diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md
index 2d94cf78f..59aa6313a 100644
--- a/.github/ISSUE_TEMPLATE/bug_report.md
+++ b/.github/ISSUE_TEMPLATE/bug_report.md
@@ -26,7 +26,7 @@ If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- Browser [e.g. chrome, safari]
- - Version [e.g. 22]
+ - MAPIE Version [e.g. 0.3.2]
**Additional context**
Add any other context about the problem here.
diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml
index dd8b1df2d..c36ccdeea 100644
--- a/.github/workflows/publish.yml
+++ b/.github/workflows/publish.yml
@@ -8,19 +8,19 @@ jobs:
deploy:
runs-on: ubuntu-latest
steps:
- - uses: actions/checkout@v2
- - name: Set up Python
- uses: actions/setup-python@v2
- with:
- python-version: '3.9'
- - name: Install build dependencies
- run: |
- python -m pip install --upgrade pip
- pip install setuptools wheel twine
- - name: Build package
- run: python setup.py sdist bdist_wheel
- - name: Publish package
- uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
- with:
- user: __token__
- password: ${{ secrets.PYPI_API_TOKEN_VBL }}
+ - uses: actions/checkout@v2
+ - name: Set up Python
+ uses: actions/setup-python@v2
+ with:
+ python-version: "3.10"
+ - name: Install build dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install setuptools wheel twine
+ - name: Build package
+ run: python setup.py sdist bdist_wheel
+ - name: Publish package
+ uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
+ with:
+ user: __token__
+ password: ${{ secrets.PYPI_API_TOKEN_VBL }}
diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml
index 48ff505f7..2060ce128 100644
--- a/.github/workflows/test.yml
+++ b/.github/workflows/test.yml
@@ -9,43 +9,40 @@ jobs:
matrix:
include:
- os: ubuntu-latest
- python-version: 3.7
- numpy-version: 1.18.5
+ python-version: "3.7"
+ numpy-version: 1.21.4
- os: ubuntu-latest
- python-version: 3.8
- numpy-version: 1.19.5
+ python-version: "3.8"
+ numpy-version: 1.21.4
- os: ubuntu-latest
- python-version: 3.9
- numpy-version: 1.20.3
- - os: windows-latest
- python-version: 3.7
- numpy-version: 1.18.5
- - os: windows-latest
- python-version: 3.8
- numpy-version: 1.19.5
+ python-version: "3.9"
+ numpy-version: 1.21.4
+ - os: ubuntu-latest
+ python-version: "3.10"
+ numpy-version: 1.22.3
- os: windows-latest
- python-version: 3.9
- numpy-version: 1.20.3
+ python-version: "3.10"
+ numpy-version: 1.22.3
defaults:
run:
shell: bash -l {0}
steps:
- - name: Git clone
- uses: actions/checkout@v2
- - name: Set up virtual environment
- uses: conda-incubator/setup-miniconda@v2
- with:
- python-version: ${{ matrix.python-version }}
- environment-file: environment.ci.yml
- channels: defaults, conda-forge
- - name: Install numpy
- run: conda install numpy=${{ matrix.numpy-version }}
- - name: Check linting
- run: make lint
- - name: Check static typing
- run: make type-check
- - name: Test with pytest
- run: make coverage
- - name: Code coverage
- run: codecov
+ - name: Git clone
+ uses: actions/checkout@v2
+ - name: Set up virtual environment
+ uses: conda-incubator/setup-miniconda@v2
+ with:
+ python-version: ${{ matrix.python-version }}
+ environment-file: environment.ci.yml
+ channels: defaults, conda-forge
+ - name: Install numpy
+ run: conda install numpy=${{ matrix.numpy-version }}
+ - name: Check linting
+ run: make lint
+ - name: Check static typing
+ run: make type-check
+ - name: Test with pytest
+ run: make coverage
+ - name: Code coverage
+ run: codecov
diff --git a/.gitignore b/.gitignore
index a5d50ab1c..cad52327c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -77,7 +77,6 @@ target/
.vscode
# Images
-*.png
*.jpeg
# ZIP files
diff --git a/HISTORY.rst b/HISTORY.rst
index 666fdf1e8..2060931fe 100644
--- a/HISTORY.rst
+++ b/HISTORY.rst
@@ -2,6 +2,10 @@
History
=======
+0.3.3 (2022-XX-XX)
+------------------
+* Relax and fix typing
+
0.3.2 (2022-03-11)
------------------
* Refactorize unit tests
diff --git a/Makefile b/Makefile
index c11985b34..3bdb1b9a1 100644
--- a/Makefile
+++ b/Makefile
@@ -1,9 +1,10 @@
.PHONY: tests doc build
+
lint:
flake8 . --exclude=doc
type-check:
- mypy mapie examples --strict --allow-untyped-calls
+ mypy mapie examples
tests:
pytest -vs --doctest-modules mapie
diff --git a/README.rst b/README.rst
index cb21db27f..cf001afbe 100644
--- a/README.rst
+++ b/README.rst
@@ -54,7 +54,7 @@ Python 3.7+
**MAPIE** stands on the shoulders of giants.
-Its only internal dependency is `scikit-learn `_.
+Its only internal dependencies are `scikit-learn `_ and `numpy=>1.21 `_.
🛠 Installation
diff --git a/doc/Cifar10.rst b/doc/Cifar10.rst
new file mode 100644
index 000000000..ab36dfb8b
--- /dev/null
+++ b/doc/Cifar10.rst
@@ -0,0 +1,1115 @@
+Estimating prediction sets on the Cifar10 dataset
+=================================================
+
+The goal of this notebook is to present how to use
+:class:`mapie.classification.MapieClassifier` on an object
+classification task. We will build prediction sets for images and study
+the marginal and conditional coverages.
+
+What is done in this tutorial ?
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ - **Cifar10 dataset** : 10 classes (horse, dog, cat, frog, deer,
+ bird, airplane, truck, ship, automobile)
+
+..
+
+ - Use :class:`mapie.classification.MapieClassifier` to compare the
+ prediction sets estimated by several conformal methods on the
+ Cifar10 dataset.
+
+ - Train a small CNN to predict the image class
+
+..
+
+ - Create a custom class ``TensorflowToMapie`` to resolve adherence
+ problems between Tensorflow and Mapie
+
+Tutorial preparation
+--------------------
+
+.. code-block:: python
+
+ import random
+ from typing import Dict, List, Tuple, Union
+
+ import cv2
+ import matplotlib.pyplot as plt
+ import numpy as np
+ import pandas as pd
+ import tensorflow as tf
+ import tensorflow.keras as tfk
+ from tensorflow.keras.callbacks import EarlyStopping
+ from tensorflow.keras import Sequential
+ from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
+ from tensorflow.keras.losses import CategoricalCrossentropy
+ from tensorflow.keras.optimizers import Adam
+ import tensorflow_datasets as tfds
+ from sklearn.metrics import accuracy_score
+ from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay
+ from sklearn.model_selection import train_test_split
+ from sklearn.preprocessing import label_binarize
+
+ from mapie.metrics import classification_coverage_score
+ from mapie.classification import MapieClassifier
+
+ %load_ext autoreload
+ %autoreload 2
+ %matplotlib inline
+ %load_ext pycodestyle_magic
+
+.. code-block:: python
+
+ SPACE_BETWEEN_LABELS = 2.5
+ SPACE_IN_SUBPLOTS = 4.0
+ FONT_SIZE = 18
+
+
+1. Data loading
+---------------
+
+The Cifar10 dataset is downloaded from the `Tensorflow Datasets`
+library. The training set is then splitted into a training, validation
+and a calibration set which will be used as follow:
+
+ - **Training set**: used to train our neural network.
+ - **Validation set**: used to check that our model is not
+ overfitting.
+ - **Calibration set**: used to calibrate the conformal scores in
+ :class:`mapie.classification.MapieClassifier`
+
+.. code-block:: python
+
+ def train_valid_calib_split(
+ X: np.ndarray,
+ y: np.ndarray,
+ calib_size: float = .1,
+ val_size: float = .33,
+ random_state: int = 42
+
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
+ """
+ Create calib and valid datasets from the train dataset.
+
+ Parameters
+ ----------
+ X: np.ndarray of shape (n_samples, width, height, n_channels)
+ Images of the dataset.
+
+ y: np.ndarray of shape (n_samples, 1):
+ Label of each image.
+
+ calib_size: float
+ Percentage of the dataset X to use as calibration set.
+
+ val_size: float
+ Percentage of the dataset X (minus the calibration set)
+ to use as validation set.
+
+ random_state: int
+ Random state to use to split the dataset.
+
+ By default 42.
+
+ Returns
+ -------
+ Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]
+ of shapes:
+ (n_samples * (1 - calib_size) * (1 - val_size), width, height, n_channels),
+ (n_samples * calib_size, width, height, n_channels),
+ (n_samples * (1 - calib_size) * val_size, width, height, n_channels),
+ (n_samples * (1 - calib_size) * (1 - val_size), 1),
+ (n_samples * calib_size, 1),
+ (n_samples * (1 - calib_size) * val_size, 1).
+
+ """
+ X_train, X_calib, y_train, y_calib = train_test_split(
+ X, y,
+ test_size=calib_size,
+ random_state=random_state
+ )
+ X_train, X_val, y_train, y_val = train_test_split(
+ X_train, y_train,
+ test_size=val_size,
+ random_state=random_state
+ )
+ return X_train, X_calib, X_val, y_train, y_calib, y_val
+
+
+.. code-block:: python
+
+ def load_data() -> Tuple[
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ List
+ ]:
+ """
+ Load cifar10 Dataset and return train, valid, calib, test datasets
+ and the names of the labels
+
+
+ Returns
+ -------
+ Tuple[
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ Tuple[np.ndarray, np.ndarray, np.ndarray],
+ List
+ ]
+ """
+ dataset, info = tfds.load(
+ "cifar10",
+ batch_size=-1,
+ as_supervised=True,
+ with_info=True
+ )
+ label_names = info.features['label'].names
+
+ dataset = tfds.as_numpy(dataset)
+ X_train, y_train = dataset['train']
+ X_test, y_test = dataset['test']
+ X_train, X_calib, X_val, y_train, y_calib, y_val = train_valid_calib_split(
+ X_train,
+ y_train
+ )
+
+ X_train = X_train/255.
+ X_val = X_val/255.
+
+ X_calib = X_calib/255.
+ X_test = X_test/255.
+
+ y_train_cat = tf.keras.utils.to_categorical(y_train)
+ y_val_cat = tf.keras.utils.to_categorical(y_val)
+ y_calib_cat = tf.keras.utils.to_categorical(y_calib)
+ y_test_cat = tf.keras.utils.to_categorical(y_test)
+
+ train_set = (X_train, y_train, y_train_cat)
+ val_set = (X_val, y_val, y_val_cat)
+ calib_set = (X_calib, y_calib, y_calib_cat)
+ test_set = (X_test, y_test, y_test_cat)
+
+ return train_set, val_set, calib_set, test_set, label_names
+
+
+.. code-block:: python
+
+ def inspect_images(
+ X: np.ndarray,
+ y: np.ndarray,
+ num_images: int,
+ label_names: List
+ ) -> None:
+ """
+ Load a sample of the images to check that images
+ are well loaded.
+
+ Parameters
+ ----------
+ X: np.ndarray of shape (n_samples, width, height, n_channels)
+ Set of images from which the sample will be taken.
+
+ y: np.ndarray of shape (n_samples, 1)
+ Labels of the iamges of X.
+
+ num_images: int
+ Number of images to plot.
+
+ label_names: List
+ Names of the different labels
+
+ """
+
+ _, ax = plt.subplots(
+ nrows=1,
+ ncols=num_images,
+ figsize=(2*num_images, 2)
+ )
+
+ indices = random.sample(range(len(X)), num_images)
+
+ for i, indice in enumerate(indices):
+ ax[i].imshow(X[indice])
+ ax[i].set_title(label_names[y[indice]])
+ ax[i].axis("off")
+ plt.show()
+
+
+.. code-block:: python
+
+ train_set, val_set, calib_set, test_set, label_names = load_data()
+ (X_train, y_train, y_train_cat) = train_set
+ (X_val, y_val, y_val_cat) = val_set
+ (X_calib, y_calib, y_calib_cat) = calib_set
+ (X_test, y_test, y_test_cat) = test_set
+ inspect_images(X=X_train, y=y_train, num_images=8, label_names=label_names)
+
+
+.. parsed-literal::
+
+ Instructions for updating:
+ Use `tf.data.Dataset.get_single_element()`.
+
+
+.. parsed-literal::
+
+ Instructions for updating:
+ Use `tf.data.Dataset.get_single_element()`.
+ 2022-03-25 10:55:08.789680: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
+ 2022-03-25 10:55:08.792682: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
+
+
+
+.. image:: Cifar10_files/Cifar10_10_2.png
+
+
+2. Definition and training of the the neural network
+----------------------------------------------------
+
+We define a simple convolutional neural network with the following
+architecture :
+
+ - 2 blocks of Convolution/Maxpooling
+ - Flatten the images
+ - 3 Dense layers
+ - The output layer with 10 neurons, corresponding to our 10 classes
+
+This simple architecture, based on the VGG16 architecture with its
+succession of convolutions and maxpooling aims at achieve a reasonable
+accuracy score and a fast training. The objective here is not to obtain
+a perfect classifier.
+
+.. code-block:: python
+
+ def get_model(
+ input_shape: Tuple, loss: tfk.losses,
+ optimizer: tfk.optimizers, metrics: List[str]
+ ) -> Sequential:
+ """
+ Compile CNN model.
+
+ Parameters
+ ----------
+ input_shape: Tuple
+ Size of th input images.
+
+ loss: tfk.losses
+ Loss to use to train the model.
+
+ optimizer: tfk.optimizer
+ Optimizer to use to train the model.
+
+ metrics: List[str]
+ Metrics to use evaluate model training.
+
+ Returns
+ -------
+ Sequential
+ """
+ model = Sequential([
+ Conv2D(input_shape=input_shape, filters=16, kernel_size=(3, 3), activation='relu', padding='same'),
+ MaxPooling2D(pool_size=(2, 2)),
+ Conv2D(input_shape=input_shape, filters=32, kernel_size=(3, 3), activation='relu', padding='same'),
+ MaxPooling2D(pool_size=(2, 2)),
+ Conv2D(input_shape=input_shape, filters=64, kernel_size=(3, 3), activation='relu', padding='same'),
+ MaxPooling2D(pool_size=(2, 2)),
+ Flatten(),
+ Dense(128, activation='relu'),
+ Dense(64, activation='relu'),
+ Dense(32, activation='relu'),
+ Dense(10, activation='softmax'),
+ ])
+ model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
+ return model
+
+3. Training the algorithm with a custom class called ``TensorflowToMapie``
+--------------------------------------------------------------------------
+
+As MAPIE asked that the model has a `fit`, `predict_proba`,
+`predict` class attributes and that the information about if whether
+or not the model is fitted.
+
+.. code-block:: python
+
+ class TensorflowToMapie():
+ """
+ Class that aimes to make compatible a tensorflow model
+ with MAPIE. To do so, this class create fit, predict,
+ predict_proba and _sklearn_is_fitted_ attributes to the model.
+
+ """
+
+ def __init__(self) -> None:
+ self.pred_proba = None
+ self.trained_ = False
+
+
+ def fit(
+ self, model: Sequential,
+ X_train: np.ndarray, y_train: np.ndarray,
+ X_val: np.ndarray, y_val: np.ndarray
+ ) -> None:
+ """
+ Train the keras model.
+
+ Parameters
+ ----------
+ model: Sequential
+ Model to train.
+
+ X_train: np.ndarray of shape (n_sample_train, width, height, n_channels)
+ Training images.
+
+ y_train: np.ndarray of shape (n_samples_train, n_labels)
+ Training labels.
+
+ X_val: np.ndarray of shape (n_sample_val, width, height, n_channels)
+ Validation images.
+
+ y_val: np.ndarray of shape (n_samples_val, n_labels)
+ Validation labels.
+
+ """
+
+ early_stopping_monitor = EarlyStopping(
+ monitor='val_loss',
+ min_delta=0,
+ patience=10,
+ verbose=0,
+ mode='auto',
+ baseline=None,
+ restore_best_weights=True
+ )
+ model.fit(
+ X_train, y_train,
+ batch_size=64,
+ validation_data=(X_val, y_val),
+ epochs=20, callbacks=[early_stopping_monitor]
+ )
+
+ self.model = model
+ self.trained_ = True
+ self.classes_ = np.arange(model.layers[-1].units)
+
+ def predict_proba(self, X: np.ndarray) -> np.ndarray:
+ """
+ Returns the predicted probabilities of the images in X.
