordered"]], "is_ordered() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.is_ordered"]], "is_standard_normal() (in module redflag.utils)": [[11, "redflag.utils.is_standard_normal"]], "is_standardized() (in module redflag.utils)": [[11, "redflag.utils.is_standardized"]], "iter_groups() (in module redflag.utils)": [[11, "redflag.utils.iter_groups"]], "kde_peaks() (in module redflag.distributions)": [[11, "redflag.distributions.kde_peaks"]], "least_important_features() (in module redflag.importance)": [[11, "redflag.importance.least_important_features"]], "mahalanobis() (in module redflag.outliers)": [[11, "redflag.outliers.mahalanobis"]], "mahalanobis_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.mahalanobis_outliers"]], "major_minor() (in module redflag.imbalance)": [[11, "redflag.imbalance.major_minor"]], "make_detector_pipeline() (in module redflag.sklearn)": [[11, "redflag.sklearn.make_detector_pipeline"]], "make_rf_pipeline() (in module redflag.sklearn)": [[11, "redflag.sklearn.make_rf_pipeline"]], "minority_classes() (in module redflag.imbalance)": [[11, "redflag.imbalance.minority_classes"]], "minority_classes() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.minority_classes"]], "module": [[11, "module-redflag"], [11, "module-redflag.distributions"], [11, "module-redflag.imbalance"], [11, "module-redflag.importance"], [11, "module-redflag.independence"], [11, "module-redflag.markov"], [11, "module-redflag.outliers"], [11, "module-redflag.pandas"], [11, "module-redflag.sklearn"], [11, "module-redflag.target"], [11, "module-redflag.utils"]], "most_important_features() (in module redflag.importance)": [[11, "redflag.importance.most_important_features"]], "n_classes() (in module redflag.target)": [[11, "redflag.target.n_classes"]], "normalized_difference (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.normalized_difference"]], "null_decorator() (in module redflag.pandas)": [[11, "redflag.pandas.null_decorator"]], "observations() (in module redflag.markov)": [[11, "redflag.markov.observations"]], "observed_freqs (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.observed_freqs"]], "ordered_unique() (in module redflag.utils)": [[11, "redflag.utils.ordered_unique"]], "proportion_to_stdev() (in module redflag.utils)": [[11, "redflag.utils.proportion_to_stdev"]], "redflag": [[11, "module-redflag"]], "redflag.distributions": [[11, "module-redflag.distributions"]], "redflag.imbalance": [[11, "module-redflag.imbalance"]], "redflag.importance": [[11, "module-redflag.importance"]], "redflag.independence": [[11, "module-redflag.independence"]], "redflag.markov": [[11, "module-redflag.markov"]], "redflag.outliers": [[11, "module-redflag.outliers"]], "redflag.pandas": [[11, "module-redflag.pandas"]], "redflag.sklearn": [[11, "module-redflag.sklearn"]], "redflag.target": [[11, "module-redflag.target"]], "redflag.utils": [[11, "module-redflag.utils"]], "regularize() (in module redflag.markov)": [[11, "redflag.markov.regularize"]], "report() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.report"]], "split_and_standardize() (in module redflag.utils)": [[11, "redflag.utils.split_and_standardize"]], "stdev_to_proportion() (in module redflag.utils)": [[11, "redflag.utils.stdev_to_proportion"]], "transform() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.transform"]], "transform() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.transform"]], "transform() (redflag.sklearn.dummypredictor method)": [[11, "redflag.sklearn.DummyPredictor.transform"]], "transform() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.transform"]], "transform() (redflag.sklearn.imbalancedetector method)": [[11, "redflag.sklearn.ImbalanceDetector.transform"]], "transform() (redflag.sklearn.importancedetector method)": [[11, "redflag.sklearn.ImportanceDetector.transform"]], "transform() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.transform"]], "transform() (redflag.sklearn.multimodalitydetector method)": [[11, "redflag.sklearn.MultimodalityDetector.transform"]], "transform() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.transform"]], "transform() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.transform"]], "transform() (redflag.sklearn.rfpipeline method)": [[11, "redflag.sklearn.RfPipeline.transform"]], "update_p() (in module redflag.utils)": [[11, "redflag.utils.update_p"]], "wasserstein() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein"]], "wasserstein_multi() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_multi"]], "wasserstein_ovo() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_ovo"]], "wasserstein_ovr() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_ovr"]], "zscore() (in module redflag.utils)": [[11, "redflag.utils.zscore"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["_notebooks/Basic_usage", "_notebooks/Tutorial", "_notebooks/Using_redflag_with_Pandas", "_notebooks/Using_redflag_with_sklearn", "authors", "changelog", "contributing", "development", "index", "installation", "license", "redflag"], "filenames": ["_notebooks/Basic_usage.ipynb", "_notebooks/Tutorial.ipynb", "_notebooks/Using_redflag_with_Pandas.ipynb", "_notebooks/Using_redflag_with_sklearn.ipynb", "authors.md", "changelog.md", "contributing.md", "development.md", "index.rst", "installation.md", "license.md", "redflag.rst"], "titles": ["\ud83d\udea9 Basic usage", "\ud83d\udea9 Tutorial", "\ud83d\udea9 Using redflag
with Pandas", "\ud83d\udea9 Using redflag
with sklearn
", "Authors", "Changelog", "Contributing", "Development", "Redflag: safer ML by design", "\ud83d\udea9 Installation", "License", "redflag package"], "terms": {"welcom": [0, 2], "redflag": [0, 5, 7, 9], "It": [0, 1, 5, 11], "": [0, 1, 2, 3, 5, 6, 7, 10, 11], "still": [0, 3, 5], "earli": [0, 5], "dai": 0, "thi": [0, 1, 2, 3, 5, 6, 7, 10, 11], "librari": [0, 1, 8], "ar": [0, 1, 2, 3, 5, 6, 7, 8, 10, 11], "few": [0, 3], "thing": [0, 1, 3], "you": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11], "can": [0, 1, 2, 3, 5, 6, 7, 9, 11], "do": [0, 1, 5, 8, 10, 11], "detect": [0, 1, 3, 5, 11], "label": [0, 1, 3, 5, 11], "ani": [0, 1, 3, 5, 10, 11], "other": [0, 1, 3, 5, 6, 7, 10, 11], "variabl": [0, 3, 11], "rf": [0, 1, 2, 3, 8], "__version__": [0, 1, 2], "0": [0, 1, 2, 3, 10, 11], "1": [0, 1, 2, 3, 10, 11], "dev1": [0, 1, 2], "ga3e5e5": [0, 1, 2], "panda": [0, 1, 3, 5, 8], "pd": [0, 1, 2, 3, 11], "df": [0, 1, 2, 3, 8], "read_csv": [0, 1, 2, 3], "http": [0, 1, 2, 3, 10, 11], "geocomp": [0, 1, 2, 3], "s3": [0, 1, 2, 3], "amazonaw": [0, 1, 2, 3], "com": [0, 1, 2, 3, 11], "panoma_training_data": [0, 1, 2, 3], "csv": [0, 1, 2, 3], "look": [0, 2, 3, 8], "transpos": [0, 3], "summari": [0, 3], "each": [0, 3, 5, 10, 11], "column": [0, 1, 3, 5, 11], "datafram": [0, 3, 8], "i": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11], "row": [0, 3, 5, 11], "here": [0, 3, 6], "describ": [0, 3, 10], "t": [0, 1, 3, 5, 7, 11], "count": [0, 3, 11], "mean": [0, 1, 2, 3, 5, 10, 11], "std": [0, 3], "min": [0, 1, 3, 11], "25": [0, 3, 11], "50": [0, 3, 10], "75": [0, 3, 11], "max": [0, 1, 3, 11], "depth": [0, 1, 2, 3], "3966": [0, 3], "882": [0, 3], "674555": [0, 3], "40": [0, 3, 11], "150056": [0, 3], "784": [0, 3], "402800": [0, 3], "858": [0, 3], "012000": [0, 3], "888": [0, 3], "339600": [0, 3], "913": [0, 3], "028400": [0, 3], "963": [0, 3], "320400": [0, 3], "relpo": [0, 1, 2, 3], "524999": [0, 3], "286375": [0, 3], "010000": [0, 3], "282000": [0, 3], "531000": [0, 3], "773000": [0, 3], "000000": [0, 3], "marin": [0, 1, 2, 3], "325013": [0, 3], "589539": [0, 3], "2": [0, 1, 2, 3, 10, 11], "gr": [0, 1, 2, 3, 11], "64": [0, 1, 3], "367899": [0, 3], "28": [0, 3], "414603": [0, 3], "12": [0, 1, 2, 3, 11], "036000": [0, 3], "45": [0, 1, 2, 3, 11], "311250": [0, 3], "840000": [0, 3], "78": [0, 1, 2, 3], "809750": [0, 3], "200": [0, 3, 11], "ild": [0, 1, 2, 3], "5": [0, 1, 2, 3, 5, 11], "240308": [0, 3], "3": [0, 1, 2, 3, 11], "190416": [0, 3], "340408": [0, 3], "169567": [0, 3], "4": [0, 1, 2, 3, 11], "305266": [0, 3], "6": [0, 1, 2, 3, 11], "664234": [0, 3], "32": [0, 3], "136605": [0, 3], "deltaphi": [0, 1, 2, 3], "469088": [0, 3], "922310": [0, 3], "21": [0, 3], "832000": [0, 3], "292500": [0, 3], "124750": [0, 3], "18": [0, 3], "600000": [0, 3], "phind": [0, 1, 2, 3], "13": [0, 1, 2, 3, 11], "008807": [0, 3], "936391": [0, 3], "550000": [0, 3], "8": [0, 1, 2, 3, 11], "196250": [0, 3], "11": [0, 1, 2, 3, 