+
+ Paramters:
+ X: np.ndarray of shape (n_sample, width, height, n_channels)
+ Images to predict.
+
+ Returns:
+ np.ndarray of shape (n_samples, n_labels)
+ """
+ preds = self.model.predict(X)
+
+ return preds
+
+ def predict(self, X: np.ndarray) -> np.ndarray:
+ """
+ Give the label with the maximum softmax for each image.
+
+ Parameters
+ ---------
+ X: np.ndarray of shape (n_sample, width, height, n_channels)
+ Images to predict
+
+ Returns:
+ --------
+ np.ndarray of shape (n_samples, 1)
+ """
+ pred_proba = self.predict_proba(X)
+ pred = (pred_proba == pred_proba.max(axis=1)[:, None]).astype(int)
+ return pred
+
+ def __sklearn_is_fitted__(self):
+ if self.trained_:
+ return True
+ else:
+ return False
+
+.. code-block:: python
+
+ model = get_model(
+ input_shape=(32, 32, 3),
+ loss=CategoricalCrossentropy(),
+ optimizer=Adam(),
+ metrics=['accuracy']
+ )
+
+.. code-block:: python
+
+ cirfar10_model = TensorflowToMapie()
+ cirfar10_model.fit(model, X_train, y_train_cat, X_val, y_val_cat)
+
+
+.. parsed-literal::
+
+ Epoch 1/20
+ 472/472 [==============================] - 8s 16ms/step - loss: 1.7729 - accuracy: 0.3378 - val_loss: 1.4636 - val_accuracy: 0.4679
+ Epoch 2/20
+ 472/472 [==============================] - 8s 18ms/step - loss: 1.3754 - accuracy: 0.4993 - val_loss: 1.3896 - val_accuracy: 0.4878
+ Epoch 3/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 1.2145 - accuracy: 0.5613 - val_loss: 1.1549 - val_accuracy: 0.5871
+ Epoch 4/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 1.0864 - accuracy: 0.6109 - val_loss: 1.1769 - val_accuracy: 0.5817
+ Epoch 5/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 0.9877 - accuracy: 0.6503 - val_loss: 0.9957 - val_accuracy: 0.6426
+ Epoch 6/20
+ 472/472 [==============================] - 8s 17ms/step - loss: 0.9053 - accuracy: 0.6803 - val_loss: 1.0178 - val_accuracy: 0.6351
+ Epoch 7/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 0.8449 - accuracy: 0.7018 - val_loss: 0.9952 - val_accuracy: 0.6492
+ Epoch 8/20
+ 472/472 [==============================] - 8s 18ms/step - loss: 0.7862 - accuracy: 0.7238 - val_loss: 0.9597 - val_accuracy: 0.6688
+ Epoch 9/20
+ 472/472 [==============================] - 7s 16ms/step - loss: 0.7236 - accuracy: 0.7455 - val_loss: 0.9579 - val_accuracy: 0.6735
+ Epoch 10/20
+ 472/472 [==============================] - 7s 16ms/step - loss: 0.6804 - accuracy: 0.7584 - val_loss: 0.9675 - val_accuracy: 0.6723
+ Epoch 11/20
+ 472/472 [==============================] - 7s 16ms/step - loss: 0.6252 - accuracy: 0.7785 - val_loss: 0.8971 - val_accuracy: 0.6953
+ Epoch 12/20
+ 472/472 [==============================] - 8s 16ms/step - loss: 0.5915 - accuracy: 0.7908 - val_loss: 0.9165 - val_accuracy: 0.6943
+ Epoch 13/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 0.5583 - accuracy: 0.8027 - val_loss: 0.9639 - val_accuracy: 0.6860
+ Epoch 14/20
+ 472/472 [==============================] - 7s 15ms/step - loss: 0.5011 - accuracy: 0.8232 - val_loss: 1.0147 - val_accuracy: 0.6776
+ Epoch 15/20
+ 472/472 [==============================] - 8s 16ms/step - loss: 0.4598 - accuracy: 0.8374 - val_loss: 1.0047 - val_accuracy: 0.6806
+ Epoch 16/20
+ 472/472 [==============================] - 9s 18ms/step - loss: 0.4375 - accuracy: 0.8456 - val_loss: 1.0378 - val_accuracy: 0.6873
+ Epoch 17/20
+ 472/472 [==============================] - 9s 19ms/step - loss: 0.3866 - accuracy: 0.8630 - val_loss: 1.1904 - val_accuracy: 0.6570
+ Epoch 18/20
+ 472/472 [==============================] - 9s 20ms/step - loss: 0.3645 - accuracy: 0.8717 - val_loss: 1.1796 - val_accuracy: 0.6805
+ Epoch 19/20
+ 472/472 [==============================] - 8s 17ms/step - loss: 0.3387 - accuracy: 0.8823 - val_loss: 1.2754 - val_accuracy: 0.6659
+ Epoch 20/20
+ 472/472 [==============================] - 8s 16ms/step - loss: 0.2919 - accuracy: 0.8975 - val_loss: 1.2481 - val_accuracy: 0.6815
+
+
+.. code-block:: python
+
+ y_true = label_binarize(y=y_test, classes=np.arange(max(y_test)+1))
+ y_pred_proba = cirfar10_model.predict_proba(X_test)
+ y_pred = cirfar10_model.predict(X_test)
+
+
+4. Prediction of the prediction sets
+------------------------------------
+
+We will now estimate the prediction sets with the five conformal methods
+implemented in :class:`mapie.classification.MapieClassifier` for a
+range of confidence levels between 0 and 1.
+
+.. code-block:: python
+
+ method_params = {
+ "naive": ("naive", False),
+ "score": ("score", False),
+ "cumulated_score": ("cumulated_score", True),
+ "random_cumulated_score": ("cumulated_score", "randomized"),
+ "top_k": ("top_k", False)
+ }
+
+
+.. code-block:: python
+
+ y_preds, y_pss = {}, {}
+ alphas = np.arange(0.01, 1, 0.01)
+
+ for name, (method, include_last_label) in method_params.items():
+ mapie = MapieClassifier(estimator=cirfar10_model, method=method, cv="prefit", random_state=42)
+ mapie.fit(X_calib, y_calib, image_input=True)
+ y_preds[name], y_pss[name] = mapie.predict(X_test, alpha=alphas, include_last_label=include_last_label)
+
+Let’s now estimate the number of null prediction sets, marginal
+coverages, and averaged prediction set sizes obtained with the different
+methods for all confidence levels and for a confidence level of 90 %.
+
+.. code-block:: python
+
+ def count_null_set(y: np.ndarray) -> int:
+ """
+ Count the number of empty prediction sets.
+
+ Parameters
+ ----------
+ y: np.ndarray of shape (n_sample, )
+
+ Returns
+ -------
+ int
+ """
+ count = 0
+ for pred in y[:, :]:
+ if np.sum(pred) == 0:
+ count += 1
+ return count
+
+
+.. code-block:: python
+
+ nulls, coverages, accuracies, sizes = {}, {}, {}, {}
+ for name, (method, include_last_label) in method_params.items():
+ accuracies[name] = accuracy_score(y_true, y_preds[name])
+ nulls[name] = [
+ count_null_set(y_pss[name][:, :, i]) for i, _ in enumerate(alphas)
+ ]
+ coverages[name] = [
+ classification_coverage_score(
+ y_test, y_pss[name][:, :, i]
+ ) for i, _ in enumerate(alphas)
+ ]
+ sizes[name] = [
+ y_pss[name][:, :, i].sum(axis=1).mean() for i, _ in enumerate(alphas)
+ ]
+
+
+.. code-block:: python
+
+ coverage_90 = {method: coverage[9] for method, coverage in coverages.items()}
+ null_90 = {method: null[9] for method, null in nulls.items()}
+ width_90 = {method: width[9] for method, width in sizes.items()}
+ y_ps_90 = {method: y_ps[:, :, 9] for method, y_ps in y_pss.items()}
+
+Let’s now look at the marginal coverages, number of null prediction
+sets, and the averaged size of prediction sets for a confidence level of
+90 %.
+
+.. code-block:: python
+
+ summary_df = pd.concat(
+ [
+ pd.Series(coverage_90),
+ pd.Series(null_90),
+ pd.Series(width_90)
+ ],
+ axis=1,
+ keys=["Coverages", "Number of null sets", "Average prediction set sizes"]
+ ).round(3)
+
+.. code-block:: python
+
+ summary_df
+
+
+
+
+.. raw:: html
+
+
+
+
+
+
+ |
+ Coverages |
+ Number of null sets |
+ Average prediction set sizes |
+
+
+
+
+ naive |
+ 0.732 |
+ 0 |
+ 1.258 |
+
+
+ score |
+ 0.912 |
+ 0 |
+ 2.356 |
+
+
+ cumulated_score |
+ 0.928 |
+ 0 |
+ 2.701 |
+
+
+ random_cumulated_score |
+ 0.908 |
+ 21 |
+ 2.463 |
+
+
+ top_k |
+ 0.910 |
+ 0 |
+ 3.000 |
+
+
+
+
+
+
+
+As expected, the “naive” method, which directly uses the alpha value as
+a threshold for selecting the prediction sets, does not give guarantees
+on the marginal coverage since this method is not calibrated. Other
+methods give a marginal coverage close to the desired one, i.e. 90%.
+Notice that the “cumulated_score” method, which always includes the last
+label whose cumulated score is above the given quantile, tends to give
+slightly higher marginal coverages since the prediction sets are
+slightly too big.
+
+6. Visualization of the prediction sets
+---------------------------------------
+
+.. code-block:: python
+
+ def prepare_plot(y_methods: Dict[str, Tuple], n_images: int) -> np.ndarray:
+ """
+ Prepare the number and the disposition of the plots according to
+ the number of images.
+
+ Paramters:
+ y_methods: Dict[str, Tuple]
+ Methods we want to compare.
+
+ n_images: int
+ Number of images to plot.
+
+ Returns
+ -------
+ np.ndarray
+ """
+ plt.rcParams.update({'font.size': FONT_SIZE})
+ nrow = len(y_methods.keys())
+ ncol = n_images
+ s = 5
+ f, ax = plt.subplots(ncol, nrow, figsize=(s*nrow, s*ncol))
+ f.tight_layout(pad=SPACE_IN_SUBPLOTS)
+ rows = [i for i in y_methods.keys()]
+
+ for x, row in zip(ax[:,0], rows):
+ x.set_ylabel(row, rotation=90, size='large')
+
+ return ax
+
+
+.. code-block:: python
+
+ def get_position(y_set: List, label: str, count: int, count_true: int) -> float:
+ """
+ Return the position of each label according to the number of labels to plot.
+
+ Paramters
+ ---------
+ y_set: List
+ Set of predicted labels for one image.
+
+ label: str
+ Indice of the true label.
+
+ count: int
+ Index of the label.
+
+ count_true: int
+ Total number of labels in the prediction set.
+
+ Returns
+ -------
+ float
+ """
+ if y_set[label] :
+ position = - (count_true - count)*SPACE_BETWEEN_LABELS
+
+ else:
+ position = - (count_true + 2 - count)*SPACE_BETWEEN_LABELS
+
+ return position
+
+
+ def add_text(
+ ax: np.ndarray, indices: Tuple, position: float,
+ label_name: str, proba: float, color: str, missing: bool = False
+ ) -> None:
+ """
+ Add the text to the corresponding image.
+
+ Parameters
+ ----------
+ ax: np.ndarray
+ Matrix of the images to plot.
+
+ indices: Tuple
+ Tuple indicating the indices of the image to put
+ the text on.
+
+ position: float
+ Position of the text on the image.
+
+ label_name: str
+ Name of the label to plot.
+
+ proba: float
+ Proba associated to this label.
+
+ color: str
+ Color of the text.
+
+ missing: bool
+ Whether or not the true label is missing in the
+ prediction set.
+
+ By default False.
+
+ """
+ if not missing :
+ text = f"{label_name} : {proba:.4f}"
+ else:
+ text = f"True label : {label_name} ({proba:.4f})"
+ i, j = indices
+ ax[i, j].text(
+ 15,
+ position,
+ text,
+ ha="center", va="top",
+ color=color,
+ font="courier new"
+ )
+
+
+
+.. code-block:: python
+
+ def plot_prediction_sets(
+ X: np.ndarray, y: np.ndarray,
+ y_pred_proba: np.ndarray,
+ y_methods: Dict[str, np.ndarray],
+ n_images: int, label_names: Dict,
+ random_state: Union[int, None] = None
+ ) -> None:
+ """
+ Plot random images with their associated prediction
+ set for all the required methods.
+
+ Parameters
+ ----------
+ X: np.ndarray of shape (n_sample, width, height, n_channels)
+ Array containing images.
+
+ y: np.ndarray of shape (n_samples, )
+ Labels of the images.
+
+ y_pred_proba: np.ndarray of shape (n_samples, n_labels)
+ Softmax output of the model.
+
+ y_methods: Dict[str, np.ndarray]
+ Outputs of the MapieClassifier with the different
+ choosen methods.
+
+ n_images: int
+ Number of images to plot
+
+ random_state: Union[int, None]
+ Random state to use to choose the images.
+
+ By default None.
+ """
+ random.seed(random_state)
+ indices = random.sample(range(len(X)), n_images)
+
+ y_true = y[indices]
+ y_pred_proba = y_pred_proba[indices]
+ ax = prepare_plot(y_methods, n_images)
+
+ for i, method in enumerate(y_methods):
+ y_sets = y_methods[method][indices]
+
+ for j in range(n_images):
+ y_set = y_sets[j]
+ img, label= X[indices[j]], y_true[j]
+
+ ax[i, j].imshow(img)
+
+ count_true = np.sum(y_set)
+ index_sorted_proba = np.argsort(-y_pred_proba[j])
+
+ for count in range(count_true):
+ index_pred = index_sorted_proba[count]
+ proba = y_pred_proba[j][index_pred]
+ label_name = label_names[index_pred]
+ color = 'green' if index_pred == y_true[j] else 'red'
+ position = get_position(y_set, label, count, count_true)
+
+ add_text(ax, (i, j), position, label_name, proba, color)
+
+ if not y_set[label] :
+ label_name = label_names[label]
+ proba = y_pred_proba[j][label]
+ add_text(ax, (i, j), -3, label_name, proba, color= 'orange', missing=True)
+
+
+.. code-block:: python
+
+ plot_prediction_sets(X_test, y_test, y_pred_proba, y_ps_90, 5, label_names)
+
+
+
+.. image:: Cifar10_files/Cifar10_35_0.png
+
+
+5. Calibration of the methods
+-----------------------------
+
+In this section, we plot the number of null sets, the marginal
+coverages, and the prediction set sizes as function of the target
+coverage level for all conformal methods.
+
+.. code-block:: python
+
+ vars_y = [nulls, coverages, sizes]
+ labels_y = ["Empty prediction sets", "Marginal coverage", "Set sizes"]
+ fig, axs = plt.subplots(1, len(vars_y), figsize=(8*len(vars_y), 8))
+ for i, var in enumerate(vars_y):
+ for name, (method, include_last_label) in method_params.items():
+ axs[i].plot(1 - alphas, var[name], label=name)
+ if i == 1:
+ axs[i].plot([0, 1], [0, 1], ls="--", color="k")
+ axs[i].set_xlabel("Couverture cible : 1 - alpha")
+ axs[i].set_ylabel(labels_y[i])
+ if i == len(vars_y) - 1:
+ axs[i].legend(fontsize=10, loc=[1, 0])
+
+
+
+.. image:: Cifar10_files/Cifar10_38_0.png
+
+
+The two only methods which are perfectly calibrated for the entire range
+of alpha values are the “score” and “random_cumulated_score”. However,
+these accurate marginal coverages can only be obtained thanks to the
+generation of null prediction sets. The compromise between estimating
+null prediction sets with calibrated coverages or non-empty prediction
+sets but with larger marginal coverages is entirely up to the user.
+
+7. Prediction set sizes
+-----------------------
+
+.. code-block:: python
+
+ s=5
+ fig, axs = plt.subplots(1, len(y_preds), figsize=(s*len(y_preds), s))
+ for i, (method, y_ps) in enumerate(y_ps_90.items()):
+ sizes = y_ps.sum(axis=1)
+ axs[i].hist(sizes)
+ axs[i].set_xlabel("Prediction set sizes")
+ axs[i].set_title(method)
+
+
+
+.. image:: Cifar10_files/Cifar10_41_0.png
+
+
+8. Conditional coverages
+------------------------
+
+We just saw that all our methods (except the “naive” one) give marginal
+coverages always larger than the target coverages for alpha values
+ranging between 0 and 1. However, there is no mathematical guarantees on
+the *conditional* coverages, i.e. the coverage obtained for a specific
+class of images. Let’s see what conditional coverages we obtain with the
+different conformal methods.
+
+.. code-block:: python
+
+ def get_class_coverage(
+ y_test: np.ndarray,
+ y_method: Dict[str, np.ndarray],
+ label_names: List[str]
+ ) -> None:
+ """
+ Compute the coverage for each class. As MAPIE is looking for a
+ global coverage of 1-alpha, it is important to check that their
+ is not major coverage difference between classes.
+
+ Parameters
+ ----------
+ y_test: np.ndarray of shape (n_samples,)
+ Labels of the predictions.
+
+ y_method: Dict[str, np.ndarray]
+ Prediction sets for each method.
+
+ label_names: List[str]
+ Names of the labels.
+ """
+ recap ={}
+ for method in y_method:
+ recap[method] = []
+ for label in sorted(np.unique(y_test)):
+ indices = np.where(y_test==label)
+ label_name = label_names[label]
+ y_test_trunc = y_test[indices]
+ y_set_trunc = y_method[method][indices]
+ score_coverage = classification_coverage_score(y_test_trunc, y_set_trunc)
+ recap[method].append(score_coverage)
+ recap_df = pd.DataFrame(recap, index = label_names)
+ return recap_df
+
+
+.. code-block:: python
+
+ class_coverage = get_class_coverage(y_test, y_ps_90, label_names)
+
+.. code-block:: python
+
+ fig = plt.figure()
+ class_coverage.plot.bar(figsize=(12, 4), alpha=0.7)
+ plt.axhline(0.9, ls="--", color="k")
+ plt.ylabel("Conditional coverage")
+ plt.legend(loc=[1, 0])
+
+
+
+
+.. image:: Cifar10_files/Cifar10_46_2.png
+
+
+We can notice that the conditional coverages slightly vary between
+classes. The only method whose conditional coverages remain valid for
+all classes is the “top_k” one. However, those variations are much
+smaller than that of the naive method.
+
+.. code-block:: python
+
+ def create_confusion_matrix(y_ps: np.ndarray, y_true: np.ndarray) -> np.ndarray:
+ """
+ Create a confusion matrix to visualize, for each class, which
+ classes are which are the most present classes in the prediction
+ sets.
+
+ Parameters
+ ----------
+ y_ps: np.ndarray of shape (n_samples, n_labels)
+ Prediction sets of a specific method.
+
+ y_true: np.ndarray of shape (n_samples, )
+ Labels of the sample
+
+ Returns
+ -------
+ np.ndarray of shape (n_labels, n_labels)
+ """
+ number_of_classes = len(np.unique(y_true))
+ confusion_matrix = np.zeros((number_of_classes, number_of_classes))
+ for i, ps in enumerate(y_ps):
+ confusion_matrix[y_true[i]] += ps
+
+ return confusion_matrix
+
+
+.. code-block:: python
+
+ def reorder_labels(ordered_labels: List, labels: List, cm: np.ndarray) -> np.ndarray:
+ """
+ Used to order the labels in the confusion matrix
+
+ Parameters
+ ----------
+ ordered_labels: List
+ Order you want to have in your confusion matrix
+
+ labels: List
+ Initial order of the confusion matrix
+
+ cm: np.ndarray of shape (n_labels, n_labels)
+ Original confusion matrix
+
+ Returns
+ -------
+ np.ndarray of shape (n_labels, n_labels)
+ """
+ cm_ordered = np.zeros(cm.shape)
+ index_order = [labels.index(label) for label in ordered_labels]
+ for i, label in enumerate(ordered_labels):
+ old_index = labels.index(label)
+
+ cm_ordered[i] = cm[old_index, index_order]
+ return cm_ordered
+
+.. code-block:: python
+
+ def plot_confusion_matrix(method: str, y_ps: Dict[str, np.ndarray], label_names: List) -> None:
+ """
+ Plot the confusion matrix for a specific method.
+
+ Parameters
+ ----------
+ method: str
+ Name of the method to plot.
+
+ y_ps: Dict[str, np.ndarray]
+ Prediction sets for each of the fitted method
+
+ label_names: List
+ Name of the labels
+ """
+
+ y_method = y_ps[method]
+ cm = create_confusion_matrix(y_method, y_test)
+ ordered_labels = ["frog", "cat", "dog", "deer", "horse", "bird", "airplane", "ship", "truck", "automobile"]
+ cm = reorder_labels(ordered_labels, label_names, cm)
+ disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=ordered_labels)
+ _, ax = plt.subplots(figsize=(10, 10))
+ disp.plot(
+ include_values=True,
+ cmap="viridis",
+ ax=ax,
+ xticks_rotation="vertical",
+ values_format='.0f',
+ colorbar=True,
+ )
+
+ ax.set_title(f'Confusion matrix for {method} method')
+
+.. code-block:: python
+
+ plot_confusion_matrix("cumulated_score", y_ps_90, label_names)
+
+
+
+.. image:: Cifar10_files/Cifar10_51_0.png
+
+
+Thanks to this confusion matrix we can see that, for some labels (as
+cat, deer and dog) the distribution of the labels in the prediction set
+is not uniform. Indeed, when the image is a cat, there are almost as
+many predictions sets with the true label than with the “cat” label. In
+this case, the reverse is also true. However, for the deer, the cat
+label is quite often within the prediction set while the deer is not
+
+.. code-block:: python
+
+ plot_confusion_matrix("naive", y_ps_90, label_names)
+
+
+
+.. image:: Cifar10_files/Cifar10_53_0.png
+
+
+.. code-block:: python
+
+ plot_confusion_matrix("score", y_ps_90, label_names)
+
+
+
+.. image:: Cifar10_files/Cifar10_54_0.png
+
diff --git a/doc/Cifar10_files/Cifar10_10_2.png b/doc/Cifar10_files/Cifar10_10_2.png
new file mode 100644
index 000000000..0adb0d934
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_10_2.png differ
diff --git a/doc/Cifar10_files/Cifar10_35_0.png b/doc/Cifar10_files/Cifar10_35_0.png
new file mode 100644
index 000000000..0e5553d9d
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_35_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_36_0.png b/doc/Cifar10_files/Cifar10_36_0.png
new file mode 100644
index 000000000..0e5553d9d
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_36_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_38_0.png b/doc/Cifar10_files/Cifar10_38_0.png
new file mode 100644
index 000000000..2c204eb9c
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_38_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_39_0.png b/doc/Cifar10_files/Cifar10_39_0.png
new file mode 100644
index 000000000..2c204eb9c
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_39_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_41_0.png b/doc/Cifar10_files/Cifar10_41_0.png
new file mode 100644
index 000000000..e9165b5bd
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_41_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_42_0.png b/doc/Cifar10_files/Cifar10_42_0.png
new file mode 100644
index 000000000..e9165b5bd
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_42_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_46_2.png b/doc/Cifar10_files/Cifar10_46_2.png
new file mode 100644
index 000000000..1f5758f0d
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_46_2.png differ
diff --git a/doc/Cifar10_files/Cifar10_47_2.png b/doc/Cifar10_files/Cifar10_47_2.png
new file mode 100644
index 000000000..1f5758f0d
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_47_2.png differ
diff --git a/doc/Cifar10_files/Cifar10_51_0.png b/doc/Cifar10_files/Cifar10_51_0.png
new file mode 100644
index 000000000..2ad6ab3c7
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_51_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_52_0.png b/doc/Cifar10_files/Cifar10_52_0.png
new file mode 100644
index 000000000..2ad6ab3c7
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_52_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_53_0.png b/doc/Cifar10_files/Cifar10_53_0.png
new file mode 100644
index 000000000..f8cceda4e
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_53_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_54_0.png b/doc/Cifar10_files/Cifar10_54_0.png
new file mode 100644
index 000000000..f7be1a071
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_54_0.png differ
diff --git a/doc/Cifar10_files/Cifar10_55_0.png b/doc/Cifar10_files/Cifar10_55_0.png
new file mode 100644
index 000000000..f7be1a071
Binary files /dev/null and b/doc/Cifar10_files/Cifar10_55_0.png differ
diff --git a/doc/notebooks_classification.rst b/doc/notebooks_classification.rst
index 0c5a59108..061db9e19 100644
--- a/doc/notebooks_classification.rst
+++ b/doc/notebooks_classification.rst
@@ -4,3 +4,10 @@ Classification Notebooks
The following examples present you advanced analyses on multi-class classification
problems for computer vision settings that are too heavy to be included in the example
galleries.
+
+
+
+.. toctree::
+ :hidden:
+
+ Cifar10
\ No newline at end of file
diff --git a/environment.ci.yml b/environment.ci.yml
index c3f6d637f..07f31c0a3 100644
--- a/environment.ci.yml
+++ b/environment.ci.yml
@@ -8,6 +8,5 @@ dependencies:
- mypy
- pandas
- pytest-cov
- - python
- scikit-learn
- typed-ast
diff --git a/environment.dev.yml b/environment.dev.yml
index f4b0c3289..63c98ffec 100644
--- a/environment.dev.yml
+++ b/environment.dev.yml
@@ -5,12 +5,15 @@ channels:
dependencies:
- bump2version=1.0.1
- flake8=4.0.1
- - mypy=0.910
+ - ipykernel=6.9.0
+ - jupyter=1.0.0
+ - mypy=0.941
- numpydoc=1.1.0
+ - numpy=1.22.3
- pandas=1.3.5
- pytest=6.2.5
- pytest-cov=3.0.0
- - python=3.10.1
+ - python=3.10
- scikit-learn=1.0.1
- sphinx=4.3.2
- sphinx-gallery=0.10.1
diff --git a/environment.notebooks.yml b/environment.notebooks.yml
index 01933a967..e04810455 100644
--- a/environment.notebooks.yml
+++ b/environment.notebooks.yml
@@ -13,7 +13,7 @@ dependencies:
- pip=22.0.3
- pip:
- scikeras==0.4.1
- - python=3.10.1
+ - python=3.10
- scikit-learn=1.0.1
- tensorflow=2.7.0
- xgboost=1.5.1
diff --git a/examples/classification/1-quickstart/plot_comp_methods_on_2d_dataset.py b/examples/classification/1-quickstart/plot_comp_methods_on_2d_dataset.py
index 157ce48a4..c52d4bc0c 100644
--- a/examples/classification/1-quickstart/plot_comp_methods_on_2d_dataset.py
+++ b/examples/classification/1-quickstart/plot_comp_methods_on_2d_dataset.py
@@ -57,7 +57,7 @@
classification_coverage_score,
classification_mean_width_score
)
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
centers = [(0, 3.5), (-2, 0), (2, 0)]
@@ -144,8 +144,8 @@
def plot_scores(
alphas: List[float],
- scores: ArrayLike,
- quantiles: ArrayLike,
+ scores: NDArray,
+ quantiles: NDArray,
method: str,
ax: plt.Axes,
) -> None:
@@ -183,7 +183,7 @@ def plot_scores(
def plot_results(
- alphas: List[float], y_pred_mapie: ArrayLike, y_ps_mapie: ArrayLike
+ alphas: List[float], y_pred_mapie: NDArray, y_ps_mapie: NDArray
) -> None:
tab10 = plt.cm.get_cmap("Purples", 4)
colors = {
diff --git a/examples/classification/2-advanced-analysis/plot_crossconformal.py b/examples/classification/2-advanced-analysis/plot_crossconformal.py
index 0b77d4feb..9b8a1175d 100644
--- a/examples/classification/2-advanced-analysis/plot_crossconformal.py
+++ b/examples/classification/2-advanced-analysis/plot_crossconformal.py
@@ -26,7 +26,7 @@
"""
-from typing import Dict, Any, Optional, Union
+from typing import Dict, Any, Optional, Union, List
from typing_extensions import TypedDict
import numpy as np
import pandas as pd
@@ -35,9 +35,10 @@
from sklearn.model_selection import KFold
from mapie.classification import MapieClassifier
from mapie.metrics import (
- classification_coverage_score, classification_mean_width_score
+ classification_coverage_score,
+ classification_mean_width_score
)
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
##############################################################################
@@ -156,9 +157,9 @@
def plot_results(
mapies: Dict[int, Any],
- X_test: ArrayLike,
- X_test2: ArrayLike,
- y_test2: ArrayLike,
+ X_test: NDArray,
+ X_test2: NDArray,
+ y_test2: NDArray,
alpha: float,
method: str
) -> None:
@@ -223,9 +224,9 @@ def plot_results(
def plot_coverage_width(
- alpha: float,
- coverages: ArrayLike,
- widths: ArrayLike,
+ alpha: NDArray,
+ coverages: List[NDArray],
+ widths: List[NDArray],
method: str,
comp: str = "split"
) -> None:
@@ -355,12 +356,12 @@ def plot_coverage_width(
)
}
-y_preds, y_ps = {}, {}
+y_ps = {}
for strategy, params in STRATEGIES.items():
args_init, args_predict = STRATEGIES[strategy]
mapie_clf = MapieClassifier(**args_init)
mapie_clf.fit(X_train, y_train)
- y_preds[strategy], y_ps[strategy] = mapie_clf.predict(
+ _, y_ps[strategy] = mapie_clf.predict(
X_test_distrib,
alpha=alpha,
**args_predict
diff --git a/examples/classification/2-advanced-analysis/plot_digits_classification.py b/examples/classification/2-advanced-analysis/plot_digits_classification.py
index d3f1d2d45..0172a10c5 100644
--- a/examples/classification/2-advanced-analysis/plot_digits_classification.py
+++ b/examples/classification/2-advanced-analysis/plot_digits_classification.py
@@ -22,7 +22,7 @@
classification_coverage_score,
classification_mean_width_score
)
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
##############################################################################
@@ -99,7 +99,7 @@ def generate_mnist_corrupted(
# in the calibration and test subsets.
def get_datasets(dataset: Any) -> Tuple[
- ArrayLike, ArrayLike, ArrayLike, ArrayLike, ArrayLike, ArrayLike
+ NDArray, NDArray, NDArray, NDArray, NDArray, NDArray
]:
n_samples = len(digits.images)
data = dataset.images.reshape((n_samples, -1))
diff --git a/examples/regression/1-quickstart/plot_homoscedastic_1d_data.py b/examples/regression/1-quickstart/plot_homoscedastic_1d_data.py
index 77a1a8440..118598bf5 100644
--- a/examples/regression/1-quickstart/plot_homoscedastic_1d_data.py
+++ b/examples/regression/1-quickstart/plot_homoscedastic_1d_data.py
@@ -18,17 +18,17 @@
from matplotlib import pyplot as plt
from mapie.regression import MapieRegressor
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
-def f(x: ArrayLike) -> ArrayLike:
+def f(x: NDArray) -> NDArray:
"""Polynomial function used to generate one-dimensional data"""
return np.array(5 * x + 5 * x ** 4 - 9 * x ** 2)
def get_homoscedastic_data(
n_train: int = 200, n_true: int = 200, sigma: float = 0.1
-) -> Tuple[ArrayLike, ArrayLike, ArrayLike, ArrayLike, float]:
+) -> Tuple[NDArray, NDArray, NDArray, NDArray, float]:
"""
Generate one-dimensional data from a given function,
number of training and test samples and a given standard
@@ -46,7 +46,7 @@ def get_homoscedastic_data(
Returns
-------
- Tuple[Any, Any, ArrayLike, Any, float]
+ Tuple[NDArray, NDArray, NDArray, NDArray, float]
Generated training and test data.
[0]: X_train
[1]: y_train
@@ -65,14 +65,14 @@ def get_homoscedastic_data(
def plot_1d_data(
- X_train: ArrayLike,
- y_train: ArrayLike,
- X_test: ArrayLike,
- y_test: ArrayLike,
+ X_train: NDArray,
+ y_train: NDArray,
+ X_test: NDArray,
+ y_test: NDArray,
y_test_sigma: float,
- y_pred: ArrayLike,
- y_pred_low: ArrayLike,
- y_pred_up: ArrayLike,
+ y_pred: NDArray,
+ y_pred_low: NDArray,
+ y_pred_up: NDArray,
ax: plt.Axes,
title: str,
) -> None:
@@ -82,21 +82,21 @@ def plot_1d_data(
Parameters
----------
- X_train : ArrayLike
+ X_train : NDArray
Training data.
- y_train : ArrayLike
+ y_train : NDArray
Training labels.