11], "781500": [0, 3], "16": [0, 3], "050000": [0, 3], "52": [0, 3], "369000": [0, 3], "pe": [0, 1, 2, 3], "686427": [0, 3], "815113": [0, 3], "200000": [0, 3], "123000": [0, 3], "514500": [0, 3], "241750": [0, 3], "094000": [0, 3], "faci": [0, 1, 2, 3], "471004": [0, 3], "406180": [0, 3], "9": [0, 1, 2, 3, 10, 11], "latitud": [0, 1, 2, 3], "37": [0, 1, 2, 3], "632575": [0, 3], "299398": [0, 3], "180732": [0, 3], "356426": [0, 3], "500380": [0, 3], "910583": [0, 3], "38": [0, 3], "063373": [0, 3], "longitud": [0, 1, 2, 3], "101": [0, 3], "294895": [0, 3], "230454": [0, 3], "646452": [0, 3], "389189": [0, 3], "325130": [0, 3], "106045": [0, 3], "100": [0, 1, 2, 3, 11], "987305": [0, 1, 2, 3], "ild_log10": [0, 1, 2, 3], "648860": [0, 3], "251542": [0, 3], "468000": [0, 3], "501000": [0, 3], "634000": [0, 3], "823750": [0, 3], "507000": [0, 3], "rhob": [0, 1, 2, 3], "2288": [0, 3], "861692": [0, 3], "218": [0, 3], "038459": [0, 3], "1500": [0, 3], "2201": [0, 3], "007475": [0, 3], "2342": [0, 3], "202051": [0, 3], "2434": [0, 3], "166399": [0, 3], "2802": [0, 3], "871147": [0, 3], "fairli": 0, "easi": [0, 1], "tell": [0, 1, 11], "numer": [0, 5, 11], "harder": 0, "decid": [0, 3, 11], "we": [0, 1, 2, 3, 5, 6, 11], "us": [0, 1, 5, 7, 8, 9, 10, 11], "is_continu": [0, 5, 11], "check": [0, 1, 3, 5, 11], "target": [0, 2, 3, 5, 8], "heurist": [0, 3, 5], "definit": [0, 5, 10, 11], "foolproof": 0, "intern": 0, "sometim": [0, 11], "how": [0, 1, 3, 5, 6], "treat": 0, "col": 0, "print": [0, 2, 5, 11], "f": 0, "20": [0, 3, 11], "well": [0, 1, 2, 3, 11], "name": [0, 1, 2, 3, 5, 10, 11], "fals": [0, 1, 5, 11], "true": [0, 1, 2, 3, 5, 11], "format": [0, 1, 2, 11], "lithologi": [0, 1, 2, 3], "mineralogi": [0, 1, 2], "siliciclast": [0, 1, 2], "These": [0, 1, 5], "all": [0, 1, 3, 5, 7, 9, 10, 11], "correct": [0, 11], "first": [0, 1, 2, 3, 11], "ll": [0, 1, 3], "measur": [0, 1, 3, 5, 11], "class_imbal": [0, 5], "For": [0, 1, 2, 3, 5, 9, 10, 11], "binari": [0, 11], "imbalac": 0, "ratio": [0, 1, 11], "between": [0, 5, 11], "major": [0, 1, 11], "minor": [0, 1, 3, 11], "class": [0, 1, 5, 8, 11], "multiclass": [0, 11], "degre": [0, 1, 5, 11], "ortigosa": [0, 11], "hernandez": [0, 11], "et": [0, 11], "al": [0, 11], "2017": [0, 11], "singl": [0, 3, 5, 11], "valu": [0, 1, 3, 5, 11], "explain": [0, 3], "mani": [0, 3, 5, 11], "b": [0, 10, 11], "skew": 0, "support": [0, 1, 3, 5, 10], "imbalance_degre": [0, 1, 2, 5, 8, 11], "378593040846633": [0, 1, 2], "To": [0, 1, 3, 5, 7, 11], "interpret": [0, 1], "number": [0, 1, 3, 5, 11], "two": [0, 1, 3, 7, 11], "part": [0, 1, 3, 5, 6, 10, 11], "The": [0, 1, 2, 4, 5, 7, 8, 10, 11], "integ": [0, 1, 5, 11], "equal": [0, 1], "m": [0, 1, 3, 5, 7, 11], "where": [0, 1, 5, 10, 11], "fraction": [0, 1, 11], "378": [0, 1], "amount": [0, 1], "dataset": [0, 1, 3, 5, 11], "balanc": [0, 1], "perfectli": [0, 1], "999": [0, 1, 11], "realli": [0, 1, 5], "bad": [0, 1], "If": [0, 1, 3, 5, 6, 7, 9, 10, 11], "have": [0, 1, 2, 3, 4, 5, 10, 11], "In": [0, 1, 3, 5, 10, 11], "gener": [0, 1, 3, 5, 6, 7, 10, 11], "statist": [0, 1, 3, 11], "more": [0, 1, 2, 3, 5, 7, 8, 10, 11], "inform": [0, 1, 3, 10], "than": [0, 1, 3, 5, 11], "commonli": [0, 1], "imbalance_ratio": [0, 1, 5, 11], "which": [0, 1, 3, 5, 7, 10, 11], "maximum": [0, 1, 11], "minimum": [0, 1, 3], "regard": [0, 1, 10], "get": [0, 1, 2, 7, 11], "those": [0, 1, 3, 10], "fewer": [0, 1, 11], "sampl": [0, 1, 3, 11], "expect": [0, 1, 3, 5, 11], "return": [0, 1, 3, 5, 11], "order": [0, 1, 3, 4, 5, 11], "smallest": [0, 1], "minority_class": [0, 1, 3, 5, 11], "dolomit": [0, 1, 3], "sandston": [0, 1, 3], "mudston": [0, 1, 3], "wackeston": [0, 1, 3], "dtype": [0, 1, 3, 11], "u10": [0, 1], "empir": [0, 3, 11], "observ": [0, 5, 11], "frequenc": [0, 11], "\u03b6": [0, 11], "e": [0, 1, 3, 5, 8, 11], "empirical_distribut": [0, 11], "39989914": 0, "18582955": 0, "15834594": 0, "04790721": 0, "13691377": 0, "07110439": 0, "same": [0, 1, 3, 5, 11], "uniqu": [0, 11], "note": [0, 3, 5, 11], "differ": [0, 1, 3, 5, 10, 11], "from": [0, 1, 3, 5, 8, 10, 11], "np": [0, 1, 3, 11], "sort": [0, 11], "siltston": [0, 1, 2, 3], "limeston": [0, 1], "object": [0, 1, 2, 3, 5, 10, 11], "also": [0, 1, 3, 5, 11], "inspect": [0, 5, 11], "displai": [0, 10], "ax": [0, 3], "value_count": 0, "plot": 0, "kind": [0, 1, 3, 5, 10, 11], "bar": 0, "add": [0, 1, 3, 5, 6, 9, 10, 11], "line": [0, 9], "level": [0, 3, 11], "axhlin": 0, "len": [0, 1, 11], "c": [0, 3, 5, 9, 10, 11], "r": [0, 11], "matplotlib": 0, "line2d": 0, "0x7fa5a8b9ddd0": 0, "get_outli": [0, 3, 5, 11], "function": [0, 1, 2, 3, 5, 7, 8, 11], "indic": [0, 3, 10, 11], "point": [0, 3, 11], "301": 0, "302": 0, "303": 0, "415": 0, "416": 0, "417": 0, "418": 0, "799": 0, "896": 0, "897": 0, "898": 0, "899": [0, 3], "996": 0, "997": 0, "1843": 0, "1844": 0, "2278": 0, "2279": 0, "2280": 0, "2638": 0, "2639": 0, "2640": 0, "2641": 0, "2642": 0, "2643": 0, "2920": 0, "2921": 0, "2922": 0, "3070": 0, "3071": 0, "3074": 0, "3075": 0, "3076": 0, "3079": [0, 2], "3080": [0, 2], "3081": 0, "3580": 0, "3581": 0, "3582": 0, "3583": 0, "see": [0, 1, 2, 3, 5, 6, 7, 11], "lie": [0, 11], "seaborn": [0, 1, 3], "sn": [0, 1, 3], "kdeplot": [0, 3], "rugplot": 0, "loc": [0, 1, 3, 11], "c1": 0, "lw": 0, "alpha": 0, "is_categorical_dtyp": [0, 1, 3], "deprec": [0, 1, 3, 5, 11], "remov": [0, 1, 3, 5], "futur": [0, 1, 2, 3, 5, 9, 11], "version": [0, 1, 3, 5, 7, 10, 11], "isinst": [0, 1, 3], "categoricaldtyp": [0, 1, 3], "instead": [0, 1, 3, 5, 11], "use_inf_as_na": [0, 1, 3], "option": [0, 1, 3, 7, 8, 11], "convert": [0, 1, 3, 11], "inf": [0, 1, 3], "nan": [0, 1, 3, 11], "befor": [0, 1, 3, 11], "oper": [0, 1, 3], "xlabel": [0, 3], "ylabel": [0, 3], "densiti": [0, 5, 11], "By": [0, 6, 11], "default": [0, 3, 5, 11], "an": [0, 2, 3, 5, 6, 9, 10, 11], "isol": [0, 3, 11], "forest": [0, 3, 11], "99": [0, 3, 11], "confid": [0, 3, 11], "opt": [0, 3], "local": [0, 1, 3, 7, 11], "factor": [0, 11], "ellipt": [0, 11], "envelop": [0, 11], "mahalanobi": [0, 5, 11], "distanc": [0, 3, 5, 11], "set": [0, 3, 9, 11], "choos": [0, 10], "equival": [0, 11], "threshold": [0, 1, 3, 5, 11], "standard": [0, 1, 3, 5, 11], "deviat": [0, 3, 5, 11], "awai": [0, 3], "signal": 0, "accept": [0, 10, 11], "univari": [0, 5, 11], "multivari": [0, 3, 5, 11], "method": [0, 2, 3, 5, 11], "mah": [0, 3, 11], "jointplot": 0, "x": [0, 1, 3, 5, 8, 11], "y": [0, 1, 3, 5, 8, 11], "hue": 0, "index_to_bool": [0, 11], "n": [0, 11], "axisgrid": [0, 1], "jointgrid": 0, "0x7fa58c9b2690": 0, "A": [0, 3, 8, 10, 11], "helper": [0, 5], "comput": [0, 5, 10, 11], "given": [0, 3, 8, 11], "size": [0, 1, 11], "assum": [0, 5, 10, 11], "gaussian": [0, 3, 11], "expected_outli": [0, 3, 11], "80": [0, 3, 11], "44": 0, "so": [0, 1, 3, 5, 9], "becaus": [0, 1, 3, 5, 11], "ha": [0, 1, 2, 3, 7, 10, 11], "lot": [0, 1, 3, 5, 11], "truncat": 0, "tail": 0, "test": [0, 3, 5, 8, 9, 11], "directli": [0, 2, 3, 5, 11], "has_outli": [0, 3, 5, 11], "compar": [0, 5, 8, 11], "result": [0, 3, 5, 10, 11], "numpi": [0, 1, 3, 11], "random": [0, 1, 3, 11], "normal": [0, 1, 5, 10, 11], "10_000": [0, 11], "d": [0, 1, 3, 7, 10, 11], "p": [0, 3, 11], "displot": [0, 1, 3], "facetgrid": [0, 1], "0x7fa58c978950": 0, "onli": [0, 1, 2, 3, 5, 10, 11], "about": [0, 5, 7, 8, 11], "60": 0, "10": [0, 1, 2, 11], "000": [0, 1, 2, 11], "record": [0, 1, 3, 5, 11], "been": [0, 1, 3, 5, 10], "multipl": [0, 1, 5, 11], "instanc": [0, 1, 11], "its": [0, 1, 2, 5, 10, 11], "There": [0, 1, 3, 6, 7, 8], "legitim": [0, 1], "reason": [0, 1, 3, 5, 10], "why": [0, 1, 3, 11], "might": [0, 1, 3], "happen": [0, 1, 7], "exampl": [0, 1, 2, 3, 5, 6, 7, 10, 11], "mai": [0, 1, 2, 3, 10, 11], "natur": [0, 1, 3], "bound": [0, 1, 11], "g": [0, 1, 3, 5, 8, 11], "poros": [0, 1], "alwai": [0, 1, 5], "greater": [0, 1], "deliber": [0, 1, 10], "prepar": [0, 1, 10], "process": [0, 1], "is_clip": [0, 1, 5, 11], "0x7fa58ca48950": 0, "tri": [0, 5], "guess": [0, 5], "follow": [0, 1, 3, 4, 7, 10, 11], "scipi": [0, 11], "stat": [0, 11], "norm": [0, 11], "cosin": 0, "expon": 0, "exponpow": 0, "gamma": [0, 1], "gumbel_l": 0, "gumbel_r": 0, "powerlaw": 0, "triang": [0, 11], "trapz": 0, "uniform": [0, 11], "along": [0, 3, 10], "paramet": [0, 3, 11], "locat": [0, 3, 11], "scale": [0, 1, 3, 11], "spite": 0, "find": [0, 1, 3, 5, 11], "nearli": 0, "best_distribut": [0, 11], "36789939485628": 0, "411020184908292": 0, "contrast": 0, "andbest": 0, "model": [0, 1, 3, 5, 11], "gumbel": 0, "040572536302586": 