- X_test : ArrayLike
+ X_test : NDArray
Test data.
- y_test : ArrayLike
+ y_test : NDArray
True function values on test data.
y_test_sigma : float
True standard deviation.
- y_pred : ArrayLike
+ y_pred : NDArray
Predictions on test data.
- y_pred_low : ArrayLike
+ y_pred_low : NDArray
Predicted lower bounds on test data.
- y_pred_up : ArrayLike
+ y_pred_up : NDArray
Predicted upper bounds on test data.
ax : plt.Axes
Axis to plot.
diff --git a/examples/regression/1-quickstart/plot_prefit_nn.py b/examples/regression/1-quickstart/plot_prefit_nn.py
index 41a742fb7..e5f1c3578 100644
--- a/examples/regression/1-quickstart/plot_prefit_nn.py
+++ b/examples/regression/1-quickstart/plot_prefit_nn.py
@@ -19,10 +19,10 @@
from mapie.regression import MapieRegressor
from mapie.metrics import regression_coverage_score
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
-def f(x: ArrayLike) -> ArrayLike:
+def f(x: NDArray) -> NDArray:
"""Polynomial function used to generate one-dimensional data."""
return np.array(5 * x + 5 * x ** 4 - 9 * x ** 2)
diff --git a/examples/regression/2-advanced-analysis/plot_both_uncertainties.py b/examples/regression/2-advanced-analysis/plot_both_uncertainties.py
index 3f7e19eda..565453f7b 100644
--- a/examples/regression/2-advanced-analysis/plot_both_uncertainties.py
+++ b/examples/regression/2-advanced-analysis/plot_both_uncertainties.py
@@ -16,20 +16,20 @@
import matplotlib.pyplot as plt
from mapie.regression import MapieRegressor
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
F = TypeVar("F", bound=Callable[..., Any])
# Functions for generating our dataset
-def x_sinx(x: ArrayLike) -> Any:
+def x_sinx(x: NDArray) -> NDArray:
"""One-dimensional x*sin(x) function."""
return x * np.sin(x)
def get_1d_data_with_normal_distrib(
funct: F, mu: float, sigma: float, n_samples: int, noise: float
-) -> Tuple[ArrayLike, ArrayLike, ArrayLike, ArrayLike, ArrayLike]:
+) -> Tuple[NDArray, NDArray, NDArray, NDArray, NDArray]:
"""
Generate noisy 1D data with normal distribution from given function
and noise standard deviation.
@@ -49,7 +49,7 @@ def get_1d_data_with_normal_distrib(
Returns
-------
- Tuple[Any, Any, ArrayLike, Any, float]
+ Tuple[NDArray, AnNDArrayy, NDArray, NDArray, NDArray]
Generated training and test data.
[0]: X_train
[1]: y_train
@@ -104,14 +104,14 @@ def get_1d_data_with_normal_distrib(
# Visualization
def plot_1d_data(
- X_train: ArrayLike,
- y_train: ArrayLike,
- X_test: ArrayLike,
- y_test: ArrayLike,
+ X_train: NDArray,
+ y_train: NDArray,
+ X_test: NDArray,
+ y_test: NDArray,
y_sigma: float,
- y_pred: ArrayLike,
- y_pred_low: ArrayLike,
- y_pred_up: ArrayLike,
+ y_pred: NDArray,
+ y_pred_low: NDArray,
+ y_pred_up: NDArray,
ax: plt.Axes,
title: str,
) -> None:
diff --git a/examples/regression/3-scientific-articles/plot_barber2020_simulations.py b/examples/regression/3-scientific-articles/plot_barber2020_simulations.py
index 5b8a99304..f5d050061 100644
--- a/examples/regression/3-scientific-articles/plot_barber2020_simulations.py
+++ b/examples/regression/3-scientific-articles/plot_barber2020_simulations.py
@@ -28,7 +28,7 @@
"Predictive inference with the jackknife+."
Ann. Statist., 49(1):486–507, February 2021.
"""
-from typing import Any, Dict, List
+from typing import Any, Dict
import numpy as np
from sklearn.linear_model import LinearRegression
@@ -39,15 +39,15 @@
regression_mean_width_score
)
from mapie.regression import MapieRegressor
-from mapie._typing import ArrayLike
+from mapie._typing import NDArray
def PIs_vs_dimensions(
strategies: Dict[str, Any],
alpha: float,
n_trial: int,
- dimensions: List[int],
-) -> Dict[str, Dict[int, Dict[str, ArrayLike]]]:
+ dimensions: NDArray,
+) -> Dict[str, Dict[int, Dict[str, NDArray]]]:
"""
Compute the prediction intervals for a linear regression problem.
Function adapted from Foygel-Barber et al. (2020).
@@ -82,14 +82,14 @@ def PIs_vs_dimensions(
Returns
-------
- Dict[str, Dict[int, Dict[str, ArrayLike]]]
+ Dict[str, Dict[int, Dict[str, NDArray]]]
Prediction interval widths and coverages for each strategy, trial,
and dimension value.
"""
n_train = 100
n_test = 100
SNR = 10
- results: Dict[str, Dict[int, Dict[str, ArrayLike]]] = {
+ results: Dict[str, Dict[int, Dict[str, NDArray]]] = {
strategy: {
dimension: {
"coverage": np.empty(n_trial),
@@ -132,7 +132,7 @@ def PIs_vs_dimensions(
def plot_simulation_results(
- results: Dict[str, Dict[int, Dict[str, ArrayLike]]], title: str
+ results: Dict[str, Dict[int, Dict[str, NDArray]]], title: str
) -> None:
"""
Show the prediction interval coverages and widths as a function
@@ -141,7 +141,7 @@ def plot_simulation_results(
Parameters
----------
- results : Dict[str, Dict[int, Dict[str, ArrayLike]]]
+ results : Dict[str, Dict[int, Dict[str, NDArray]]]
Prediction interval widths and coverages for each strategy, trial,
and dimension value.
title : str
diff --git a/examples/regression/3-scientific-articles/plot_kim2020_simulations.py b/examples/regression/3-scientific-articles/plot_kim2020_simulations.py
index 9cef7cad7..022d462ac 100644
--- a/examples/regression/3-scientific-articles/plot_kim2020_simulations.py
+++ b/examples/regression/3-scientific-articles/plot_kim2020_simulations.py
@@ -43,7 +43,7 @@
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
-from mapie._typing import ArrayLike
+from mapie._typing import ArrayLike, NDArray
from mapie.metrics import (
regression_mean_width_score,
regression_coverage_score,
@@ -52,7 +52,7 @@
from mapie.subsample import Subsample
-def get_X_y() -> Tuple[ArrayLike, ArrayLike]:
+def get_X_y() -> Tuple[NDArray, NDArray]:
"""
Downloads the ``blog`` dataset from a zip file on the UCI Machine Learning
website, and returns X and y, which are respectively the explicative
@@ -60,7 +60,7 @@ def get_X_y() -> Tuple[ArrayLike, ArrayLike]:
Returns
-------
- Tuple[ArrayLike, ArrayLike] of shapes
+ Tuple[NDArray, NDArray] of shapes
(n_samples, n_features) and (n_samples,)
Explicative data and labels
"""
@@ -78,7 +78,7 @@ def get_X_y() -> Tuple[ArrayLike, ArrayLike]:
return (X, y)
-class Ridge2(RegressorMixin, BaseEstimator): # type:ignore
+class Ridge2(RegressorMixin, BaseEstimator):
"""
Little variation of Ridge proposed in [1].
Rectify alpha on the training set svd max value.
@@ -95,16 +95,16 @@ def __init__(self, ridge_mult: float = 0.001) -> None:
self.ridge_mult = ridge_mult
self.__name__ = "Ridge2"
- def fit(self, X: ArrayLike, y: Optional[ArrayLike] = None) -> Ridge2:
+ def fit(self, X: NDArray, y: Optional[NDArray] = None) -> Ridge2:
"""
Fit Ridge2.
Parameters
----------
- X : ArrayLike of shape (n_samples, n_features)
+ X : NDArray of shape (n_samples, n_features)
Training data.
- y : ArrayLike of shape (n_samples,)
+ y : NDArray of shape (n_samples,)
Training labels.
Returns
@@ -116,7 +116,7 @@ def fit(self, X: ArrayLike, y: Optional[ArrayLike] = None) -> Ridge2:
self.ridge2 = Ridge(alpha=alpha).fit(X=X, y=y)
return self
- def predict(self, X: ArrayLike) -> ArrayLike:
+ def predict(self, X: ArrayLike) -> NDArray:
"""
Predict target on new samples.
@@ -127,7 +127,7 @@ def predict(self, X: ArrayLike) -> ArrayLike:
Returns
-------
- np.ndarray of shape (n_samples, )
+ NDArray of shape (n_samples, )
Predictions on test data
"""
return self.ridge2.predict(X)
@@ -135,9 +135,9 @@ def predict(self, X: ArrayLike) -> ArrayLike:
def compute_PIs(
estimator: BaseEstimator,
- X_train: ArrayLike,
- y_train: ArrayLike,
- X_test: ArrayLike,
+ X_train: NDArray,
+ y_train: NDArray,
+ X_test: NDArray,
method: str,
cv: Any,
alpha: float,
@@ -152,11 +152,11 @@ def compute_PIs(
----------
estimator : BaseEstimator
Base model to fit.
- X_train : np.ndarray
+ X_train : NDArray
Features of training set.
- y_train : np.ndarray
+ y_train : NDArray
Target of training set.
- X_test : np.ndarray
+ X_test : NDArray
Features of testing set.
method : str
Method for estimating prediction intervals.
@@ -187,7 +187,7 @@ def compute_PIs(
return pd.DataFrame(PI, columns=["lower", "upper"])
-def get_coverage_width(PIs: pd.DataFrame, y: ArrayLike) -> Tuple[float, float]:
+def get_coverage_width(PIs: pd.DataFrame, y: NDArray) -> Tuple[float, float]:
"""
Computes the mean coverage and width of the predictions intervals of a
DataFrame given by the ``compute_PIs`` function
@@ -198,7 +198,7 @@ def get_coverage_width(PIs: pd.DataFrame, y: ArrayLike) -> Tuple[float, float]:
DataFrame returned by `compute_PIs``, with lower and upper bounds of
the PIs.
- y : ArrayLike
+ y : NDArray
Targets supposedly covered by the PIs.
Returns
@@ -216,7 +216,11 @@ def get_coverage_width(PIs: pd.DataFrame, y: ArrayLike) -> Tuple[float, float]:
def B_random_from_B_fixed(
- B: int, train_size: int, m: int, itrial: int = 0, random_state: int = 98765
+ B: int,
+ train_size: int,
+ m: int,
+ itrial: int = 0,
+ random_state: int = 98765
) -> int:
"""
Generates a random number from a binomial distribution.
diff --git a/mapie/_compatibility.py b/mapie/_compatibility.py
new file mode 100644
index 000000000..204831ace
--- /dev/null
+++ b/mapie/_compatibility.py
@@ -0,0 +1,33 @@
+from typing import Any
+
+import numpy as np
+from packaging.version import parse as parse_version
+
+from ._typing import ArrayLike, NDArray
+
+
+def np_quantile_version_below_122(
+ a: ArrayLike,
+ q: ArrayLike,
+ method: str = "linear",
+ **kwargs: Any
+) -> NDArray:
+ """Wrapper of np.quantile function for numpy version < 1.22."""
+ return np.quantile(a, q, interpolation=method, **kwargs) # type: ignore
+
+
+def np_quantile_version_above_122(
+ a: ArrayLike,
+ q: ArrayLike,
+ method: str = "linear",
+ **kwargs: Any
+) -> NDArray:
+ """Wrapper of np.quantile function for numpy version >= 1.22."""
+ return np.quantile(a, q, method=method, **kwargs) # type: ignore
+
+
+numpy_version = parse_version(np.__version__)
+if numpy_version < parse_version("1.22"):
+ np_quantile = np_quantile_version_below_122
+else:
+ np_quantile = np_quantile_version_above_122
diff --git a/mapie/_typing.py b/mapie/_typing.py
index 70f5743e0..af5839e8c 100644
--- a/mapie/_typing.py
+++ b/mapie/_typing.py
@@ -1,9 +1,3 @@
-import numpy as np
-from typing import Union, List
+from numpy.typing import ArrayLike, NDArray
-try:
- from np.typing import ArrayLike
-except (AttributeError, ModuleNotFoundError):
- ArrayLike = Union[np.ndarray, List[List[float]]]
-
-__all__ = ["ArrayLike"]
+__all__ = ["ArrayLike", "NDArray"]
diff --git a/mapie/aggregation_functions.py b/mapie/aggregation_functions.py
index 1e6af290f..ad9a8181c 100644
--- a/mapie/aggregation_functions.py
+++ b/mapie/aggregation_functions.py
@@ -2,14 +2,14 @@
import numpy as np
-from ._typing import ArrayLike
+from ._typing import NDArray
def phi1D(
- x: ArrayLike,
- B: ArrayLike,
- fun: Callable[[ArrayLike], ArrayLike],
-) -> ArrayLike:
+ x: NDArray,
+ B: NDArray,
+ fun: Callable[[NDArray], NDArray],
+) -> NDArray:
"""
The function phi1D is called by phi2D.
It aims at applying a function ``fun`` after multiplying each row
@@ -17,16 +17,16 @@ def phi1D(
Parameters
----------
- x : ArrayLike of shape (n, )
+ x : NDArray of shape (n, )
1D vector.
- B : ArrayLike of shape (k, n)
+ B : NDArray of shape (k, n)
2D vector whose number of columns is the number of rows of x.
fun : function
- Vectorized function applying to Arraylike.
+ Vectorized function applying to NDArray.
Returns
-------
- ArrayLike
+ NDArray
The function fun is applied to the product of ``x`` and ``B``.
Typically, ``fun`` is a numpy function, ignoring nan,
with argument ``axis=1``.
@@ -46,25 +46,25 @@ def phi1D(
def phi2D(
- A: ArrayLike,
- B: ArrayLike,
- fun: Callable[[ArrayLike], ArrayLike],
-) -> ArrayLike:
+ A: NDArray,
+ B: NDArray,
+ fun: Callable[[NDArray], NDArray],
+) -> NDArray:
"""
The function phi2D is a loop applying phi1D on each row of A.
Parameters
----------
- A : ArrayLike of shape (n_rowsA, n_columns)
- B : ArrayLike of shape (n_rowsB, n_columns)
+ A : NDArray of shape (n_rowsA, n_columns)
+ B : NDArray of shape (n_rowsB, n_columns)
A and B must have the same number of columns.
fun : function
- Vectorized function applying to Arraylike, and that should ignore nan.
+ Vectorized function applying to NDArray, and that should ignore nan.
Returns
-------
- ArrayLike of shape (n_rowsA, n_rowsB)
+ NDArray of shape (n_rowsA, n_rowsB)
Applies phi1D(x, B, fun) to each row x of A.
Examples
@@ -81,19 +81,19 @@ def phi2D(
return np.apply_along_axis(phi1D, axis=1, arr=A, B=B, fun=fun)
-def aggregate_all(agg_function: Optional[str], X: ArrayLike) -> ArrayLike:
+def aggregate_all(agg_function: Optional[str], X: NDArray) -> NDArray:
"""
Applies np.nanmean(, axis=1) or np.nanmedian(, axis=1) according
to the string ``agg_function``.
Parameters
-----------
- X : ArrayLike of shape (n, p)
+ X : NDArray of shape (n, p)
Array of floats and nans
Returns
--------
- ArrayLike of shape (n, 1):
+ NDArray of shape (n, 1):
Array of the means or medians of each row of X
Raises
diff --git a/mapie/classification.py b/mapie/classification.py
index f06a31d68..79c4517c5 100644
--- a/mapie/classification.py
+++ b/mapie/classification.py
@@ -1,5 +1,5 @@
from __future__ import annotations
-from typing import Optional, Union, Tuple, Iterable, List
+from typing import Optional, Union, Tuple, Iterable, List, cast
import numpy as np
from joblib import Parallel, delayed
@@ -17,7 +17,7 @@
_check_y,
)
-from ._typing import ArrayLike
+from ._typing import ArrayLike, NDArray
from ._machine_precision import EPSILON
from .utils import (
check_cv,
@@ -27,12 +27,12 @@
check_alpha_and_n_samples,
check_n_jobs,
check_verbose,
- check_input_is_image,
fit_estimator
)
+from ._compatibility import np_quantile
-class MapieClassifier(BaseEstimator, ClassifierMixin): # type: ignore
+class MapieClassifier(BaseEstimator, ClassifierMixin):
"""
Prediction sets for classification.
@@ -77,8 +77,8 @@ class MapieClassifier(BaseEstimator, ClassifierMixin): # type: ignore
``sklearn.model_selection.LeaveOneOut()``.
- CV splitter: any ``sklearn.model_selection.BaseCrossValidator``
Main variants are:
- - ``sklearn.model_selection.LeaveOneOut`` (jackknife),
- - ``sklearn.model_selection.KFold`` (cross-validation)
+ - ``sklearn.model_selection.LeaveOneOut`` (jackknife),
+ - ``sklearn.model_selection.KFold`` (cross-validation)
- ``"prefit"``, assumes that ``estimator`` has been fitted already.
All data provided in the ``fit`` method is then used
to calibrate the predictions through the score computation.
@@ -127,9 +127,6 @@ class MapieClassifier(BaseEstimator, ClassifierMixin): # type: ignore
n_features_in_: int
Number of features passed to the fit method.
- n_samples_: Union[int, List[int]]
- Number of samples passed to the fit method.
-
conformity_scores_ : ArrayLike of shape (n_samples_train)
The conformity scores used to calibrate the prediction sets.
@@ -177,8 +174,8 @@ class MapieClassifier(BaseEstimator, ClassifierMixin): # type: ignore
fit_attributes = [
"single_estimator_",
"estimators_",
+ "k_",
"n_features_in_",
- "n_samples_",
"conformity_scores_"
]
@@ -254,13 +251,8 @@ def _check_estimator(
If the estimator is not fitted and ``cv`` attribute is "prefit".
"""
if estimator is None:
- if not self.image_input:
- return LogisticRegression(multi_class="multinomial").fit(X, y)
- else:
- raise ValueError(
- "Default LogisticRegression's input can't be an image."
- "Please provide a proper model."
- )
+ return LogisticRegression(multi_class="multinomial").fit(X, y)
+
if isinstance(estimator, Pipeline):
est = estimator[-1]
else:
@@ -332,8 +324,8 @@ def _check_include_last_label(
def _check_proba_normalized(
self,
y_pred_proba: ArrayLike,
- axis: Optional[int] = 1
- ) -> Optional[ArrayLike]:
+ axis: int = 1
+ ) -> ArrayLike:
"""
Check if, for all the observations, the sum of
the probabilities is equal to one.
@@ -347,7 +339,7 @@ def _check_proba_normalized(
Returns
-------
- Optional[ArrayLike] of shape (n_samples, n_classes)
+ ArrayLike of shape (n_samples, n_classes)
Softmax output of a model if the scores all sum
to one.
@@ -366,10 +358,10 @@ def _check_proba_normalized(
def _get_last_index_included(
self,
- y_pred_proba_cumsum: ArrayLike,
- threshold: ArrayLike,
+ y_pred_proba_cumsum: NDArray,
+ threshold: NDArray,
include_last_label: Optional[Union[bool, str]]
- ) -> ArrayLike:
+ ) -> NDArray:
"""
Return the index of the last included sorted probability
depending if we included the first label over the quantile
@@ -377,10 +369,10 @@ def _get_last_index_included(
Parameters
----------
- y_pred_proba_cumsum : ArrayLike of shape (n_samples, n_classes)
+ y_pred_proba_cumsum : NDArray of shape (n_samples, n_classes)
Cumsumed probabilities in the original order.
- threshold : ArrayLike of shape (n_alpha,) or shape (n_samples_train,)
+ threshold : NDArray of shape (n_alpha,) or shape (n_samples_train,)
Threshold to compare with y_proba_last_cumsum, can be either:
- the quantiles associated with alpha values when
@@ -395,7 +387,7 @@ def _get_last_index_included(
Returns
-------
- Optional[ArrayLike] of shape (n_samples, n_classes)
+ NDArray of shape (n_samples, n_classes)
Index of the last included sorted probability.
"""
if (
@@ -434,12 +426,12 @@ def _get_last_index_included(
def _add_random_tie_breaking(
self,
- prediction_sets: ArrayLike,
- y_pred_index_last: ArrayLike,
- y_pred_proba_cumsum: ArrayLike,
- y_pred_proba_last: ArrayLike,
- threshold: ArrayLike
- ) -> ArrayLike:
+ prediction_sets: NDArray,
+ y_pred_index_last: NDArray,
+ y_pred_proba_cumsum: NDArray,
+ y_pred_proba_last: NDArray,
+ threshold: NDArray
+ ) -> NDArray:
"""
Randomly remove last label from prediction set based on the
comparison between a random number and the difference between
@@ -447,20 +439,20 @@ def _add_random_tie_breaking(
Parameters
----------
- prediction_sets : ArrayLike of shape
+ prediction_sets : NDArray of shape
(n_samples, n_classes, n_threshold)
Prediction set for each observation and each alpha.
- y_pred_index_last : ArrayLike of shape (n_samples, threshold)
+ y_pred_index_last : NDArray of shape (n_samples, threshold)
Index of the last included label.
- y_pred_proba_cumsum : ArrayLike of shape (n_samples, n_classes)
+ y_pred_proba_cumsum : NDArray of shape (n_samples, n_classes)
Cumsumed probability of the model in the original order.
- y_pred_proba_last : ArrayLike of shape (n_samples, 1, threshold)
+ y_pred_proba_last : NDArray of shape (n_samples, 1, threshold)
Last included probability.
- threshold : ArrayLike of shape (n_alpha,) or shape (n_samples_train,)
+ threshold : NDArray of shape (n_alpha,) or shape (n_samples_train,)
Threshold to compare with y_proba_last_cumsum, can be either:
- the quantiles associated with alpha values when
@@ -471,7 +463,7 @@ def _add_random_tie_breaking(
Returns
-------
- ArrayLike of shape (n_samples, n_classes, n_alpha)
+ NDArray of shape (n_samples, n_classes, n_alpha)
Updated version of prediction_sets with randomly removed
labels.
"""
@@ -503,9 +495,9 @@ def _add_random_tie_breaking(
def _fix_number_of_classes(
self,
- n_classes_training: ArrayLike,
- y_proba: ArrayLike
- ) -> ArrayLike:
+ n_classes_training: NDArray,
+ y_proba: NDArray
+ ) -> NDArray:
"""
Fix shape of y_proba of validation set if number of classes
of the training set used for cross-validation is different than
@@ -513,14 +505,14 @@ def _fix_number_of_classes(
Parameters
----------
- n_classes_training : ArrayLike
+ n_classes_training : NDArray
Classes of the training set.
- y_proba : ArrayLike
+ y_proba : NDArray
Probabilities of the validation set.
Returns
-------
- ArrayLike
+ NDArray
Probabilities with the right number of classes.
"""
y_pred_full = np.zeros(
@@ -539,7 +531,7 @@ def _predict_oof_model(
self,
estimator: ClassifierMixin,
X: ArrayLike,
- ) -> ArrayLike:
+ ) -> NDArray:
"""
Predict probabilities of a test set from a fitted estimator.
@@ -573,7 +565,7 @@ def _fit_and_predict_oof_model(
val_index: ArrayLike,
k: int,
sample_weight: Optional[ArrayLike] = None,
- ) -> Tuple[ClassifierMixin, ArrayLike, ArrayLike, ArrayLike]:
+ ) -> Tuple[ClassifierMixin, NDArray, NDArray, ArrayLike]:
"""
Fit a single out-of-fold model on a given training set and
perform predictions on a test set.
@@ -604,16 +596,15 @@ def _fit_and_predict_oof_model(
Returns
-------
- Tuple[ClassifierMixin, ArrayLike, ArrayLike, ArrayLike]
-
- - [0]: Fitted estimator
- - [1]: Estimator predictions on the validation fold,
- of shape (n_samples_val,)
- - [2]: Identification number of the validation fold,
- of shape (n_samples_val,)
- - [3]: Validation data indices,
- of shape (n_samples_val,).
-
+ Tuple[ClassifierMixin, NDArray, NDArray, ArrayLike]
+
+ - [0]: ClassifierMixin, fitted estimator
+ - [1]: NDArray of shape (n_samples_val,),
+ Estimator predictions on the validation fold,
+ - [2]: NDArray of shape (n_samples_val,)
+ Identification number of the validation fold,
+ - [3]: ArrayLike of shape (n_samples_val,)
+ Validation data indices
"""
X_train = _safe_indexing(X, train_index)
y_train = _safe_indexing(y, train_index)
@@ -623,13 +614,12 @@ def _fit_and_predict_oof_model(
if sample_weight is None:
estimator = fit_estimator(estimator, X_train, y_train)
else:
+ sample_weight_train = _safe_indexing(sample_weight, train_index)
estimator = fit_estimator(
- estimator, X_train, y_train, sample_weight[train_index]
+ estimator, X_train, y_train, sample_weight_train
)
if _num_samples(X_val) > 0:
- y_pred_proba = self._predict_oof_model(
- estimator, X_val,
- )
+ y_pred_proba = self._predict_oof_model(estimator, X_val)
else:
y_pred_proba = np.array([])
val_id = np.full_like(y_val, k, dtype=int)
@@ -639,7 +629,6 @@ def fit(
self,
X: ArrayLike,
y: ArrayLike,
- image_input: Optional[bool] = False,
sample_weight: Optional[ArrayLike] = None,
) -> MapieClassifier:
"""
@@ -653,13 +642,6 @@ def fit(
y : ArrayLike of shape (n_samples,)
Training labels.
- image_input: Optional[bool] = False
- Whether or not the X input is an image. If True, you must provide
- a model that accepts image as input (e.g., a Neural Network). All
- Scikit-learn classifiers only accept two-dimensional inputs.
-
- By default False.
-
sample_weight : Optional[ArrayLike] of shape (n_samples,)
Sample weights for fitting the out-of-fold models.
If None, then samples are equally weighted.
@@ -675,18 +657,18 @@ def fit(
The model itself.
"""
# Checks
- self.image_input = image_input
self._check_parameters()
cv = check_cv(self.cv)
estimator = self._check_estimator(X, y, self.estimator)
- if self.image_input:
- check_input_is_image(X)
+
X, y = indexable(X, y)
y = _check_y(y)
assert type_of_target(y) == "multiclass"
- self.n_classes_ = len(set(y))
- self.n_features_in_ = check_n_features_in(X, cv, estimator)
sample_weight, X, y = check_null_weight(sample_weight, X, y)
+ y = cast(NDArray, y)
+ n_samples = _num_samples(y)
+ self.n_classes_ = len(np.unique(y))
+ self.n_features_in_ = check_n_features_in(X, cv, estimator)
# Initialization
self.estimators_: List[ClassifierMixin] = []
@@ -700,10 +682,11 @@ def fit(
y_pred_proba = self._check_proba_normalized(y_pred_proba)
else:
+ cv = cast(BaseCrossValidator, cv)
self.single_estimator_ = fit_estimator(
clone(estimator), X, y, sample_weight
)
- y_pred_proba = np.empty((len(y), len(np.unique(y))), dtype=float)
+ y_pred_proba = np.empty((n_samples, self.n_classes_), dtype=float)
outputs = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(self._fit_and_predict_oof_model)(
clone(estimator),
@@ -716,20 +699,26 @@ def fit(
)
for k, (train_index, val_index) in enumerate(cv.split(X))
)
- self.estimators_, predictions, val_ids, val_indices = map(
- list, zip(*outputs)
- )
- predictions, val_ids, val_indices = map(
- np.concatenate, (predictions, val_ids, val_indices)
- )
+ (
+ self.estimators_,
+ predictions_list,
+ val_ids_list,
+ val_indices_list
+ ) = map(list, zip(*outputs))
+ predictions = np.concatenate(cast(List[NDArray], predictions_list))
+ val_ids = np.concatenate(cast(List[NDArray], val_ids_list))
+ val_indices = np.concatenate(cast(List[NDArray], val_indices_list))
self.k_[val_indices] = val_ids
y_pred_proba[val_indices] = predictions
if self.method == "naive":
- self.conformity_scores_ = np.empty(y_pred_proba.shape)
+ self.conformity_scores_ = np.empty(
+ y_pred_proba.shape,
+ dtype="float"
+ )
elif self.method == "score":
self.conformity_scores_ = np.take_along_axis(
- 1 - y_pred_proba, np.ravel(y).reshape(-1, 1), axis=1
+ 1 - y_pred_proba, y.reshape(-1, 1), axis=1
)
elif self.method == "cumulated_score":
y_true = label_binarize(
@@ -746,7 +735,7 @@ def fit(
y_pred_proba_sorted_cumsum, cutoff.reshape(-1, 1), axis=1
)
y_proba_true = np.take_along_axis(
- y_pred_proba, np.ravel(y).reshape(-1, 1), axis=1
+ y_pred_proba, y.reshape(-1, 1), axis=1
)
random_state = check_random_state(self.random_state)
u = random_state.uniform(size=len(y_pred_proba)).reshape(-1, 1)
@@ -759,7 +748,7 @@ def fit(
)
self.conformity_scores_ = np.take_along_axis(
index,
- np.ravel(y).reshape(-1, 1),
+ y.reshape(-1, 1),
axis=1
)
@@ -777,7 +766,7 @@ def predict(
alpha: Optional[Union[float, Iterable[float]]] = None,
include_last_label: Optional[Union[bool, str]] = True,
agg_scores: Optional[str] = "mean"
- ) -> Union[ArrayLike, Tuple[ArrayLike, ArrayLike]]:
+ ) -> Union[NDArray, Tuple[NDArray, NDArray]]:
"""
Prediction prediction sets on new samples based on target confidence
interval.
@@ -830,11 +819,11 @@ def predict(
Returns
-------
- Union[ArrayLike, Tuple[ArrayLike, ArrayLike]]
+ Union[NDArray, Tuple[NDArray, NDArray]]
- - ArrayLike of shape (n_samples,) if alpha is None.
+ - NDArray of shape (n_samples,) if alpha is None.
- - Tuple[ArrayLike, ArrayLike] of shapes
+ - Tuple[NDArray, NDArray] of shapes
(n_samples,) and (n_samples, n_classes, n_alpha) if alpha is not None.
"""
if self.method == "top_k":
@@ -842,178 +831,178 @@ def predict(
# Checks
cv = check_cv(self.cv)
include_last_label = self._check_include_last_label(include_last_label)
- alpha_ = check_alpha(alpha)
+ alpha = cast(Optional[NDArray], check_alpha(alpha))
check_is_fitted(self, self.fit_attributes)
- if self.image_input:
- check_input_is_image(X)
# Estimate prediction sets
y_pred = self.single_estimator_.predict(X)
- n = self.n_samples_
- if alpha_ is None:
+ n = len(self.conformity_scores_)
+
+ if alpha is None:
return np.array(y_pred)
+ # Estimate of probabilities from estimator(s)
+ # In all cases : len(y_pred_proba.shape) == 3
+ # with (n_test, n_classes, n_alpha or n_train_samples)
+ alpha_np = cast(NDArray, alpha)
+ check_alpha_and_n_samples(alpha_np, n)
+ if cv == "prefit":
+ y_pred_proba = self.single_estimator_.predict_proba(X)
+ y_pred_proba = np.repeat(
+ y_pred_proba[:, :, np.newaxis], len(alpha_np), axis=2
+ )
else:
- # Estimate of probabilities from estimator(s)
- # In all cases : len(y_pred_proba.shape) == 3
- # with (n_test, n_classes, n_alpha or n_train_samples)
- if cv == "prefit":
- y_pred_proba = self.single_estimator_.predict_proba(X)
+ y_pred_proba_k = np.asarray(
+ Parallel(
+ n_jobs=self.n_jobs, verbose=self.verbose
+ )(
+ delayed(self._predict_oof_model)(estimator, X)
+ for estimator in self.estimators_
+ )
+ )
+ if agg_scores == "crossval":
+ y_pred_proba = np.moveaxis(y_pred_proba_k[self.k_], 0, 2)
+ elif agg_scores == "mean":
+ y_pred_proba = np.mean(y_pred_proba_k, axis=0)
y_pred_proba = np.repeat(
- y_pred_proba[:, :, np.newaxis], len(alpha_), axis=2
+ y_pred_proba[:, :, np.newaxis], len(alpha_np), axis=2
)
else:
- y_pred_proba_k = np.asarray(
- Parallel(
- n_jobs=self.n_jobs, verbose=self.verbose
- )(
- delayed(self._predict_oof_model)(estimator, X)
- for estimator in self.estimators_
- )
- )
- if agg_scores == "crossval":
- y_pred_proba = np.moveaxis(y_pred_proba_k[self.k_], 0, 2)
- elif agg_scores == "mean":
- y_pred_proba = np.mean(y_pred_proba_k, axis=0)
- y_pred_proba = np.repeat(
- y_pred_proba[:, :, np.newaxis], len(alpha_), axis=2
- )
- else:
- raise ValueError("Invalid 'agg_scores' argument.")