0, "93432972751726": 0, "0x7fa58c866d10": 0, "often": [0, 1, 3], "like": [0, 1, 2, 3, 5, 7, 9, 11], "implicit": 0, "our": [0, 1, 3, 11], "across": [0, 5, 11], "variou": [0, 1, 5], "respect": [0, 6], "both": [0, 3, 5, 7, 11], "wasserstein": [0, 3, 5, 11], "facilit": 0, "calcul": [0, 11], "aka": [0, 11], "earth": [0, 3], "mover": [0, 3], "train": [0, 1, 3, 5, 11], "score": [0, 1, 2, 3, 5, 11], "substanti": 0, "w": 0, "25985545": 0, "28404634": 0, "49139232": 0, "33701782": 0, "22736457": 0, "13473663": 0, "33672956": 0, "20969657": 0, "41216725": 0, "34568777": 0, "39729747": 0, "48092099": 0, "0801856": 0, "10675027": 0, "13740318": 0, "10325295": 0, "19913347": 0, "21828753": 0, "26995735": 0, "33063277": 0, "24612402": 0, "23889923": 0, "26699721": 0, "2350674": 0, "20666445": 0, "44112543": 0, "16229232": 0, "63527036": 0, "18187639": 0, "34992043": 0, "19400917": 0, "74988182": 0, "31761526": 0, "27206283": 0, "30255291": 0, "24779581": 0, "could": [0, 3], "heatmap": 0, "yticklabel": 0, "xticklabel": 0, "show": [0, 1, 3, 5, 11], "u": [0, 1, 11], "log": [0, 1, 3], "7": [0, 3, 11], "somewhat": 0, "anomal": [0, 5, 8], "suggest": [0, 11], "cross": [0, 1, 10, 11], "h": 0, "cattl": 0, "sklearn": [0, 1, 2, 5, 8], "model_select": [0, 1], "train_test_split": [0, 1], "preprocess": [0, 1, 3], "standardscal": [0, 1, 3], "x_train": [0, 1, 3, 11], "x_": 0, "test_siz": 0, "random_st": [0, 11], "42": [0, 1, 11], "re": [0, 1, 3, 6, 11], "illustr": 0, "purpos": [0, 10], "valid": [0, 1, 3, 11], "wai": [0, 1, 2, 3, 5, 6, 8, 11], "indeped": 0, "x_val": [0, 11], "x_test": [0, 1, 3], "should": [0, 1, 3, 5, 7, 11], "scaler": [0, 1], "fit_transform": [0, 8, 11], "transform": [0, 1, 5, 8, 10, 11], "case": [0, 5, 11], "pass": [0, 3, 5, 11], "them": [0, 3, 5, 11], "list": [0, 10, 11], "tupl": [0, 11], "03860982": 0, "02506236": 0, "04321734": 0, "03437337": 0, "04402681": 0, "02528225": 0, "0385111": 0, "05694201": 0, "04388196": 0, "049464": 0, "05560379": 0, "04002712": 0, "quit": [0, 5], "low": [0, 1, 3, 5, 11], "randomli": [0, 1, 3, 11], "correl": [0, 1, 2, 3, 11], "lag": [0, 1], "shift": [0, 1, 3], "itself": [0, 1, 3, 6, 11], "sever": [0, 1, 3, 5, 6], "themselv": [0, 1, 3, 11], "is_correl": [0, 1, 11], "depend": [0, 1, 5, 8, 11], "That": [0, 1, 3, 11], "shuffl": [0, 1], "doe": [0, 1, 3, 5, 10, 11], "to_numpi": [0, 1], "copi": [0, 1, 5, 10], "know": [0, 3, 5], "most": [0, 3, 5, 7, 11], "seri": [0, 5, 8, 11], "your": [0, 5, 8, 10], "assess": [0, 11], "averag": [0, 11], "serv": [0, 5], "control": [0, 10], "let": [0, 1, 2, 3], "small": [0, 3, 5, 11], "come": [0, 2, 5, 11], "veri": [0, 1, 2, 3, 5], "close": [0, 5, 11], "zero": [0, 11], "constant": 0, "classif": [0, 2, 5, 11], "task": [0, 1, 2, 5, 11], "imagin": 0, "try": [0, 1, 2, 3, 11], "predict": [0, 1, 3, 5, 11], "feature_import": [0, 1, 5, 11], "24840897": 0, "34972206": 0, "32817662": 0, "07369235": 0, "unsurprisingli": 0, "useless": 0, "help": [0, 1, 5, 6, 7, 9], "least": [0, 1, 5, 10, 11], "least_important_featur": [0, 5, 11], "And": 0, "complementari": [0, 5], "report": [0, 2, 5, 6, 11], "most_important_featur": [0, 5, 11], "now": [0, 1, 2, 3, 5], "regress": [0, 2, 5, 11], "includ": [0, 1, 3, 5, 10, 11], "dummi": [0, 1, 2, 3, 5, 11], "08955964": 0, "35788656": 0, "525743": 0, "0268108": 0, "less": [0, 5, 11], "again": 0, "go": 1, "featur": [1, 2, 3, 5, 6, 8, 11], "problem": [1, 3, 11], "machin": [1, 8], "learn": [1, 3, 5, 8, 11], "need": [1, 5, 7, 11], "packag": [1, 3, 5, 8, 9], "run": [1, 3, 5, 7, 11], "code": [1, 5, 10, 11], "burn": 1, "ourselv": 1, "19": [1, 11], "23": 1, "35": [1, 2, 11], "59": 1, "31": [1, 3, 11], "rai": 1, "ss": 1, "svm": [1, 3, 5], "svc": [1, 3], "clf": 1, "kernel": [1, 5, 11], "linear": 1, "fit": [1, 3, 10, 11], "arrai": [1, 3, 5, 11], "u2": 1, "far": [1, 3], "good": [1, 11], "everyth": 1, "work": [1, 3, 5, 10, 11], "someon": 1, "x_scale": 1, "oop": 1, "unscal": 1, "easili": [1, 3, 5], "done": 1, "peopl": [1, 4], "stack": [1, 11], "overflow": 1, "wonder": 1, "thei": [1, 2, 3, 5, 11], "ve": 1, "someth": [1, 3, 5, 11], "even": [1, 2, 10], "easier": [1, 5], "common": [1, 5, 10, 11], "pattern": [1, 8, 11], "y_train": [1, 3, 11], "y_test": [1, 3], "x_train_scal": 1, "x_test_scal": 1, "three": [1, 3, 8, 11], "block": [1, 5], "split": [1, 3, 5, 11], "total": [1, 5, 11], "stratifi": [1, 2, 3, 5, 11], "preserv": 1, "wa": [1, 5, 10, 11], "entir": [1, 5, 11], "leak": 1, "hidden": 1, "cannot": [1, 3, 10, 11], "plenti": 1, "too": [1, 3, 5, 11], "reproduc": [1, 5, 10], "enough": [1, 3], "etc": [1, 3, 11], "error": 1, "everywher": [1, 6], "want": [1, 3, 9, 11], "chang": [1, 3, 5, 10], "sure": [1, 3, 5], "v0": 1, "otherwis": [1, 10, 11], "python": [1, 3, 5, 7, 8], "pip": [1, 7, 8, 9], "instal": [1, 2, 5, 8], "environ": [1, 3, 5, 9], "head": [1, 2], "shrimplin": [1, 2], "851": [1, 2], "3064": [1, 2], "a1": [1, 2], "sh": [1, 2], "77": [1, 2, 3], "613176": [1, 2], "915": [1, 2], "978076": [1, 2], "664": [1, 2], "2393": [1, 2], "499945": [1, 2], "4588": [1, 2], "979": [1, 2], "26": [1, 2], "581419": [1, 2], "14": [1, 2], "565": [1, 2], "661": [1, 2], "2416": [1, 2], "119814": [1, 2], "6112": [1, 2], "957": [1, 2], "79": [1, 2], "05": [1, 2, 11], "549881": [1, 2], "050": [1, 2], "658": [1, 2], "2404": [1, 2], "576056": [1, 2], "7636": [1, 2], "936": [1, 2], "86": [1, 2], "518559": [1, 2], "115": [1, 2], "655": [1, 2], "249071": [1, 2], "9160": [1, 2], "74": [1, 2], "58": [1, 2], "436086": [1, 2], "300": [1, 2], "647": [1, 2], "2382": [1, 2], "602601": [1, 2], "later": [1, 3, 11], "spuriou": 1, "rng": [1, 11], "default_rng": [1, 11], "nois": [1, 3], "algorithm": 1, "flag": [1, 3, 11], "outlier": [1, 2, 3, 5, 8], "distribut": [1, 3, 5, 8, 10], "shape": [1, 3, 8, 11], "0x7f4a91901850": 1, "But": [1, 3], "around": 1, "issu": [1, 3, 5, 6, 10, 11], "40817216": 1, "20385381": 1, "31665051": 1, "07132352": 1, "As": [1, 2, 3, 8], "hope": 1, "attribut": [1, 10, 11], "shown": 1, "possibl": [1, 3, 5, 10], "would": [1, 11], "nice": 1, "smoke": [1, 8], "alarm": [1, 5, 11], "prebuilt": 1, "won": 1, "abl": 1, "catch": 1, "howev": [1, 5, 10], "hard": [1, 5], "spot": 1, "self": [1, 3, 11], "alert": [1, 11], "user": 1, "potenti": [1, 11], "provid": [1, 3, 5, 10, 11], "wrap": [1, 5, 11], "anywai": 1, "sensibl": 1, "test_wel": [1, 3], "crawford": [1, 3], "stuart": [1, 3], "test_flag": [1, 3], "isin": [1, 3], "step": [1, 3, 11], "x27": [1, 3], "imbalancedetector": [1, 5, 8, 11], "clipdetector": [1, 5, 11], "correlationdetector": [1, 5, 11], "multimod": [1, 3, 5, 11], "multimodalitydetector": [1, 3, 5, 11], "outlierdetector": [1, 5, 11], "distributioncompar": [1, 5, 11], "importancedetector": [1, 5, 11], "dummypredictor": [1, 3, 11], "jupyt": [1, 3], "pleas": [1, 3, 6, 7, 9, 11], "rerun": [1, 3], "cell": [1, 3], "html": [1, 3, 7], "represent": [1, 3], "trust": [1, 3], "notebook": [1, 3, 5], "On": [1, 3], "github": [1, 3, 7, 8, 11], "unabl": [1, 3], "render": [1, 3], "page": [1, 3, 5, 7, 8], "nbviewer": [1, 3], "org": [1, 3, 10, 11], "pipelinepipelin": [1, 3], "imbalancedetectorimbalancedetector": [1, 3], "clipdetectorclipdetector": [1, 3], "correlationdetectorcorrelationdetector": [1, 3], "multimodalitydetectormultimodalitydetector": [1, 3], "outlierdetectoroutlierdetector": [1, 3], "distributioncomparatordistributioncompar": [1, 3], "importancedetectorimportancedetector": [1, 3], "dummypredictordummypredictor": [1, 3], "make_pipelin": [1, 3, 11], "pipe": [1, 3, 11], "standardscalerstandardscal": [1, 3], "svcsvc": [1, 3], "imbalanc": [1, 3, 11], "420": [1, 3], "400": [1, 3], "minority_classes_": [1, 3, 11], "\u2139": [1, 3], "succeed": [1, 3], "group": [1, 3, 5, 11], "316": 1, "v": [1, 3, 11], "relev": [1, 5], "classifi": [1, 3, 5], "f1": [1, 2, 3, 5, 11], "2562046792503389": 1, "roc_auc": [1, 2, 3, 11], "4937139556627474": 1, "strategi": [1, 2, 3, 5, 11], "643721188696941": 1, "detector": [1, 5, 8, 11], "def": [1, 3], "has_neg": [1, 11], "bool": [1, 3, 11], "trigger": [1, 3, 5, 11], "neg": [1, 3, 11], "negative_detector": [1, 3], "nb": 1, "func": [1, 3, 11], "lt": [1, 3], "baseredflagdetector": [1, 3, 11], "__init__": [1, 3], "gt": [1, 3], "lambda": [1, 3, 11], "0x7f4a917bfce0": 1, "messag": [1, 3, 5, 11], "detectordetector": [1, 3], "ad": [1, 5], "posit": [1, 5, 11], "what": [1, 5, 8, 11], "care": [1, 5], "basic_usag": [2, 3, 5], "ipynb": [2, 3, 5], "using_redflag_with_panda": 2, "some": [2, 3, 5, 6, 8, 11], "give": [2, 3, 5, 10], "access": [2, 5], "almost": [2, 