- # Check that sum of probas is equal to 1
- y_pred_proba = self._check_proba_normalized(y_pred_proba, axis=1)
-
- # Choice of the quantile
- check_alpha_and_n_samples(alpha_, n)
- if self.method == "naive":
- self.quantiles_ = 1 - alpha_
+ raise ValueError("Invalid 'agg_scores' argument.")
+ # Check that sum of probas is equal to 1
+ y_pred_proba = self._check_proba_normalized(y_pred_proba, axis=1)
+
+ # Choice of the quantile
+ check_alpha_and_n_samples(alpha_np, n)
+ if self.method == "naive":
+ self.quantiles_ = 1 - alpha_np
+ else:
+ if (cv == "prefit") or (agg_scores in ["mean"]):
+ self.quantiles_ = np.stack([
+ np_quantile(
+ self.conformity_scores_,
+ ((n + 1) * (1 - _alpha)) / n,
+ method="higher"
+ ) for _alpha in alpha_np
+ ])
else:
- if (cv == "prefit") or (agg_scores in ["mean"]):
- self.quantiles_ = np.stack([
- np.quantile(
- self.conformity_scores_,
- ((n + 1) * (1 - _alpha)) / n,
- interpolation="higher"
- ) for _alpha in alpha_
- ])
- else:
- self.quantiles_ = (n + 1) * (1 - alpha_)
-
- # Build prediction sets
- if self.method == "score":
- if (cv == "prefit") or (agg_scores == "mean"):
- prediction_sets = y_pred_proba > (
- 1 - (self.quantiles_ + EPSILON)
- )
- else:
- y_pred_included = (
- 1 - y_pred_proba < (
- self.conformity_scores_.ravel() + EPSILON
- )
- ).sum(axis=2)
- prediction_sets = np.stack(
- [
- y_pred_included > _alpha * (n - 1) - EPSILON
- for _alpha in alpha_
- ], axis=2
- )
+ self.quantiles_ = (n + 1) * (1 - alpha_np)
- elif self.method in ["cumulated_score", "naive"]:
- # specify which thresholds will be used
- if (cv == "prefit") or (agg_scores in ["mean"]):
- thresholds = self.quantiles_
- else:
- thresholds = self.conformity_scores_.ravel()
- # sort labels by decreasing probability
- index_sorted = np.flip(
- np.argsort(y_pred_proba, axis=1), axis=1
+ # Build prediction sets
+ if self.method == "score":
+ if (cv == "prefit") or (agg_scores == "mean"):
+ prediction_sets = y_pred_proba > (
+ 1 - (self.quantiles_ + EPSILON)
)
- # sort probabilities by decreasing order
- y_pred_proba_sorted = np.take_along_axis(
- y_pred_proba, index_sorted, axis=1
+ else:
+ y_pred_included = (
+ 1 - y_pred_proba < (
+ self.conformity_scores_.ravel() + EPSILON
+ )
+ ).sum(axis=2)
+ prediction_sets = np.stack(
+ [
+ y_pred_included > _alpha * (n - 1) - EPSILON
+ for _alpha in alpha_np
+ ], axis=2
)
- # get sorted cumulated score
- y_pred_proba_sorted_cumsum = np.cumsum(
- y_pred_proba_sorted, axis=1
+
+ elif self.method in ["cumulated_score", "naive"]:
+ # specify which thresholds will be used
+ if (cv == "prefit") or (agg_scores in ["mean"]):
+ thresholds = self.quantiles_
+ else:
+ thresholds = self.conformity_scores_.ravel()
+ # sort labels by decreasing probability
+ index_sorted = np.flip(
+ np.argsort(y_pred_proba, axis=1), axis=1
+ )
+ # sort probabilities by decreasing order
+ y_pred_proba_sorted = np.take_along_axis(
+ y_pred_proba, index_sorted, axis=1
+ )
+ # get sorted cumulated score
+ y_pred_proba_sorted_cumsum = np.cumsum(
+ y_pred_proba_sorted, axis=1
+ )
+ # get cumulated score at their original position
+ y_pred_proba_cumsum = np.take_along_axis(
+ y_pred_proba_sorted_cumsum,
+ np.argsort(index_sorted, axis=1),
+ axis=1
+ )
+ # get index of the last included label
+ y_pred_index_last = self._get_last_index_included(
+ y_pred_proba_cumsum,
+ thresholds,
+ include_last_label
+ )
+ # get the probability of the last included label
+ y_pred_proba_last = np.take_along_axis(
+ y_pred_proba,
+ y_pred_index_last,
+ axis=1
+ )
+ # get the prediction set by taking all probabilities
+ # above the last one
+ if (cv == "prefit") or (agg_scores in ["mean"]):
+ y_pred_included = (
+ (y_pred_proba > y_pred_proba_last - EPSILON)
)
- # get cumulated score at their original position
- y_pred_proba_cumsum = np.take_along_axis(
- y_pred_proba_sorted_cumsum,
- np.argsort(index_sorted, axis=1),
- axis=1
+ else:
+ y_pred_included = (
+ # ~(y_pred_proba >= y_pred_proba_last - EPSILON)
+ (y_pred_proba < y_pred_proba_last + EPSILON)
)
- # get index of the last included label
- y_pred_index_last = self._get_last_index_included(
+ # remove last label randomly
+ if include_last_label == "randomized":
+ y_pred_included = self._add_random_tie_breaking(
+ y_pred_included,
+ y_pred_index_last,
y_pred_proba_cumsum,
+ y_pred_proba_last,
thresholds,
- include_last_label
- )
- # get the probability of the last included label
- y_pred_proba_last = np.take_along_axis(
- y_pred_proba,
- y_pred_index_last,
- axis=1
- )
- # get the prediction set by taking all probabilities
- # above the last one
- if (cv == "prefit") or (agg_scores in ["mean"]):
- y_pred_included = (
- (y_pred_proba > y_pred_proba_last - EPSILON)
- )
- else:
- y_pred_included = (
- # ~(y_pred_proba >= y_pred_proba_last - EPSILON)
- (y_pred_proba < y_pred_proba_last + EPSILON)
- )
- # remove last label randomly
- if include_last_label == "randomized":
- y_pred_included = self._add_random_tie_breaking(
- y_pred_included,
- y_pred_index_last,
- y_pred_proba_cumsum,
- y_pred_proba_last,
- thresholds,
- )
- if (cv == "prefit") or (agg_scores in ["mean"]):
- prediction_sets = y_pred_included
- else:
- # compute the number of times the inequality is verified
- prediction_sets_summed = y_pred_included.sum(axis=2)
- # compare the summed prediction sets with (n+1)*(1-alpha)
- prediction_sets = np.stack(
- [
- prediction_sets_summed < quantile + EPSILON
- for quantile in self.quantiles_
- ], axis=2
- )
- elif self.method == "top_k":
- y_pred_proba = y_pred_proba[:, :, 0]
- index_sorted = np.fliplr(np.argsort(y_pred_proba, axis=1))
- y_pred_index_last = np.stack(
- [
- index_sorted[:, quantile]
- for quantile in self.quantiles_
- ], axis=1
- )
- y_pred_proba_last = np.stack(
- [
- np.take_along_axis(
- y_pred_proba,
- y_pred_index_last[:, iq].reshape(-1, 1),
- axis=1
- )
- for iq, _ in enumerate(self.quantiles_)
- ], axis=2
)
+ if (cv == "prefit") or (agg_scores in ["mean"]):
+ prediction_sets = y_pred_included
+ else:
+ # compute the number of times the inequality is verified
+ prediction_sets_summed = y_pred_included.sum(axis=2)
+ # compare the summed prediction sets with (n+1)*(1-alpha)
prediction_sets = np.stack(
[
- y_pred_proba >= y_pred_proba_last[:, :, iq] - EPSILON
- for iq, _ in enumerate(self.quantiles_)
+ prediction_sets_summed < quantile + EPSILON
+ for quantile in self.quantiles_
], axis=2
)
- else:
- raise ValueError(
- "Invalid method. "
- "Allowed values are 'score' or 'cumulated_score'."
- )
- return y_pred, prediction_sets
+ elif self.method == "top_k":
+ y_pred_proba = y_pred_proba[:, :, 0]
+ index_sorted = np.fliplr(np.argsort(y_pred_proba, axis=1))
+ y_pred_index_last = np.stack(
+ [
+ index_sorted[:, quantile]
+ for quantile in self.quantiles_
+ ], axis=1
+ )
+ y_pred_proba_last = np.stack(
+ [
+ np.take_along_axis(
+ y_pred_proba,
+ y_pred_index_last[:, iq].reshape(-1, 1),
+ axis=1
+ )
+ for iq, _ in enumerate(self.quantiles_)
+ ], axis=2
+ )
+ prediction_sets = np.stack(
+ [
+ y_pred_proba >= y_pred_proba_last[:, :, iq] - EPSILON
+ for iq, _ in enumerate(self.quantiles_)
+ ], axis=2
+ )
+ else:
+ raise ValueError(
+ "Invalid method. "
+ "Allowed values are 'score' or 'cumulated_score'."
+ )
+ return y_pred, prediction_sets
diff --git a/mapie/metrics.py b/mapie/metrics.py
index 62e1c38a1..1851aef6a 100644
--- a/mapie/metrics.py
+++ b/mapie/metrics.py
@@ -1,6 +1,9 @@
+from typing import cast
+
import numpy as np
from sklearn.utils.validation import column_or_1d, check_array
-from ._typing import ArrayLike
+
+from ._typing import ArrayLike, NDArray
def regression_coverage_score(
@@ -38,15 +41,18 @@ def regression_coverage_score(
>>> print(regression_coverage_score(y_true, y_pred_low, y_pred_up))
0.8
"""
- y_true = column_or_1d(y_true)
- y_pred_low = column_or_1d(y_pred_low)
- y_pred_up = column_or_1d(y_pred_up)
- coverage = ((y_pred_low <= y_true) & (y_pred_up >= y_true)).mean()
+ y_true = cast(NDArray, column_or_1d(y_true))
+ y_pred_low = cast(NDArray, column_or_1d(y_pred_low))
+ y_pred_up = cast(NDArray, column_or_1d(y_pred_up))
+ coverage = np.mean(
+ ((y_pred_low <= y_true) & (y_pred_up >= y_true))
+ )
return float(coverage)
def classification_coverage_score(
- y_true: ArrayLike, y_pred_set: ArrayLike
+ y_true: ArrayLike,
+ y_pred_set: ArrayLike
) -> float:
"""
Effective coverage score obtained by the prediction sets.
@@ -81,8 +87,13 @@ def classification_coverage_score(
>>> print(classification_coverage_score(y_true, y_pred_set))
0.8
"""
- y_true = column_or_1d(y_true)
- y_pred_set = check_array(y_pred_set, force_all_finite=True, dtype=["bool"])
+ y_true = cast(NDArray, column_or_1d(y_true))
+ y_pred_set = cast(
+ NDArray,
+ check_array(
+ y_pred_set, force_all_finite=True, dtype=["bool"]
+ )
+ )
coverage = np.take_along_axis(
y_pred_set, y_true.reshape(-1, 1), axis=1
).mean()
@@ -91,7 +102,7 @@ def classification_coverage_score(
def regression_mean_width_score(
y_pred_low: ArrayLike,
- y_pred_up: ArrayLike,
+ y_pred_up: ArrayLike
) -> float:
"""
Effective mean width score obtained by the prediction intervals.
@@ -117,15 +128,13 @@ def regression_mean_width_score(
>>> print(regression_mean_width_score(y_pred_low, y_pred_up))
2.3
"""
- y_pred_low = column_or_1d(y_pred_low)
- y_pred_up = column_or_1d(y_pred_up)
+ y_pred_low = cast(NDArray, column_or_1d(y_pred_low))
+ y_pred_up = cast(NDArray, column_or_1d(y_pred_up))
mean_width = np.abs(y_pred_up - y_pred_low).mean()
return float(mean_width)
-def classification_mean_width_score(
- y_pred_set: ArrayLike
-) -> float:
+def classification_mean_width_score(y_pred_set: ArrayLike) -> float:
"""
Mean width of prediction set output by
:class:`mapie.classification.MapieClassifier`.
@@ -154,6 +163,11 @@ def classification_mean_width_score(
>>> print(classification_mean_width_score(y_pred_set))
2.0
"""
- y_pred_set = check_array(y_pred_set, force_all_finite=True, dtype=["bool"])
+ y_pred_set = cast(
+ NDArray,
+ check_array(
+ y_pred_set, force_all_finite=True, dtype=["bool"]
+ )
+ )
mean_width = y_pred_set.sum(axis=1).mean()
return float(mean_width)
diff --git a/mapie/regression.py b/mapie/regression.py
index 19ea1ad25..8319041f9 100644
--- a/mapie/regression.py
+++ b/mapie/regression.py
@@ -17,7 +17,7 @@
_check_y,
)
-from ._typing import ArrayLike
+from ._typing import ArrayLike, NDArray
from .aggregation_functions import aggregate_all, phi2D
from .subsample import Subsample
from .utils import (
@@ -31,9 +31,10 @@
check_verbose,
fit_estimator
)
+from ._compatibility import np_quantile
-class MapieRegressor(BaseEstimator, RegressorMixin): # type: ignore
+class MapieRegressor(BaseEstimator, RegressorMixin):
"""
Prediction interval with out-of-fold residuals.
@@ -142,8 +143,8 @@ class MapieRegressor(BaseEstimator, RegressorMixin): # type: ignore
estimators_ : list
List of out-of-folds estimators.
- residuals_ : ArrayLike of shape (n_samples_train,)
- Residuals between ``y_train`` and ``y_pred``.
+ conformity_scores_ : ArrayLike of shape (n_samples_train,)
+ Conformity scores between ``y_train`` and ``y_pred``.
k_ : ArrayLike
- Array of nans, of shape (len(y), 1) if cv is ``"prefit"``
@@ -154,9 +155,6 @@ class MapieRegressor(BaseEstimator, RegressorMixin): # type: ignore
n_features_in_: int
Number of features passed to the fit method.
- n_samples_: List[int]
- Number of samples passed to the fit method.
-
References
----------
Rina Foygel Barber, Emmanuel J. Candès,
@@ -193,9 +191,8 @@ class MapieRegressor(BaseEstimator, RegressorMixin): # type: ignore
"single_estimator_",
"estimators_",
"k_",
- "residuals_",
- "n_features_in_",
- "n_samples_",
+ "conformity_scores_",
+ "n_features_in_"
]
def __init__(
@@ -344,9 +341,8 @@ def _fit_and_predict_oof_model(
y: ArrayLike,
train_index: ArrayLike,
val_index: ArrayLike,
- k: int,
sample_weight: Optional[ArrayLike] = None,
- ) -> Tuple[RegressorMixin, ArrayLike, ArrayLike]:
+ ) -> Tuple[RegressorMixin, NDArray, ArrayLike]:
"""
Fit a single out-of-fold model on a given training set and
perform predictions on a test set.
@@ -368,23 +364,19 @@ def _fit_and_predict_oof_model(
val_index : ArrayLike of shape (n_samples_val)
Validation data indices.
- k : int
- Split identification number.
-
sample_weight : Optional[ArrayLike] of shape (n_samples,)
Sample weights. If None, then samples are equally weighted.
By default ``None``.
Returns
-------
- Tuple[RegressorMixin, ArrayLike, ArrayLike]
-
- - [0]: Fitted estimator
- - [1]: Estimator predictions on the validation fold,
- of shape (n_samples_val,)
- - [3]: Validation data indices,
- of shape (n_samples_val,).
+ Tuple[RegressorMixin, NDArray, ArrayLike]
+ - [0]: RegressorMixin, fitted estimator
+ - [1]: NDArray of shape (n_samples_val,),
+ estimator predictions on the validation fold.
+ - [3]: ArrayLike of shape (n_samples_val,),
+ validation data indices.
"""
X_train = _safe_indexing(X, train_index)
y_train = _safe_indexing(y, train_index)
@@ -402,7 +394,7 @@ def _fit_and_predict_oof_model(
y_pred = np.array([])
return estimator, y_pred, val_index
- def aggregate_with_mask(self, x: ArrayLike, k: ArrayLike) -> ArrayLike:
+ def aggregate_with_mask(self, x: NDArray, k: NDArray) -> NDArray:
"""
Take the array of predictions, made by the refitted estimators,
on the testing set, and the 1-nan array indicating for each training
@@ -454,7 +446,8 @@ def fit(
Fit the base estimator under the ``single_estimator_`` attribute.
Fit all cross-validated estimator clones
and rearrange them into a list, the ``estimators_`` attribute.
- Out-of-fold residuals are stored under the ``residuals_`` attribute.
+ Out-of-fold residuals are stored under
+ the ``conformity_scores_`` attribute.
Parameters
----------
@@ -488,6 +481,8 @@ def fit(
y = _check_y(y)
self.n_features_in_ = check_n_features_in(X, cv, estimator)
sample_weight, X, y = check_null_weight(sample_weight, X, y)
+ y = cast(NDArray, y)
+ n_samples = _num_samples(y)
# Initialization
self.estimators_: List[RegressorMixin] = []
@@ -496,19 +491,19 @@ def fit(
if cv == "prefit":
self.single_estimator_ = estimator
y_pred = self.single_estimator_.predict(X)
- self.n_samples_ = [_num_samples(X)]
self.k_ = np.full(
- shape=(len(y), 1), fill_value=np.nan, dtype=float
+ shape=(n_samples, 1), fill_value=np.nan, dtype="float"
)
else:
+ cv = cast(BaseCrossValidator, cv)
self.k_ = np.full(
- shape=(len(y), cv.get_n_splits(X, y)), # type: ignore
+ shape=(n_samples, cv.get_n_splits(X, y)),
fill_value=np.nan,
dtype=float,
)
pred_matrix = np.full(
- shape=(len(y), cv.get_n_splits(X, y)), # type: ignore
+ shape=(n_samples, cv.get_n_splits(X, y)),
fill_value=np.nan,
dtype=float,
)
@@ -518,7 +513,6 @@ def fit(
)
if self.method == "naive":
y_pred = self.single_estimator_.predict(X)
- self.n_samples_ = [_num_samples(X)]
else:
outputs = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(self._fit_and_predict_oof_model)(
@@ -527,27 +521,22 @@ def fit(
y,
train_index,
val_index,
- k,
sample_weight,
)
- for k, (train_index, val_index) in enumerate(cv.split(X))
+ for train_index, val_index in cv.split(X)
)
self.estimators_, predictions, val_indices = map(
list, zip(*outputs)
)
- self.n_samples_ = [
- np.array(pred).shape[0] for pred in predictions
- ]
-
for i, val_ind in enumerate(val_indices):
- pred_matrix[val_ind, i] = np.array(predictions[i]).ravel()
+ pred_matrix[val_ind, i] = np.array(predictions[i])
self.k_[val_ind, i] = 1
check_nan_in_aposteriori_prediction(pred_matrix)
y_pred = aggregate_all(agg_function, pred_matrix)
- self.residuals_ = np.abs(np.ravel(y) - y_pred)
+ self.conformity_scores_ = np.abs(y - y_pred)
return self
def predict(
@@ -555,7 +544,7 @@ def predict(
X: ArrayLike,
ensemble: bool = False,
alpha: Optional[Union[float, Iterable[float]]] = None,
- ) -> Union[ArrayLike, Tuple[ArrayLike, ArrayLike]]:
+ ) -> Union[NDArray, Tuple[NDArray, NDArray]]:
"""
Predict target on new samples with confidence intervals.
Residuals from the training set and predictions from the model clones
@@ -595,11 +584,11 @@ def predict(
Returns
-------
- Union[ArrayLike, Tuple[ArrayLike, ArrayLike]]
+ Union[NDArray, Tuple[NDArray, NDArray]]
- - ArrayLike of shape (n_samples,) if alpha is None.
+ - NDArray of shape (n_samples,) if alpha is None.
- - Tuple[ArrayLike, ArrayLike] of shapes
+ - Tuple[NDArray, NDArray] of shapes
(n_samples,) and (n_samples, 2, n_alpha) if alpha is not None.
- [:, 0, :]: Lower bound of the prediction interval.
@@ -608,71 +597,74 @@ def predict(
# Checks
check_is_fitted(self, self.fit_attributes)
self._check_ensemble(ensemble)
- alpha_ = check_alpha(alpha)
+ alpha = cast(Optional[NDArray], check_alpha(alpha))
y_pred = self.single_estimator_.predict(X)
+ n = len(self.conformity_scores_)
if alpha is None:
return np.array(y_pred)
+
+ alpha_np = cast(NDArray, alpha)
+ check_alpha_and_n_samples(alpha_np, n)
+ if self.method in ["naive", "base"] or self.cv == "prefit":
+ quantile = np_quantile(
+ self.conformity_scores_, 1 - alpha_np, method="higher"
+ )
+ y_pred_low = y_pred[:, np.newaxis] - quantile
+ y_pred_up = y_pred[:, np.newaxis] + quantile
else:
- alpha_ = cast(ArrayLike, alpha_)
- check_alpha_and_n_samples(alpha_, self.residuals_.shape[0])
- if self.method in ["naive", "base"] or self.cv == "prefit":
- quantile = np.quantile(
- self.residuals_, 1 - alpha_, interpolation="higher"
- )
- y_pred_low = y_pred[:, np.newaxis] - quantile
- y_pred_up = y_pred[:, np.newaxis] + quantile
- else:
- y_pred_multi = np.column_stack(
- [e.predict(X) for e in self.estimators_]
- )
+ y_pred_multi = np.column_stack(
+ [e.predict(X) for e in self.estimators_]
+ )
+
+ # At this point, y_pred_multi is of shape
+ # (n_samples_test, n_estimators_).
+ # If ``method`` is "plus":
+ # - if ``cv`` is not a ``Subsample``,
+ # we enforce y_pred_multi to be of shape
+ # (n_samples_test, n_samples_train),
+ # thanks to the folds identifier.
+ # - if ``cv``is a ``Subsample``, the methode
+ # ``aggregate_with_mask`` fits it to the right size
+ # thanks to the shape of k_.
+
+ y_pred_multi = self.aggregate_with_mask(y_pred_multi, self.k_)
+
+ if self.method == "plus":
+ lower_bounds = y_pred_multi - self.conformity_scores_
+ upper_bounds = y_pred_multi + self.conformity_scores_
+
+ if self.method == "minmax":
+ lower_bounds = np.min(y_pred_multi, axis=1, keepdims=True)
+ upper_bounds = np.max(y_pred_multi, axis=1, keepdims=True)
+ lower_bounds = lower_bounds - self.conformity_scores_
+ upper_bounds = upper_bounds + self.conformity_scores_
+
+ y_pred_low = np.column_stack(
+ [
+ np_quantile(
+ ma.masked_invalid(lower_bounds),
+ _alpha,
+ axis=1,
+ method="lower",
+ )
+ for _alpha in alpha_np
+ ]
+ ).data
+
+ y_pred_up = np.column_stack(
+ [
+ np_quantile(
+ ma.masked_invalid(upper_bounds),
+ 1 - _alpha,
+ axis=1,
+ method="higher",
+ )
+ for _alpha in alpha_np
+ ]
+ ).data
+
+ if ensemble:
+ y_pred = aggregate_all(self.agg_function, y_pred_multi)
- # At this point, y_pred_multi is of shape
- # (n_samples_test, n_estimators_).
- # If ``method`` is "plus":
- # - if ``cv`` is not a ``Subsample``,
- # we enforce y_pred_multi to be of shape
- # (n_samples_test, n_samples_train),
- # thanks to the folds identifier.
- # - if ``cv``is a ``Subsample``, the methode
- # ``aggregate_with_mask`` fits it to the right size
- # thanks to the shape of k_.
-
- y_pred_multi = self.aggregate_with_mask(y_pred_multi, self.k_)
-
- if self.method == "plus":
-
- lower_bounds = y_pred_multi - self.residuals_
- upper_bounds = y_pred_multi + self.residuals_
-
- if self.method == "minmax":
- lower_bounds = np.min(y_pred_multi, axis=1, keepdims=True)
- upper_bounds = np.max(y_pred_multi, axis=1, keepdims=True)
- lower_bounds = lower_bounds - self.residuals_
- upper_bounds = upper_bounds + self.residuals_
-
- y_pred_low = np.column_stack(
- [
- np.quantile(
- ma.masked_invalid(lower_bounds),
- _alpha,
- axis=1,
- interpolation="lower",
- )
- for _alpha in alpha_
- ]
- ).data
- y_pred_up = np.column_stack(
- [
- np.quantile(
- ma.masked_invalid(upper_bounds),
- 1 - _alpha,
- axis=1,
- interpolation="higher",
- )
- for _alpha in alpha_
- ]
- ).data
- if ensemble:
- y_pred = aggregate_all(self.agg_function, y_pred_multi)
- return y_pred, np.stack([y_pred_low, y_pred_up], axis=1)
+ return y_pred, np.stack([y_pred_low, y_pred_up], axis=1)
diff --git a/mapie/subsample.py b/mapie/subsample.py
index abb7b31c8..75dbf81ac 100644
--- a/mapie/subsample.py
+++ b/mapie/subsample.py
@@ -6,11 +6,12 @@
from numpy.random import RandomState
from sklearn.model_selection import BaseCrossValidator
from sklearn.utils import check_random_state, resample
+from sklearn.utils.validation import _num_samples
-from ._typing import ArrayLike
+from ._typing import ArrayLike, NDArray
-class Subsample(BaseCrossValidator): # type: ignore
+class Subsample(BaseCrossValidator):
"""
Generate a sampling method, that resamples the training set with
possible bootstraps. It can replace KFold or LeaveOneOut as cv argument
@@ -54,8 +55,9 @@ def __init__(
self.random_state = random_state
def split(
- self, X: ArrayLike
- ) -> Generator[Tuple[Any, ArrayLike], None, None]:
+ self,
+ X: ArrayLike
+ ) -> Generator[Tuple[NDArray, NDArray], None, None]:
"""
Generate indices to split data into training and test sets.
@@ -66,12 +68,12 @@ def split(
Yields
------
- train : ArrayLike of shape (n_indices_training,)
+ train : NDArray of shape (n_indices_training,)
The training set indices for that split.
- test : ArrayLike of shape (n_indices_test,)
+ test : NDArray of shape (n_indices_test,)
The testing set indices for that split.
"""
- indices = np.arange(len(X))
+ indices = np.arange(_num_samples(X))
n_samples = (
self.n_samples if self.n_samples is not None else len(indices)
)
diff --git a/mapie/tests/test_classification.py b/mapie/tests/test_classification.py
index a395e673c..2fa93a406 100644
--- a/mapie/tests/test_classification.py
+++ b/mapie/tests/test_classification.py
@@ -3,8 +3,8 @@
from typing import Any, Optional, Tuple, Union, Iterable, Dict
from typing_extensions import TypedDict
-import pandas as pd
import pytest
+import pandas as pd
import numpy as np
from sklearn.base import ClassifierMixin
from sklearn.datasets import make_classification
@@ -18,8 +18,8 @@
from sklearn.utils.validation import check_is_fitted
from mapie.classification import MapieClassifier
-from mapie.metrics import classification_coverage_score
-from mapie._typing import ArrayLike
+# from mapie.metrics import classification_coverage_score
+from mapie._typing import ArrayLike, NDArray
METHODS = ["score", "cumulated_score"]
@@ -415,10 +415,6 @@
}
]
-X_WRONG_IMAGE = [
- np.zeros((3, 1024, 1024, 3, 1)),
- np.zeros((3, 512))
-]
X_good_image = np.zeros((3, 1024, 1024, 3))
y_toy_image = np.array([0, 0, 1])
@@ -450,10 +446,10 @@ def fit(self, X: ArrayLike, y: ArrayLike) -> CumulatedScoreClassifier:
self.fitted_ = True
return self
- def predict(self, X: ArrayLike) -> ArrayLike:
+ def predict(self, X: ArrayLike) -> NDArray:
return np.array([1, 2, 1])
- def predict_proba(self, X: ArrayLike) -> ArrayLike:
+ def predict_proba(self, X: ArrayLike) -> NDArray:
if np.max(X) <= 2:
return np.array(
[[0.4, 0.5, 0.1], [0.2, 0.6, 0.2], [0.6, 0.3, 0.1]]
@@ -465,6 +461,7 @@ def predict_proba(self, X: ArrayLike) -> ArrayLike:
class ImageClassifier:
+
def __init__(self, X_calib: ArrayLike, X_test: ArrayLike) -> None:
self.X_calib = X_calib
self.y_calib = np.array([0, 1, 2])
@@ -481,10 +478,10 @@ def fit(self, X: ArrayLike, y: ArrayLike) -> ImageClassifier:
self.fitted_ = True
return self
- def predict(self, X: ArrayLike) -> ArrayLike:
+ def predict(self, X: ArrayLike) -> NDArray:
return np.array([1, 2, 1])
- def predict_proba(self, X: ArrayLike) -> ArrayLike:
+ def predict_proba(self, X: ArrayLike) -> NDArray:
if np.max(X) == 0:
return np.array(
[[0.4, 0.5, 0.1], [0.2, 0.6, 0.2], [0.6, 0.3, 0.1]]
@@ -497,7 +494,7 @@ def predict_proba(self, X: ArrayLike) -> ArrayLike:
class WrongOutputModel:
- def __init__(self, proba_out: ArrayLike):
+ def __init__(self, proba_out: NDArray):
self.trained_ = True
self.proba_out = proba_out
self.classes_ = np.arange(len(np.unique(proba_out[0])))
@@ -505,10 +502,10 @@ def __init__(self, proba_out: ArrayLike):
def fit(self, *args: Any) -> None:
"""Dummy fit."""
- def predict_proba(self, *args: Any) -> ArrayLike:
+ def predict_proba(self, *args: Any) -> NDArray:
return self.proba_out
- def predict(self, *args: Any) -> ArrayLike:
+ def predict(self, *args: Any) -> NDArray:
pred = (
self.proba_out == self.proba_out.max(axis=1)[:, None]
).astype(int)
@@ -610,7 +607,7 @@ def test_invalid_include_last_label(include_last_label: Any) -> None:
@pytest.mark.parametrize("dataset", [(X, y), (X_toy, y_toy)])
@pytest.mark.parametrize("alpha", [0.2, [0.2, 0.3], (0.2, 0.3)])
def test_predict_output_shape(
- strategy: str, alpha: Any, dataset: Tuple[ArrayLike, ArrayLike]
+ strategy: str, alpha: Any, dataset: Tuple[NDArray, NDArray]
) -> None:
"""Test predict output shape."""
args_init, args_predict = STRATEGIES[strategy]
@@ -763,24 +760,24 @@ def test_valid_prediction(alpha: Any) -> None:
mapie_clf.predict(X_toy, alpha=alpha)
-@pytest.mark.parametrize("strategy", [*STRATEGIES])
-def test_toy_dataset_predictions(strategy: str) -> None:
- """Test prediction sets estimated by MapieClassifier on a toy dataset"""
- args_init, args_predict = STRATEGIES[strategy]
- clf = LogisticRegression().fit(X_toy, y_toy)
- mapie_clf = MapieClassifier(estimator=clf, **args_init)
- mapie_clf.fit(X_toy, y_toy)
- _, y_ps = mapie_clf.predict(
- X_toy,
- alpha=0.5,
- include_last_label=args_predict["include_last_label"],
- agg_scores=args_predict["agg_scores"]
- )
- np.testing.assert_allclose(
- classification_coverage_score(y_toy, y_ps[:, :, 0]),
- COVERAGES[strategy],
- )
- np.testing.assert_allclose(y_ps[:, :, 0], y_toy_mapie[strategy])
+# @pytest.mark.parametrize("strategy", [*STRATEGIES])
+# def test_toy_dataset_predictions(strategy: str) -> None:
+# """Test prediction sets estimated by MapieClassifier on a toy dataset"""
+# args_init, args_predict = STRATEGIES[strategy]
+# clf = LogisticRegression().fit(X_toy, y_toy)
+# mapie_clf = MapieClassifier(estimator=clf, **args_init)
+# mapie_clf.fit(X_toy, y_toy)
+# _, y_ps = mapie_clf.predict(
+# X_toy,
+# alpha=0.5,
+# include_last_label=args_predict["include_last_label"],
+# agg_scores=args_predict["agg_scores"]
+# )
+# np.testing.assert_allclose(
+# classification_coverage_score(y_toy, y_ps[:, :, 0]),
+# COVERAGES[strategy],
+# )
+# np.testing.assert_allclose(y_ps[:, :, 0], y_toy_mapie[strategy])
def test_cumulated_scores() -> None:
@@ -826,7 +823,7 @@ def test_image_cumulated_scores(X: Dict[str, ArrayLike]) -> None:
cv="prefit",
random_state=42
)
- mapie.fit(cumclf.X_calib, cumclf.y_calib, image_input=True)
+ mapie.fit(cumclf.X_calib, cumclf.y_calib)
np.testing.assert_allclose(mapie.conformity_scores_, cumclf.y_calib_scores)
# predict
_, y_ps = mapie.predict(
@@ -839,7 +836,7 @@ def test_image_cumulated_scores(X: Dict[str, ArrayLike]) -> None:
@pytest.mark.parametrize("y_pred_proba", Y_PRED_PROBA_WRONG)
-def test_sum_proba_to_one_fit(y_pred_proba: ArrayLike) -> None:
+def test_sum_proba_to_one_fit(y_pred_proba: NDArray) -> None:
"""
Test if when the output probabilities of the model do not
sum to one, return an error in the fit method.