5], "were": [2, 3, 5, 11], "best": [2, 5, 11], "idea": [2, 3], "though": 2, "import": [2, 3, 5, 6, 8, 10], "long": 2, "regist": 2, "data": [2, 3, 5, 8, 11], "time": [2, 3, 11], "being": [2, 3, 11], "call": [2, 3, 5, 11], "simplic": 2, "notic": [2, 10], "extra": 2, "insert": 2, "Or": [2, 9], "ask": 2, "new": [2, 3, 5, 6, 7], "dummy_scor": [2, 5, 11], "24308613668344808": 2, "49544118310710333": 2, "mean_squared_error": [2, 11], "47528": 2, "78263092096": 2, "r2": [2, 5, 11], "simpl": [2, 8], "continu": [2, 5, 8, 11], "suitabl": [2, 5], "34": 2, "140": 2, "141": 2, "142": 2, "143": 2, "175": 2, "182": 2, "532": 2, "581": 2, "583": 2, "633": 2, "662": 2, "757": 2, "768": 2, "769": 2, "801": 2, "1316": 2, "1547": 2, "1744": 2, "1754": 2, "1756": 2, "1778": 2, "1779": 2, "1780": 2, "1784": 2, "1788": 2, "1808": 2, "1812": 2, "2884": 2, "2932": 2, "2973": 2, "2974": 2, "3004": 2, "3087": 2, "3094": 2, "3109": 2, "experiment": [2, 5], "releas": [2, 5, 7], "feedback": 2, "soon": [2, 5], "rais": [3, 11], "red": 3, "load": [3, 8], "independ": [3, 5, 8], "furthermor": 3, "clip": [3, 5, 8, 11], "histplot": 3, "hostedtoolcach": 3, "x64": 3, "lib": 3, "python3": 3, "site": 3, "_oldcor": 3, "py": [3, 5, 11], "1498": 3, "futurewarn": 3, "api": [3, 11], "type": [3, 10, 11], "vector": [3, 11], "1119": 3, "option_context": 3, "mode": 3, "main": [3, 5, 7, 8], "subsequ": [3, 5, 10, 11], "product": [3, 5, 10], "mostli": [3, 5], "unsupervis": [3, 11], "iid": [3, 8], "particular": [3, 10], "univariateoutlierdetector": [3, 11], "consid": [3, 5, 6, 11], "separ": [3, 10, 11], "usual": 3, "probabl": [3, 5, 11], "multivariateoutlierdetector": [3, 11], "togeth": [3, 11], "dure": [3, 11], "word": [3, 5, 11], "examin": 3, "final": [3, 11], "one": [3, 5, 10, 11], "bit": [3, 5], "supervis": 3, "base": [3, 10, 11], "fulli": 3, "triger": 3, "similar": [3, 5], "seen": 3, "ordinari": 3, "rfpipelin": [3, 5, 11], "contain": [3, 5, 7, 10, 11], "out": [3, 10], "read": [3, 6, 7, 9], "compat": 3, "requir": [3, 5, 7, 10, 11], "comparison": [3, 5], "avail": [3, 10], "anoth": [3, 6, 11], "compos": 3, "multi": [3, 11], "make_rf_pipelin": [3, 5, 11], "just": [3, 5, 7, 11], "carri": [3, 8, 10], "phase": 3, "categor": [3, 5, 8, 11], "input": [3, 11], "349": 3, "2553305717063476": 3, "5040393210009199": 3, "3682141715600706": 3, "when": [3, 5, 11], "categori": [3, 11], "y_pred": 3, "30": [3, 11], "argument": [3, 5, 11], "element": [3, 11], "redflag_pipelin": 3, "compon": [3, 5, 8, 11], "yet": [3, 5], "sensit": [3, 11], "instanti": [3, 5, 11], "construct": [3, 11], "drop": 3, "leav": 3, "don": [3, 7, 11], "think": 3, "troubl": 3, "lower": [3, 11], "qualifi": 3, "rememb": 3, "longer": [3, 5], "839": 3, "626": 3, "154443705823081": 3, "higher": 3, "fail": [3, 5], "mention": 3, "whether": [3, 10, 11], "never": 3, "rfpipelinerfpipelin": 3, "imbalancecomparatorimbalancecompar": 3, "therefor": [3, 11], "infer": [3, 11], "66": 3, "276": 3, "2359": 3, "73324716": 3, "591": 3, "252": 3, "2354": 3, "54679144": 3, "341": 3, "82": 3, "2330": 3, "35783664": 3, "064": 3, "90": [3, 11], "49": [3, 11], "2193": 3, "06953439": 3, "168": 3, "975": 3, "2192": 3, "32922081": 3, "154": 3, "108": 3, "2176": 3, "62535394": 3, "125": 3, "emit": [3, 5, 11], "has_nan": [3, 5, 11], "isnan": 3, "0x7f9497cdb380": 3, "make_detector_pipelin": [3, 5, 11], "combin": [3, 10, 11], "ab": [3, 11], "custom": [3, 5, 11], "0x7f9497cdb6a0": 3, "0x7f9497cdbe20": 3, "class_count": [3, 11], "worri": 3, "concern": 3, "seem": [3, 5, 11], "lose": 3, "dynam": 3, "rang": [3, 5, 11], "daili": 3, "temperatur": [3, 11], "europ": 3, "deg": 3, "dealt": 3, "attenu": 3, "larg": [3, 6, 11], "sens": [3, 5, 11], "simpli": 3, "suspici": 3, "without": [3, 10], "perform": [3, 5, 10, 11], "awar": 3, "research": 3, "contigu": 3, "space": 3, "spatial": [3, 11], "rock": 3, "properti": [3, 11], "assumpt": [3, 8, 11], "One": 3, "big": 3, "pitfal": 3, "non": [3, 5, 10], "must": [3, 10, 11], "leakag": [3, 8], "thu": [3, 11], "over": [3, 11], "optimist": 3, "evaul": 3, "date": [3, 10], "patient": 3, "id": [3, 11], "borehol": 3, "implement": [3, 5, 11], "robust": [3, 11], "covari": [3, 11], "insensit": 3, "dimension": 3, "analog": [3, 11], "varianc": [3, 11], "certain": 3, "fall": 3, "centr": 3, "within": [3, 10, 11], "sd": [3, 11], "1000": [3, 11], "val": 3, "iso": [3, 11], "okai": 3, "keep": 3, "bin": [3, 11], "No": [3, 5, 11], "evalu": [3, 5], "turn": [3, 11], "treatment": 3, "crack": 3, "sign": 3, "violat": 3, "ident": [3, 8, 11], "current": [3, 5, 11], "visual": 3, "especi": 3, "ignor": [3, 11], "forget": 3, "appli": [3, 5, 10, 11], "domain": 3, "geograph": 3, "widget": 3, "select": 3, "unintend": 3, "classic": 3, "medic": 3, "diagnosi": 3, "encod": 3, "hand": [3, 11], "distract": 3, "improv": [3, 5, 6, 10], "desir": 3, "contribut": [4, 8, 10], "project": [4, 6, 7], "alphabet": 4, "matt": 4, "hall": 4, "agil": [4, 6], "scientif": 4, "canada": 4, "orcid": 4, "0000": 4, "0002": 4, "4054": 4, "8295": 4, "conda": [5, 7, 8, 9], "manag": [5, 10], "forg": [5, 8, 9], "warn": [5, 8, 11], "valueexcept": 5, "allow": [5, 11], "build": 5, "pipelin": [5, 8, 11], "break": 5, "is_ord": [5, 11], "markov": [5, 8], "chain": [5, 11], "analysi": 5, "chi": [5, 11], "squar": [5, 11], "transit": [5, 11], "matrix": [5, 11], "boolean": [5, 11], "perhap": 5, "below": [5, 8, 10, 11], "is_multimod": [5, 11], "present": [5, 11], "modal": 5, "partit": [5, 11], "insufficientdatadetector": [5, 11], "regressionmultimodaldetector": 5, "multimodaldetector": 5, "accessor": [5, 8, 11], "via": 5, "subject": [5, 10], "make": [5, 6, 7, 8, 10, 11], "text": [5, 10], "document": [5, 6, 7, 9, 10], "dummy_classification_scor": [5, 11], "dummy_regression_scor": [5, 11], "naiv": [5, 11], "mse": [5, 11], "roc": [5, 11], "auc": [5, 11], "addition": 5, "most_frequ": [5, 11], "emploi": 5, "suit": [5, 11], "appropri": [5, 10, 11], "move": 5, "update_p": [5, 11], "util": [5, 8], "is_imbalanc": [5, 11], "imbal": [5, 8], "up": [5, 11], "debat": 5, "has_low_distance_stdev": 5, "resembl": 5, "semant": 5, "success": 5, "1d": [5, 11], "write": [5, 6, 10], "own": [5, 8, 10], "take": [5, 11], "sequenc": [5, 11], "map": 5, "scikit": [5, 8, 11], "unimod": 5, "redefin": 5, "is_standard": [5, 11], "is_standard_norm": [5, 11], "kolmogorov": [5, 11], "smirnov": [5, 11], "reliabl": 5, "exactli": [5, 11], "roughli": 5, "slightli": 5, "exist": 5, "none": [5, 11], "eg": 5, "sinc": 5, "knn": [5, 11], "estim": [5, 11], "third": [5, 10, 11], "unstabl": 5, "caus": [5, 10], "erron": 5, "consecut": [5, 11], "tutori": [5, 6, 8], "doc": 5, "button": 5, "half": [5, 11], "high": [5, 11], "imbalancecompar": [5, 11], "throw": 5, "garden": 5, "special": [5, 10], "straight": 5, "fork": [5, 8], "claus": [5, 11], "bsd": [5, 11], "licens": [5, 8, 11], "using_redflag_with_sklearn": 5, "buggi": 5, "convers": [5, 10, 11], "discret": [5, 11], "ones": [5, 11], "test_redflag": 5, "file": [5, 7, 10], "wherea": 5, "doctest": [5, 7], "onc": 5, "pytest": [5, 7], "coverag": 5, "94": 5, "excess": [5, 11], "reorgan": 5, "modul": [5, 8], "namespac": 5, "doesn": 5, "affect": 5, "confus": 5, "either": [5, 7, 10, 11], "conveni": [5, 11], "oneclasssvm": 5, "ellipticenvelop": 5, "zscore_outli": 5, "kde_peak": [5, 11], "peak": [5, 11], "fit_kd": [5, 11], "get_kd": [5, 11], "find_large_peak": [5, 11], "bandwidth": [5, 11], "bw_silverman": [5, 11], "bw_scott": [5, 11], "overrid": 5, "fix": [5, 6], "bug": [5, 6], "using_redflag": 5, "has_monoton": [5, 11], "has_flat": [5, 11], "interpol": 5, "iter_group": [5, 11], "ecdf": [5, 11], "flatten": [5, 11], "stdev_to_proport": [5, 11], "proportion_to_stdev": [5, 11], "wrote": 5, "95": [5, 11], "has_few_sampl": [5, 11], "appear": [5, 10, 11], "z": [5, 11], "goe": 5, "ci": 5, "workflow": [5, 7, 8], "stabl": 5, "flail": 5, "auto": [5, 11], "thank": 6, "submit": [6, 10], "request": [6, 7], "propos": 6, "pull": [6, 7], "typo": 6, "fortun": 6, "profession": 6, "commun": [6, 10], "mutual": 6, "consider": 6, "scienxlab": 6, "protect": 6, "everyon": 6, "wish": 6, "identifi": [6, 11], "author": [6, 8, 10], "yourself": 6, "md": [6, 7], "agre": [6, 10], "shall": [6, 10], "govern": 6, "term": [6, 10], "unless": [6, 10], "specif": [6, 11], "agreement": [6, 10], "made": [6, 10, 11], "start": [7, 11], "dev": [7, 9], "back": [7, 11], "cov": 7, "docstr": 7, "further": 7, "folder": 7, "repo": 7, "pep": 7, "518": 7, "style": 7, "tar": 7, "gz": 7, "whl": 7, "command": [7, 9], "cd": 7, "sphinx": 7, "manual": 7, "stuff": 7, "makefil": 7, "script": 7, "updat": [7, 11], "publish": [7, 11], "action": 7, "push": 7, "upload": 7, "pypi": 7, "interfac": [7, 10, 11], "lightweight": 8, "safeti": 8, "net": 8, "ndarrai": [8, 11], "analys": 8, "threat": 8, "channel": [8, 9], "program": 8, "standalon": 8, "explor": 8, "basic": 8, "usag": 8, "metric": [8, 11], "pre": 8, "built": [8, 11], "submodul": 8, "content": [8, 10], "develop": [8, 9], "changelog": 8, "index": [8, 11], "search": [8, 11], "At": 9, "sourc": [9, 10], "config": 9, "channel_prior": 9, "strict": 9, "apach": 10, "januari": 10, "2004": 10, "www": 10, "AND": 10, "condit": [10, 11], "FOR": 10, "reproduct": 10, "defin": [10, 11], "section": 10, "through": 10, "licensor": 10, "copyright": 10, "owner": 10, "entiti": 10, "grant": 10, "legal": 10, "union": [10, 11], "act": 10, "under": [10, 11], "power": 10, "direct": [10, 11], "indirect": 10, "contract": 10, "ii": 10, "ownership": 10, "fifti": 10, "percent": 10, "outstand": 10, "share": 10, "iii": 10, "benefici": 10, "individu": 10, "exercis": 10, "permiss": 10, "form": 10, "prefer": 10, "modif": 10, "limit": 10, "softwar": 10, "configur": 10, "mechan": 10, "translat": 10, "compil": 10, "media": 10, "authorship": 10, "attach": 10, "appendix": 10, "deriv": [10, 11], "editori": 10, "revis": 10, "annot": 10, "elabor": 10, "repres": [10, 11], "whole": [10, 11], "origin": [10, 11], "remain": 10, "mere": 10, "link": 10, "bind": 10, "thereof": 10, "addit": [10, 11], "intention": 10, "inclus": 10, "behalf": 10, "electron": 10, "verbal": 10, "written": 10, "sent": 10, "mail": 10, "system": [10, 11], "track": 10, "discuss": 10, "exclud": 10, "conspicu": 10, "mark": [10, 11], "design": 10, "Not": [10, 11], "contributor": [10, 11], "whom": 10, "receiv": 10, "incorpor": 10, "herebi": 10, "perpetu": 10, "worldwid": 10, "exclus": 10, "charg": 10, "royalti": 10, "free": 10, "irrevoc": 10, "publicli": 10, "sublicens": 10, "patent": 10, "except": 10, "state": [10, 11], "offer": 10, "sell": 10, "transfer": 10, "claim": 10, "necessarili": 10, "infring": 10, "alon": 10, "institut": 10, "litig": 10, "against": [10, 11], "counterclaim": 10, "lawsuit": 10, "alleg": 10, "constitut": 10, "contributori": 10, "termin": 10, "redistribut": 10, "medium": 10, "meet": [10, 11], "recipi": 10, "modifi": 10, "promin": 10, "retain": 10, "trademark": 10, "pertain": 10, "readabl": 10, "place": 10, "wherev": 10, "parti": 10, "alongsid": 10, "addendum": 10, "constru": 10, "statement": 10, "compli": 10, "submiss": 10, "explicitli": 10, "notwithstand": 10, "abov": [10, 11], "noth": [10, 11], "herein": 10, "supersed": 10, "execut": 10, "trade": 10, "servic": 10, "customari": 10, "disclaim": 10, "warranti": 10, "applic": 10, "law": 10, "AS": 10, "basi": 10, "OR": 10, "OF": 10, "express": [10, 11], "impli": 10, "titl": 10, "merchant": 10, "sole": 10, "respons": 10, "determin": [10, 11], "risk": 10, "associ": 10, "liabil": 10, "event": [10, 11], "theori": 10, "tort": 10, "neglig": 10, "grossli": 10, "liabl": 10, "damag": 10, "incident": 10, "consequenti": 10, "charact": [10, 11], "aris": 10, "inabl": 10, "loss": 10, "goodwil": 10, "stoppag": 10, "failur": 10, "malfunct": 10, "commerci": 10, "advis": 10, "while": [10, 11], "fee": 10, "indemn": 10, "oblig": 10, "right": 10, "consist": 10, "indemnifi": 10, "defend": 10, "hold": 10, "harmless": 10, "incur": 10, "assert": 10, "end": [10, 11], "relat": 11, "understand": 11, "_supportsarrai": 11, "_nestedsequ": 11, "int": 11, "float": 11, "complex": 11, "str": 11, "byte": 11, "namedtupl": 11, "histogram": 11, "8771812708978117": 11, "5001419889107208": 11, "3286356643172673": 11, "3406453953773365": 11, "scott": 11, "6162678270732356": 11, "1e": 11, "silverman": 11, "bw": 11, "1981": 11, "investig": 11, "journal": 11, "royal": 11, "societi": 11, "vol": 11, "43": 11, "pp": 11, "97": 11, "581810759152688": 11, "cv_kde": 11, "n_bandwidth": 11, "cv": 11, "grid": 11, "optim": 11, "fold": 11, "5212113989811242": 11, "traceback": 11, "recent": 11, "last": 11, "valueerror": 11, "largest": 11, "amplitud": 11, "cut": 11, "off": 11, "smaller": 11, "x_peak": 11, "y_peak": 11, "15": 11, "kde": 11, "2124714013056916": 11, "014367259502733645": 11, "rule": 11, "thumb": 11, "354649738246933": 11, "162332012191087": 11, "per": 11, "concaten": 11, "67243035": 11, "88998226": 11, "22014721": 11, "19729456": 11, "ovr": 11, "reduc": 11, "callabl": 11, "ovo": 11, "full": 11, "axi": 11, "wasserstein_ovo": 11, "2d": 11, "latter": 11, "implicitli": 11, "reshap": 11, "97490053": 11, "1392715": 11, "11417203": 11, "69635752": 11, "22475": 11, "39754762": 11, "71161667": 11, "24495": 11, "wasserstein_multi": 11, "pairwis": 11, "squareform": 11, "match": 11, "k": 11, "55708601": 11, "39271504": 11, "83562902": 11, "wasserstein_ovr": 11, "rest": 11, "refer": 11, "jonathan": 11, "inaki": 11, "inza": 11, "jose": 11, "lozano": 11, "extent": 11, "recognit": 11, "letter": 11, "98": 11, "doi": 11, "1016": 11, "j": 11, "patrec": 11, "08": 11, "002": 11, "dict": 11, "counter": 11, "recommend": 11, "omit": 11, "encount": 11, "diverg": 11, "helling": 11, "string": 11, "euclidean": 11, "manhattan": 11, "kl": 11, "tv": 11, "actual": 11, "zeta": 11, "equat": 11, "length": 11, "discov": 11, "furthest_distribut": 11, "ir": 11, "furthest": 11, "reflect": 11, "minu": 11, "accord": 11, "eq": 11, "mathrm": 11, "frac": 11, "d_": 11, "delta": 11, "mathbf": 11, "iota": 11, "_m": 11, "l1": 11, "l2": 11, "variat": 11, "kullback": 11, "leibner": 11, "generate_data": 11, "288": 11, "round": 11, "76": 11, "629": 11, "333": 11, "511": 11, "81": 11, "61": 11, "73": 11, "65": 11, "major_minor": 11, "maj": 11, "logist": 11, "permut": 11, "lasso": 11, "cluster": 11, "highest": 11, "kept": 11, "55": 11, "85": 11, "99416839": 11, "00583161": 11, "x0": 11, "x1": 11, "x2": 11, "cutoff": 11, "01": 11, "24": 11, "int64": 11, "revers": 11, "chunk": 11, "agilescientif": 11, "striplog": 11, "markov_chain": 11, "observed_count": 11, "include_self": 11, "chi_squar": 11, "q": 11, "critic": 11, "bigger": 11, "second": 11, "reject": 11, "hypothesi": 11, "degrees_of_freedom": 11, "expected_freq": 11, "classmethod": 11, "from_sequ": 11, "strings_are_st": 11, "pars": 11, "specifi": 11, "upward": 11, "inner": 11, "token": 11, "sst": 11, "mud": 11, "lst": 11, "previou": 11, "dimens": 11, "generate_st": 11, "current_st": 11, "next": 11, "normalized_differ": 11, "observed_freq": 11, "hollow_matrix": 11, "hollow": 11, "diagon": 11, "arg": 11, "seq_of_seq": 11, "regular": 11, "plu": 11, "atleast_2d": 11, "137": 11, "contamin": 11, "approxim": 11, "lof": 11, "ee": 11, "mahanalobi": 11, "inlier": 11, "convent": 11, "four": 11, "33": 11, "multipli": 11, "rousseeuw": 11, "van": 11, "driessen": 11, "n_sampl": 11, "n_featur": 11, "6583124": 11, "1055416": 11, "5527708": 11, "01173463": 11, "67448975": 11, "33724488": 11, "mahalanobis_outli": 11, "stdev": 11, "outsid": 11, "70": 11, "89163847": 11, "million": 11, "datapoint": 11, "billion": 11, "seriesaccessor": 11, "pandas_obj": 11, "null_decor": 11, "decor": 11, "kwarg": 11, "baseestim": 11, "transformermixin": 11, "fit_param": 11, "n_output": 11, "x_new": 11, "n_features_new": 11, "sin": 11, "linspac": 11, "38077051": 11, "42977406": 11, "05260728": 11, "92571458": 11, "81188195": 11, "7482485": 11, "84147098": 11, "warn_if_zero": 11, "memori": 11, "expens": 11, "anyth": 11, "bother": 11, "min_class_diff": 11, "imbalance_": 11, "adjust": 11, "unusu": 11, "difficult": 11, "suffici": 11, "mutlivari": 11, "1_000": 11, "12573022": 11, "13210486": 11, "64042265": 11, "10490012": 11, "53566937": 11, "36159505": 11, "24972527": 11, "75063397": 11, "55581573": 11, "01881162": 11, "90942756": 11, "36922933": 11, "outliers_": 11, "beyond": 11, "covarianc": 11, "verbos": 11, "adapt": 11, "handl": 11, "prior": 11, "iter": 11, "fulfil": 11, "xt": 11, "n_transformed_featur": 11, "formatwarn": 11, "presenc": 11, "mappabl": 11, "correspond": 11, "safer": 11, "shorthand": 11, "constructor": 11, "permit": 11, "lowercas": 11, "automat": 11, "joblib": 11, "cach": 11, "path": 11, "directori": 11, "enabl": 11, "clone": 11, "named_step": 11, "advantag": 11, "consum": 11, "elaps": 11, "complet": 11, "baselin": 11, "dummyclassifi": 11, "dictionari": 11, "seed": 11, "3333333333333333": 11, "20000000000000004": 11, "35654761904761906": 11, "dummyregressor": 11, "tomorrow": 11, "rain": 11, "cloud": 11, "sun": 11, "is_binari": 11, "root": 11, "whichev": 11, "arr": 11, "randint": 11, "is_multiclass": 11, "is_multioutput": 11, "output": 11, "typeerror": 11, "top": 11, "middl": 11, "bottom": 11, "n_class": 11, "bool_to_index": 11, "cond": 11, "get_idx": 11, "_type": 11, "_array_lik": 11, "_nested_sequ": 11, "nonetyp": 11, "stepsiz": 11, "coeffici": 11, "decim": 11, "5163977794943222": 11, "instruct": 11, "param": 11, "human": 11, "friendli": 11, "migrat": 11, "add_proxi": 11, "asap": 11, "downsampl": 11, "cdf": 11, "switch": 11, "weight": 11, "mid": 11, "halfwai": 11, "formal": 11, "unbias": 11, "everi": 11, "foo": 11, "l": 11, "toler": 11, "flat": 11, "interv": 11, "monoton": 11, "idx": 11, "is_numer": 11, "atol": 11, "001": 11, "faster": 11, "isclos": 11, "\u03bc": 11, "\u03c3": 11, "allclos": 11, "absolut": 11, "yield": 11, "mask": 11, "ordered_uniqu": 11, "item": 11, "unord": 11, "fast": 11, "reli": 11, "job": 11, "slow": 11, "1000000000": 11, "invers": 11, "magnif": 11, "hyperellipsoid": 11, "sdhe": 11, "proport": 11, "2816": 11, "tabl": 11, "1371": 11, "pone": 11, "0118537": 11, "decent": 11, "precis": 11, "1e9": 11, "575829302496098": 11, "039137525465009": 11, "8000000000000003": 11, "split_and_standard": 11, "y_val": 11, "whose": 11, "68": 11, "27": 11, "39": 11, "signific": 11, "figur": 11, "beta": 11, "paper": 11, "poseidon": 11, "csd": 11, "auth": 11, "pdf": 11, "ververidis08a": 11, "exact": 11, "6826894921370859": 11, "6826894916531445": 11, "9973002039367398": 11, "9973002039633309": 11, "39346933952920327": 11, "9946544947734935": 11, "bayesian": 11, "rate": 11, "posterior": 11, "4999999999999998": 11, "zscore": 11, "54919334": 11, "161895": 11, "77459667": 11, "38729833": 11}, "objects": {"": [[11, 0, 0, "-", "redflag"]], "redflag": [[11, 0, 0, "-", "distributions"], [11, 0, 0, "-", "imbalance"], [11, 0, 0, "-", "importance"], [11, 0, 0, "-", "independence"], [11, 0, 0, "-", "markov"], [11, 0, 0, "-", "outliers"], [11, 0, 0, "-", "pandas"], [11, 0, 0, "-", "sklearn"], [11, 0, 0, "-", "target"], [11, 0, 0, "-", "utils"]], "redflag.distributions": [[11, 1, 1, "", "best_distribution"], [11, 1, 1, "", "bw_scott"], [11, 1, 1, "", "bw_silverman"], [11, 1, 1, "", "cv_kde"], [11, 1, 1, "", "find_large_peaks"], [11, 1, 1, "", "fit_kde"], [11, 1, 1, "", "get_kde"], [11, 1, 1, "", "is_multimodal"], [11, 1, 1, "", "kde_peaks"], [11, 1, 1, "", "wasserstein"], [11, 1, 1, "", "wasserstein_multi"], [11, 1, 1, "", "wasserstein_ovo"], [11, 1, 1, "", "wasserstein_ovr"]], "redflag.imbalance": [[11, 1, 1, "", "class_counts"], [11, 1, 1, "", "divergence"], [11, 1, 1, "", "empirical_distribution"], [11, 1, 1, "", "furthest_distribution"], [11, 1, 1, "", "imbalance_degree"], [11, 1, 1, "", "imbalance_ratio"], [11, 1, 1, "", "is_imbalanced"], [11, 1, 1, "", "major_minor"], [11, 1, 1, "", "minority_classes"]], "redflag.importance": [[11, 1, 1, "", "feature_importances"], [11, 1, 1, "", "least_important_features"], [11, 1, 1, "", "most_important_features"]], "redflag.independence": [[11, 1, 1, "", "is_correlated"]], "redflag.markov": [[11, 2, 1, "", "Markov_chain"], [11, 1, 1, "", "hollow_matrix"], [11, 1, 1, "", "observations"], [11, 1, 1, "", "regularize"]], "redflag.markov.Markov_chain": [[11, 3, 1, "", "chi_squared"], [11, 4, 1, "", "degrees_of_freedom"], [11, 4, 1, "", "expected_freqs"], [11, 3, 1, "", "from_sequence"], [11, 3, 1, "", "generate_states"], [11, 4, 1, "", "normalized_difference"], [11, 4, 1, "", "observed_freqs"]], "redflag.outliers": [[11, 1, 1, "", "expected_outliers"], [11, 1, 1, "", "get_outliers"], [11, 1, 1, "", "has_outliers"], [11, 1, 1, "", "mahalanobis"], [11, 1, 1, "", "mahalanobis_outliers"]], "redflag.pandas": [[11, 2, 1, "", "SeriesAccessor"], [11, 1, 1, "", "null_decorator"]], "redflag.pandas.SeriesAccessor": [[11, 3, 1, "", "dummy_scores"], [11, 3, 1, "", "imbalance_degree"], [11, 3, 1, "", "is_ordered"], [11, 3, 1, "", "minority_classes"], [11, 3, 1, "", "report"]], "redflag.sklearn": [[11, 2, 1, "", "BaseRedflagDetector"], [11, 2, 1, "", "ClipDetector"], [11, 2, 1, "", "CorrelationDetector"], [11, 2, 1, "", "Detector"], [11, 2, 1, "", "DistributionComparator"], [11, 2, 1, "", "DummyPredictor"], [11, 2, 1, "", "ImbalanceComparator"], [11, 2, 1, "", "ImbalanceDetector"], [11, 2, 1, "", "ImportanceDetector"], [11, 2, 1, "", "InsufficientDataDetector"], [11, 2, 1, "", "MultimodalityDetector"], [11, 2, 1, "", "MultivariateOutlierDetector"], [11, 2, 1, "", "OutlierDetector"], [11, 2, 1, "", "RfPipeline"], [11, 2, 1, "", "UnivariateOutlierDetector"], [11, 1, 1, "", "formatwarning"], [11, 1, 1, "", "make_detector_pipeline"], [11, 1, 1, "", "make_rf_pipeline"]], "redflag.sklearn.BaseRedflagDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.DistributionComparator": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.DummyPredictor": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImbalanceComparator": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImbalanceDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.ImportanceDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.InsufficientDataDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.MultimodalityDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "transform"]], "redflag.sklearn.MultivariateOutlierDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.OutlierDetector": [[11, 3, 1, "", "fit"], [11, 3, 1, "", "fit_transform"], [11, 3, 1, "", "transform"]], "redflag.sklearn.RfPipeline": [[11, 3, 1, "", "transform"]], "redflag.target": [[11, 1, 1, "", "dummy_classification_scores"], [11, 1, 1, "", "dummy_regression_scores"], [11, 1, 1, "", "dummy_scores"], [11, 1, 1, "", "is_binary"], [11, 1, 1, "", "is_continuous"], [11, 1, 1, "", "is_multiclass"], [11, 1, 1, "", "is_multioutput"], [11, 1, 1, "", "is_ordered"], [11, 1, 1, "", "n_classes"]], "redflag.utils": [[11, 1, 1, "", "bool_to_index"], [11, 1, 1, "", "clipped"], [11, 1, 1, "", "consecutive"], [11, 1, 1, "", "cv"], [11, 1, 1, "", "deprecated"], [11, 1, 1, "", "ecdf"], [11, 1, 1, "", "flatten"], [11, 1, 1, "", "generate_data"], [11, 1, 1, "", "get_idx"], [11, 1, 1, "", "has_few_samples"], [11, 1, 1, "", "has_flat"], [11, 1, 1, "", "has_monotonic"], [11, 1, 1, "", "has_nans"], [11, 1, 1, "", "index_to_bool"], [11, 1, 1, "", "is_clipped"], [11, 1, 1, "", "is_numeric"], [11, 1, 1, "", "is_standard_normal"], [11, 1, 1, "", "is_standardized"], [11, 1, 1, "", "iter_groups"], [11, 1, 1, "", "ordered_unique"], [11, 1, 1, "", "proportion_to_stdev"], [11, 1, 1, "", "split_and_standardize"], [11, 1, 1, "", "stdev_to_proportion"], [11, 1, 1, "", "update_p"], [11, 1, 1, "", "zscore"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"]}, "titleterms": {"basic": 0, "usag": 0, "load": [0, 1], "some": [0, 1], "data": [0, 1], "categor": 0, "continu": [0, 7], "imbal": [0, 1, 3, 11], "metric": [0, 1], "outlier": [0, 11], "clip": [0, 1], "distribut": [0, 11], "shape": 0, "ident": 0, "assumpt": [0, 1], "alreadi": 0, "split": 0, "out": 0, "group": 0, "arrai": 0, "independ": [0, 1, 11], "featur": 0, "import": [0, 1, 11], "tutori": 1, "A": 1, "simpl": 1, "ml": [1, 8], "workflow": 1, "quick": [1, 8], "look": 1, "redflag": [1, 2, 3, 8, 11], "pipelin": [1, 3], "make": [1, 3], "your": [1, 3], "own": [1, 3], "test": [1, 7], "us": [2, 3], "panda": [2, 11], "seri": 2, "accessor": 2, "datafram": 2, "sklearn": [3, 11], "The": 3, "detector": 3, "class": 3, "pre": 3, "built": 3, "transform": 3, "compar": 3, "smoke": 3, "what": 3, "do": 3, "about": 3, "warn": 3, "imbalancedetector": 3, "imbalancecompar": 3, "clipdetector": 3, "correlationdetector": 3, "outlierdetector": 3, "distributioncompar": 3, "importancedetector": 3, "author": 4, "changelog": 5, "0": 5, "4": 5, "28": 5, "septemb": 5, "2023": 5, "3": 5, "21": 5, "2": 5, "1": 5, "10": 5, "novemb": 5, "2022": 5, "9": 5, "25": 5, "august": 5, "8": 5, "juli": 5, "7": 5, "11": 5, "februari": 5, "31": 5, "januari": 5, "30": 5, "contribut": [6, 7], "code": 6, "conduct": 6, "authorship": 6, "licens": [6, 10], "develop": 7, "instal": [7, 9], "build": 7, "packag": [7, 11], "doc": 7, "integr": 7, "safer": 8, "design": 8, "start": 8, "user": 8, "guid": 8, "api": 8, "refer": 8, "other": 8, "resourc": 8, "indic": 8, "tabl": 8, "option": 9, "depend": 9, "submodul": 11, "modul": 11, "markov": 11, "target": 11, "util": 11, "content": 11}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 57}, "alltitles": {"\ud83d\udea9 Basic usage": [[0, "basic-usage"]], "Load some data": [[0, "load-some-data"], [1, "load-some-data"]], "Categorical or continuous?": [[0, "categorical-or-continuous"]], "Imbalance metrics": [[0, "imbalance-metrics"], [1, "imbalance-metrics"]], "Outliers": [[0, "outliers"]], "Clipping": [[0, "clipping"], [1, "clipping"]], "Distribution shape": [[0, "distribution-shape"]], "Identical distribution assumption": [[0, "identical-distribution-assumption"]], "Already split out group arrays": [[0, "already-split-out-group-arrays"]], "Independence assumption": [[0, "independence-assumption"], [1, "independence-assumption"]], "Feature importance": [[0, "feature-importance"]], "\ud83d\udea9 Tutorial": [[1, "tutorial"]], "A simple ML workflow": [[1, "a-simple-ml-workflow"]], "A quick look at redflag": [[1, "a-quick-look-at-redflag"]], "Importance": [[1, "importance"]], "Pipelines": [[1, "pipelines"]], "Making your own tests": [[1, "making-your-own-tests"]], "\ud83d\udea9 Using redflag with Pandas": [[2, "using-redflag-with-pandas"]], "Series accessor": [[2, "series-accessor"]], "DataFrame accessor": [[2, "dataframe-accessor"]], "\ud83d\udea9 Using redflag with sklearn": [[3, "using-redflag-with-sklearn"]], "The redflag detector classes": [[3, "the-redflag-detector-classes"]], "Using the pre-built redflag pipeline": [[3, "using-the-pre-built-redflag-pipeline"]], "Using the \u2018detector\u2019 transformers": [[3, "using-the-detector-transformers"]], "The imbalance comparator": [[3, "the-imbalance-comparator"]], "Making your own smoke detector": [[3, "making-your-own-smoke-detector"]], "What to do about the warnings": [[3, "what-to-do-about-the-warnings"]], "ImbalanceDetector and ImbalanceComparator": [[3, "imbalancedetector-and-imbalancecomparator"]], "ClipDetector": [[3, "clipdetector"]], "CorrelationDetector": [[3, "correlationdetector"]], "OutlierDetector": [[3, "outlierdetector"]], "DistributionComparator": [[3, "distributioncomparator"]], "ImportanceDetector": [[3, "importancedetector"]], "Authors": [[4, "authors"]], "Changelog": [[5, "changelog"]], "0.4.0, 28 September 2023": [[5, "september-2023"]], "0.3.0, 21 September 2023": [[5, "id1"]], "0.2.0, 4 September 2023": [[5, "id2"]], "0.1.10, 21 November 2022": [[5, "november-2022"]], "0.1.9, 25 August 2022": [[5, "august-2022"]], "0.1.8, 8 July 2022": [[5, "july-2022"]], "0.1.3 to 0.1.7, 9\u201311 February 2022": [[5, "to-0-1-7-911-february-2022"]], "0.1.2, 1 February 2022": [[5, "february-2022"]], "0.1.1, 31 January 2022": [[5, "january-2022"]], "0.1.0, 30 January 2022": [[5, "id3"]], "Contributing": [[6, "contributing"], [7, "contributing"]], "Code of conduct": [[6, "code-of-conduct"]], "Authorship": [[6, "authorship"]], "License": [[6, "license"], [10, "license"]], "Development": [[7, "development"]], "Installation": [[7, "installation"]], "Testing": [[7, "testing"]], "Building the package": [[7, "building-the-package"]], "Building the docs": [[7, "building-the-docs"]], "Continuous integration": [[7, "continuous-integration"]], "Redflag: safer ML by design": [[8, "redflag-safer-ml-by-design"]], "Quick start": [[8, "quick-start"]], "User guide": [[8, "user-guide"], [8, null]], "API reference": [[8, "api-reference"], [8, null]], "Other resources": [[8, "other-resources"], [8, null]], "Indices and tables": [[8, "indices-and-tables"]], "\ud83d\udea9 Installation": [[9, "installation"]], "Optional dependencies": [[9, "optional-dependencies"]], "redflag package": [[11, "redflag-package"]], "Submodules": [[11, "submodules"]], "redflag.distributions module": [[11, "module-redflag.distributions"]], "redflag.imbalance module": [[11, "module-redflag.imbalance"]], "redflag.importance module": [[11, "module-redflag.importance"]], "redflag.independence module": [[11, "module-redflag.independence"]], "redflag.markov module": [[11, "module-redflag.markov"]], "redflag.outliers module": [[11, "module-redflag.outliers"]], "redflag.pandas module": [[11, "module-redflag.pandas"]], "redflag.sklearn module": [[11, "module-redflag.sklearn"]], "redflag.target module": [[11, "module-redflag.target"]], "redflag.utils module": [[11, "module-redflag.utils"]], "Module contents": [[11, "module-redflag"]]}, "indexentries": {"baseredflagdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.BaseRedflagDetector"]], "clipdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ClipDetector"]], "correlationdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.CorrelationDetector"]], "detector (class in redflag.sklearn)": [[11, "redflag.sklearn.Detector"]], "distributioncomparator (class in redflag.sklearn)": [[11, "redflag.sklearn.DistributionComparator"]], "dummypredictor (class in redflag.sklearn)": [[11, "redflag.sklearn.DummyPredictor"]], "imbalancecomparator (class in redflag.sklearn)": [[11, "redflag.sklearn.ImbalanceComparator"]], "imbalancedetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ImbalanceDetector"]], "importancedetector (class in redflag.sklearn)": [[11, "redflag.sklearn.ImportanceDetector"]], "insufficientdatadetector (class in redflag.sklearn)": [[11, "redflag.sklearn.InsufficientDataDetector"]], "markov_chain (class in redflag.markov)": [[11, "redflag.markov.Markov_chain"]], "multimodalitydetector (class in redflag.sklearn)": [[11, "redflag.sklearn.MultimodalityDetector"]], "multivariateoutlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.MultivariateOutlierDetector"]], "outlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.OutlierDetector"]], "rfpipeline (class in redflag.sklearn)": [[11, "redflag.sklearn.RfPipeline"]], "seriesaccessor (class in redflag.pandas)": [[11, "redflag.pandas.SeriesAccessor"]], "univariateoutlierdetector (class in redflag.sklearn)": [[11, "redflag.sklearn.UnivariateOutlierDetector"]], "best_distribution() (in module redflag.distributions)": [[11, "redflag.distributions.best_distribution"]], "bool_to_index() (in module redflag.utils)": [[11, "redflag.utils.bool_to_index"]], "bw_scott() (in module redflag.distributions)": [[11, "redflag.distributions.bw_scott"]], "bw_silverman() (in module redflag.distributions)": [[11, "redflag.distributions.bw_silverman"]], "chi_squared() (redflag.markov.markov_chain method)": [[11, "redflag.markov.Markov_chain.chi_squared"]], "class_counts() (in module redflag.imbalance)": [[11, "redflag.imbalance.class_counts"]], "clipped() (in module redflag.utils)": [[11, "redflag.utils.clipped"]], "consecutive() (in module redflag.utils)": [[11, "redflag.utils.consecutive"]], "cv() (in module redflag.utils)": [[11, "redflag.utils.cv"]], "cv_kde() (in module redflag.distributions)": [[11, "redflag.distributions.cv_kde"]], "degrees_of_freedom (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.degrees_of_freedom"]], "deprecated() (in module redflag.utils)": [[11, "redflag.utils.deprecated"]], "divergence() (in module redflag.imbalance)": [[11, "redflag.imbalance.divergence"]], "dummy_classification_scores() (in module redflag.target)": [[11, "redflag.target.dummy_classification_scores"]], "dummy_regression_scores() (in module redflag.target)": [[11, "redflag.target.dummy_regression_scores"]], "dummy_scores() (in module redflag.target)": [[11, "redflag.target.dummy_scores"]], "dummy_scores() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.dummy_scores"]], "ecdf() (in module redflag.utils)": [[11, "redflag.utils.ecdf"]], "empirical_distribution() (in module redflag.imbalance)": [[11, "redflag.imbalance.empirical_distribution"]], "expected_freqs (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.expected_freqs"]], "expected_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.expected_outliers"]], "feature_importances() (in module redflag.importance)": [[11, "redflag.importance.feature_importances"]], "find_large_peaks() (in module redflag.distributions)": [[11, "redflag.distributions.find_large_peaks"]], "fit() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.fit"]], "fit() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.fit"]], "fit() (redflag.sklearn.dummypredictor method)": [[11, "redflag.sklearn.DummyPredictor.fit"]], "fit() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.fit"]], "fit() (redflag.sklearn.imbalancedetector method)": [[11, "redflag.sklearn.ImbalanceDetector.fit"]], "fit() (redflag.sklearn.importancedetector method)": [[11, "redflag.sklearn.ImportanceDetector.fit"]], "fit() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.fit"]], "fit() (redflag.sklearn.multimodalitydetector method)": [[11, "redflag.sklearn.MultimodalityDetector.fit"]], "fit() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.fit"]], "fit() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.fit"]], "fit_kde() (in module redflag.distributions)": [[11, "redflag.distributions.fit_kde"]], "fit_transform() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.fit_transform"]], "fit_transform() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.fit_transform"]], "fit_transform() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.fit_transform"]], "fit_transform() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.fit_transform"]], "fit_transform() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.fit_transform"]], "fit_transform() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.fit_transform"]], "flatten() (in module redflag.utils)": [[11, "redflag.utils.flatten"]], "formatwarning() (in module redflag.sklearn)": [[11, "redflag.sklearn.formatwarning"]], "from_sequence() (redflag.markov.markov_chain class method)": [[11, "redflag.markov.Markov_chain.from_sequence"]], "furthest_distribution() (in module redflag.imbalance)": [[11, "redflag.imbalance.furthest_distribution"]], "generate_data() (in module redflag.utils)": [[11, "redflag.utils.generate_data"]], "generate_states() (redflag.markov.markov_chain method)": [[11, "redflag.markov.Markov_chain.generate_states"]], "get_idx() (in module redflag.utils)": [[11, "redflag.utils.get_idx"]], "get_kde() (in module redflag.distributions)": [[11, "redflag.distributions.get_kde"]], "get_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.get_outliers"]], "has_few_samples() (in module redflag.utils)": [[11, "redflag.utils.has_few_samples"]], "has_flat() (in module redflag.utils)": [[11, "redflag.utils.has_flat"]], "has_monotonic() (in module redflag.utils)": [[11, "redflag.utils.has_monotonic"]], "has_nans() (in module redflag.utils)": [[11, "redflag.utils.has_nans"]], "has_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.has_outliers"]], "hollow_matrix() (in module redflag.markov)": [[11, "redflag.markov.hollow_matrix"]], "imbalance_degree() (in module redflag.imbalance)": [[11, "redflag.imbalance.imbalance_degree"]], "imbalance_degree() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.imbalance_degree"]], "imbalance_ratio() (in module redflag.imbalance)": [[11, "redflag.imbalance.imbalance_ratio"]], "index_to_bool() (in module redflag.utils)": [[11, "redflag.utils.index_to_bool"]], "is_binary() (in module redflag.target)": [[11, "redflag.target.is_binary"]], "is_clipped() (in module redflag.utils)": [[11, "redflag.utils.is_clipped"]], "is_continuous() (in module redflag.target)": [[11, "redflag.target.is_continuous"]], "is_correlated() (in module redflag.independence)": [[11, "redflag.independence.is_correlated"]], "is_imbalanced() (in module redflag.imbalance)": [[11, "redflag.imbalance.is_imbalanced"]], "is_multiclass() (in module redflag.target)": [[11, "redflag.target.is_multiclass"]], "is_multimodal() (in module redflag.distributions)": [[11, "redflag.distributions.is_multimodal"]], "is_multioutput() (in module redflag.target)": [[11, "redflag.target.is_multioutput"]], "is_numeric() (in module redflag.utils)": [[11, "redflag.utils.is_numeric"]], "is_ordered() (in module redflag.target)": [[11, "redflag.target.is_ordered"]], "is_ordered() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.is_ordered"]], "is_standard_normal() (in module redflag.utils)": [[11, "redflag.utils.is_standard_normal"]], "is_standardized() (in module redflag.utils)": [[11, "redflag.utils.is_standardized"]], "iter_groups() (in module redflag.utils)": [[11, "redflag.utils.iter_groups"]], "kde_peaks() (in module redflag.distributions)": [[11, "redflag.distributions.kde_peaks"]], "least_important_features() (in module redflag.importance)": [[11, "redflag.importance.least_important_features"]], "mahalanobis() (in module redflag.outliers)": [[11, "redflag.outliers.mahalanobis"]], "mahalanobis_outliers() (in module redflag.outliers)": [[11, "redflag.outliers.mahalanobis_outliers"]], "major_minor() (in module redflag.imbalance)": [[11, "redflag.imbalance.major_minor"]], "make_detector_pipeline() (in module redflag.sklearn)": [[11, "redflag.sklearn.make_detector_pipeline"]], "make_rf_pipeline() (in module redflag.sklearn)": [[11, "redflag.sklearn.make_rf_pipeline"]], "minority_classes() (in module redflag.imbalance)": [[11, "redflag.imbalance.minority_classes"]], "minority_classes() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.minority_classes"]], "module": [[11, "module-redflag"], [11, "module-redflag.distributions"], [11, "module-redflag.imbalance"], [11, "module-redflag.importance"], [11, "module-redflag.independence"], [11, "module-redflag.markov"], [11, "module-redflag.outliers"], [11, "module-redflag.pandas"], [11, "module-redflag.sklearn"], [11, "module-redflag.target"], [11, "module-redflag.utils"]], "most_important_features() (in module redflag.importance)": [[11, "redflag.importance.most_important_features"]], "n_classes() (in module redflag.target)": [[11, "redflag.target.n_classes"]], "normalized_difference (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.normalized_difference"]], "null_decorator() (in module redflag.pandas)": [[11, "redflag.pandas.null_decorator"]], "observations() (in module redflag.markov)": [[11, "redflag.markov.observations"]], "observed_freqs (redflag.markov.markov_chain property)": [[11, "redflag.markov.Markov_chain.observed_freqs"]], "ordered_unique() (in module redflag.utils)": [[11, "redflag.utils.ordered_unique"]], "proportion_to_stdev() (in module redflag.utils)": [[11, "redflag.utils.proportion_to_stdev"]], "redflag": [[11, "module-redflag"]], "redflag.distributions": [[11, "module-redflag.distributions"]], "redflag.imbalance": [[11, "module-redflag.imbalance"]], "redflag.importance": [[11, "module-redflag.importance"]], "redflag.independence": [[11, "module-redflag.independence"]], "redflag.markov": [[11, "module-redflag.markov"]], "redflag.outliers": [[11, "module-redflag.outliers"]], "redflag.pandas": [[11, "module-redflag.pandas"]], "redflag.sklearn": [[11, "module-redflag.sklearn"]], "redflag.target": [[11, "module-redflag.target"]], "redflag.utils": [[11, "module-redflag.utils"]], "regularize() (in module redflag.markov)": [[11, "redflag.markov.regularize"]], "report() (redflag.pandas.seriesaccessor method)": [[11, "redflag.pandas.SeriesAccessor.report"]], "split_and_standardize() (in module redflag.utils)": [[11, "redflag.utils.split_and_standardize"]], "stdev_to_proportion() (in module redflag.utils)": [[11, "redflag.utils.stdev_to_proportion"]], "transform() (redflag.sklearn.baseredflagdetector method)": [[11, "redflag.sklearn.BaseRedflagDetector.transform"]], "transform() (redflag.sklearn.distributioncomparator method)": [[11, "redflag.sklearn.DistributionComparator.transform"]], "transform() (redflag.sklearn.dummypredictor method)": [[11, "redflag.sklearn.DummyPredictor.transform"]], "transform() (redflag.sklearn.imbalancecomparator method)": [[11, "redflag.sklearn.ImbalanceComparator.transform"]], "transform() (redflag.sklearn.imbalancedetector method)": [[11, "redflag.sklearn.ImbalanceDetector.transform"]], "transform() (redflag.sklearn.importancedetector method)": [[11, "redflag.sklearn.ImportanceDetector.transform"]], "transform() (redflag.sklearn.insufficientdatadetector method)": [[11, "redflag.sklearn.InsufficientDataDetector.transform"]], "transform() (redflag.sklearn.multimodalitydetector method)": [[11, "redflag.sklearn.MultimodalityDetector.transform"]], "transform() (redflag.sklearn.multivariateoutlierdetector method)": [[11, "redflag.sklearn.MultivariateOutlierDetector.transform"]], "transform() (redflag.sklearn.outlierdetector method)": [[11, "redflag.sklearn.OutlierDetector.transform"]], "transform() (redflag.sklearn.rfpipeline method)": [[11, "redflag.sklearn.RfPipeline.transform"]], "update_p() (in module redflag.utils)": [[11, "redflag.utils.update_p"]], "wasserstein() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein"]], "wasserstein_multi() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_multi"]], "wasserstein_ovo() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_ovo"]], "wasserstein_ovr() (in module redflag.distributions)": [[11, "redflag.distributions.wasserstein_ovr"]], "zscore() (in module redflag.utils)": [[11, "redflag.utils.zscore"]]}})
\ No newline at end of file