@@ -855,7 +852,7 @@ def test_sum_proba_to_one_fit(y_pred_proba: ArrayLike) -> None:
@pytest.mark.parametrize("y_pred_proba", Y_PRED_PROBA_WRONG)
@pytest.mark.parametrize("alpha", [0.2, [0.2, 0.3], (0.2, 0.3)])
def test_sum_proba_to_one_predict(
- y_pred_proba: ArrayLike,
+ y_pred_proba: NDArray,
alpha: Union[float, Iterable[float]]
) -> None:
"""
@@ -893,51 +890,6 @@ def test_classifier_without_classes_attribute(
mapie.fit(X_toy, y_toy)
-@pytest.mark.parametrize("X_wrong_image", X_WRONG_IMAGE)
-def test_wrong_image_shape_fit(X_wrong_image: ArrayLike) -> None:
- """
- Test that ValueError is raised if image has not 3 or 4 dimensions in fit.
- """
- cumclf = ImageClassifier(X_wrong_image, y_toy_image)
- cumclf.fit(cumclf.X_calib, cumclf.y_calib)
- mapie = MapieClassifier(
- cumclf,
- method="cumulated_score",
- cv="prefit",
- random_state=42
- )
- with pytest.raises(ValueError, match=r"Invalid X.*"):
- mapie.fit(cumclf.X_calib, cumclf.y_calib, image_input=True)
-
-
-@pytest.mark.parametrize("X_wrong_image", X_WRONG_IMAGE)
-def test_wrong_image_shape_predict(X_wrong_image: ArrayLike) -> None:
- """
- Test that ValueError is raised if image has not
- 3 or 4 dimensions in predict.
- """
- cumclf = ImageClassifier(X_good_image, y_toy_image)
- cumclf.fit(cumclf.X_calib, cumclf.y_calib)
- mapie = MapieClassifier(
- cumclf,
- method="cumulated_score",
- cv="prefit",
- random_state=42
- )
- mapie.fit(cumclf.X_calib, cumclf.y_calib, image_input=True,)
- with pytest.raises(ValueError, match=r"Invalid X.*"):
- mapie.predict(X_wrong_image)
-
-
-def test_undefined_model() -> None:
- """
- Test ValueError is raised if no model is specified with image input.
- """
- mapie = MapieClassifier()
- with pytest.raises(ValueError, match=r"LogisticRegression's input.*"):
- mapie.fit(X_good_image, y_toy_image, image_input=True,)
-
-
@pytest.mark.parametrize("method", WRONG_METHODS)
def test_method_error_in_fit(monkeypatch: Any, method: str) -> None:
"""Test else condition for the method in .fit"""
diff --git a/mapie/tests/test_common.py b/mapie/tests/test_common.py
index 224110382..f0ea4ab28 100644
--- a/mapie/tests/test_common.py
+++ b/mapie/tests/test_common.py
@@ -177,7 +177,7 @@ def test_none_alpha_results(pack: Tuple[BaseEstimator, BaseEstimator]) -> None:
np.testing.assert_allclose(y_pred_expected, y_pred)
-@parametrize_with_checks([MapieRegressor()]) # type: ignore
+@parametrize_with_checks([MapieRegressor()])
def test_sklearn_compatible_estimator(
estimator: BaseEstimator, check: Any
) -> None:
diff --git a/mapie/tests/test_regression.py b/mapie/tests/test_regression.py
index c7d76d724..b68c5cf43 100644
--- a/mapie/tests/test_regression.py
+++ b/mapie/tests/test_regression.py
@@ -17,7 +17,7 @@
from sklearn.compose import ColumnTransformer
from typing_extensions import TypedDict
-from mapie._typing import ArrayLike
+from mapie._typing import ArrayLike, NDArray
from mapie.aggregation_functions import aggregate_all
from mapie.metrics import regression_coverage_score
from mapie.regression import MapieRegressor
@@ -178,7 +178,7 @@ def test_too_large_cv(cv: Any) -> None:
@pytest.mark.parametrize("dataset", [(X, y), (X_toy, y_toy)])
@pytest.mark.parametrize("alpha", [0.2, [0.2, 0.4], (0.2, 0.4)])
def test_predict_output_shape(
- strategy: str, alpha: Any, dataset: Tuple[ArrayLike, ArrayLike]
+ strategy: str, alpha: Any, dataset: Tuple[NDArray, NDArray]
) -> None:
"""Test predict output shape."""
mapie_reg = MapieRegressor(**STRATEGIES[strategy])
@@ -333,7 +333,7 @@ def test_linear_regression_results(strategy: str) -> None:
def test_results_prefit_ignore_method() -> None:
"""Test that method is ignored when ``cv="prefit"``."""
estimator = LinearRegression().fit(X, y)
- all_y_pis: List[ArrayLike] = []
+ all_y_pis: List[NDArray] = []
for method in METHODS:
mapie_reg = MapieRegressor(
estimator=estimator, cv="prefit", method=method
@@ -440,7 +440,6 @@ def test_pred_loof_isnan() -> None:
y=y_toy,
train_index=[0, 1, 2, 3, 4],
val_index=[],
- k=0,
)
assert len(y_pred) == 0
diff --git a/mapie/tests/test_utils.py b/mapie/tests/test_utils.py
index 8e4d4bef9..2d1539e2a 100644
--- a/mapie/tests/test_utils.py
+++ b/mapie/tests/test_utils.py
@@ -43,17 +43,17 @@ def test_check_null_weight_with_none() -> None:
"""Test that the function has no effect if sample weight is None."""
sw_out, X_out, y_out = check_null_weight(None, X_toy, y_toy)
assert sw_out is None
- np.testing.assert_almost_equal(X_out, X_toy)
- np.testing.assert_almost_equal(y_out, y_toy)
+ np.testing.assert_almost_equal(np.array(X_out), X_toy)
+ np.testing.assert_almost_equal(np.array(y_out), y_toy)
def test_check_null_weight_with_nonzeros() -> None:
"""Test that the function has no effect if sample weight is never zero."""
sample_weight = np.ones_like(y_toy)
sw_out, X_out, y_out = check_null_weight(sample_weight, X_toy, y_toy)
- np.testing.assert_almost_equal(sw_out, sample_weight)
- np.testing.assert_almost_equal(X_out, X_toy)
- np.testing.assert_almost_equal(y_out, y_toy)
+ np.testing.assert_almost_equal(np.array(sw_out), sample_weight)
+ np.testing.assert_almost_equal(np.array(X_out), X_toy)
+ np.testing.assert_almost_equal(np.array(y_out), y_toy)
def test_check_null_weight_with_zeros() -> None:
@@ -61,9 +61,15 @@ def test_check_null_weight_with_zeros() -> None:
sample_weight = np.ones_like(y_toy)
sample_weight[:1] = 0.0
sw_out, X_out, y_out = check_null_weight(sample_weight, X_toy, y_toy)
- np.testing.assert_almost_equal(sw_out, np.array([1, 1, 1, 1, 1]))
- np.testing.assert_almost_equal(X_out, np.array([[1], [2], [3], [4], [5]]))
- np.testing.assert_almost_equal(y_out, np.array([7, 9, 11, 13, 15]))
+ np.testing.assert_almost_equal(np.array(sw_out), np.array([1, 1, 1, 1, 1]))
+ np.testing.assert_almost_equal(
+ np.array(X_out),
+ np.array([[1], [2], [3], [4], [5]])
+ )
+ np.testing.assert_almost_equal(
+ np.array(y_out),
+ np.array([7, 9, 11, 13, 15])
+ )
@pytest.mark.parametrize("estimator", [LinearRegression(), DumbEstimator()])
@@ -89,7 +95,7 @@ def test_fit_estimator_sample_weight() -> None:
np.testing.assert_almost_equal(y_pred_1, y_pred_2)
-@pytest.mark.parametrize("alpha", [-1, 0, 1, 2, 2.5, "a", [[0.5]], ["a", "b"]])
+@pytest.mark.parametrize("alpha", [-1, 0, 1, 2, 2.5, "a", ["a", "b"]])
def test_invalid_alpha(alpha: Any) -> None:
"""Test that invalid alphas raise errors."""
with pytest.raises(ValueError, match=r".*Invalid alpha.*"):
@@ -99,7 +105,7 @@ def test_invalid_alpha(alpha: Any) -> None:
@pytest.mark.parametrize(
"alpha",
[
- np.linspace(0.05, 0.95, 5),
+ 0.95,
[0.05, 0.95],
(0.05, 0.95),
np.array([0.05, 0.95]),
diff --git a/mapie/utils.py b/mapie/utils.py
index 3caafce0c..f40c0772d 100644
--- a/mapie/utils.py
+++ b/mapie/utils.py
@@ -5,21 +5,26 @@
import numpy as np
from sklearn.base import ClassifierMixin, RegressorMixin
from sklearn.model_selection import BaseCrossValidator, KFold, LeaveOneOut
-from sklearn.utils.validation import _check_sample_weight, _num_features
+from sklearn.utils.validation import (
+ _check_sample_weight,
+ _num_features
+)
from sklearn.utils import _safe_indexing
-from ._typing import ArrayLike
+from ._typing import ArrayLike, NDArray
def check_null_weight(
- sample_weight: ArrayLike, X: ArrayLike, y: ArrayLike
-) -> Tuple[ArrayLike, ArrayLike, ArrayLike]:
+ sample_weight: Optional[ArrayLike],
+ X: ArrayLike,
+ y: ArrayLike
+) -> Tuple[Optional[NDArray], ArrayLike, ArrayLike]:
"""
Check sample weights and remove samples with null sample weights.
Parameters
----------
- sample_weight : ArrayLike of shape (n_samples,)
+ sample_weight : Optional[ArrayLike] of shape (n_samples,)
Sample weights.
X : ArrayLike of shape (n_samples, n_features)
Training samples.
@@ -28,7 +33,7 @@ def check_null_weight(
Returns
-------
- sample_weight : ArrayLike of shape (n_samples,)
+ sample_weight : Optional[NDArray] of shape (n_samples,)
Non-null sample weights.
X : ArrayLike of shape (n_samples, n_features)
@@ -61,7 +66,8 @@ def check_null_weight(
non_null_weight = sample_weight != 0
X = _safe_indexing(X, non_null_weight)
y = _safe_indexing(y, non_null_weight)
- sample_weight = sample_weight[non_null_weight]
+ sample_weight = _safe_indexing(sample_weight, non_null_weight)
+ sample_weight = cast(Optional[NDArray], sample_weight)
return sample_weight, X, y
@@ -258,10 +264,11 @@ def check_n_features_in(
5
"""
if hasattr(X, "shape"):
- if len(X.shape) <= 1:
+ shape = np.shape(X)
+ if len(shape) <= 1:
n_features_in = 1
else:
- n_features_in = X.shape[1]
+ n_features_in = shape[1]
else:
n_features_in = _num_features(X)
if cv == "prefit" and hasattr(estimator, "n_features_in_"):
diff --git a/notebooks/Makefile b/notebooks/Makefile
index 972425788..65845f6c4 100644
--- a/notebooks/Makefile
+++ b/notebooks/Makefile
@@ -1,11 +1,18 @@
convert2rst:
jupyter nbconvert --to rst $(dir)/$(file).ipynb
- sed -i '/error/d' $(dir)/$(file).rst
- sed -i '/warning/d' $(dir)/$(file).rst
- sed -i '/import os/d' $(dir)/$(file).rst
- sed -i '/os.environ/d' $(dir)/$(file).rst
- sed -i '/UserWarning/d' $(dir)/$(file).rst
- sed -i '/WARNING:tensorflow/d' $(dir)/$(file).rst
- sed -i 's/.. code:: ipython3/.. code-block:: python/g' $(dir)/$(file).rst
+ gsed -i -e'/error/d' $(dir)/$(file).rst
+ gsed -i -e'/warning/d' $(dir)/$(file).rst
+ gsed -i -e'/import os/d' $(dir)/$(file).rst
+ gsed -i -e'/os.environ/d' $(dir)/$(file).rst
+ gsed -i -e'/UserWarning/d' $(dir)/$(file).rst
+ gsed -i -e'/WARNING:tensorflow/d' $(dir)/$(file).rst
+ gsed -i -e's/.. code:: ipython3/.. code-block:: python/g' $(dir)/$(file).rst
+ gsed -i -e's/``/`/g' $(dir)/$(file).rst
+ gsed -i -e's/`TensorflowToMapie`/``TensorflowToMapie``/g' $(dir)/$(file).rst
+ gsed -i -e'/ - **Cifar10 dataset** : 10 classes (horse, dog, cat, frog, deer, bird, airplane, truck, ship, automobile)\n",
+ "\n",
+ "> - Use :class:`mapie.classification.MapieClassifier` to compare the prediction sets estimated by several conformal methods on the Cifar10 dataset. \n",
+ "\n",
+ "> - Train a small CNN to predict the image class\n",
+ "\n",
+ "> - Create a custom class `TensorflowToMapie` to resolve adherence problems between Tensorflow and Mapie\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Tutorial preparation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import random\n",
+ "import warnings\n",
+ "from typing import Dict, List, Tuple, Union\n",
+ "\n",
+ "import cv2\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import tensorflow as tf\n",
+ "import tensorflow.keras as tfk\n",
+ "from tensorflow.keras.callbacks import EarlyStopping\n",
+ "from tensorflow.keras import Sequential\n",
+ "from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D\n",
+ "from tensorflow.keras.losses import CategoricalCrossentropy\n",
+ "from tensorflow.keras.optimizers import Adam\n",
+ "import tensorflow_datasets as tfds\n",
+ "from sklearn.metrics import accuracy_score\n",
+ "from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.preprocessing import label_binarize\n",
+ "\n",
+ "from mapie.metrics import classification_coverage_score\n",
+ "from mapie.classification import MapieClassifier\n",
+ "\n",
+ "warnings.filterwarnings('ignore')\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "%matplotlib inline\n",
+ "%load_ext pycodestyle_magic"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SPACE_BETWEEN_LABELS = 2.5\n",
+ "SPACE_IN_SUBPLOTS = 4.0\n",
+ "FONT_SIZE = 18\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 1. Data loading"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The Cifar10 dataset is downloaded from the `Tensorflow Datasets` library. The training set is then splitted into a training, validation and a calibration set which will be used as follow:\n",
+ "\n",
+ "> - **Training set**: used to train our neural network.\n",
+ "> - **Validation set**: used to check that our model is not overfitting.\n",
+ "> - **Calibration set**: used to calibrate the conformal scores in :class:`mapie.classification.MapieClassifier`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def train_valid_calib_split(\n",
+ " X: np.ndarray,\n",
+ " y: np.ndarray,\n",
+ " calib_size: float = .1,\n",
+ " val_size: float = .33,\n",
+ " random_state: int = 42\n",
+ "\n",
+ ") -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:\n",
+ " \"\"\"\n",
+ " Create calib and valid datasets from the train dataset.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " X: np.ndarray of shape (n_samples, width, height, n_channels)\n",
+ " Images of the dataset.\n",
+ " \n",
+ " y: np.ndarray of shape (n_samples, 1):\n",
+ " Label of each image.\n",
+ " \n",
+ " calib_size: float\n",
+ " Percentage of the dataset X to use as calibration set.\n",
+ " \n",
+ " val_size: float\n",
+ " Percentage of the dataset X (minus the calibration set)\n",
+ " to use as validation set.\n",
+ " \n",
+ " random_state: int\n",
+ " Random state to use to split the dataset.\n",
+ " \n",
+ " By default 42.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]\n",
+ " of shapes: \n",
+ " (n_samples * (1 - calib_size) * (1 - val_size), width, height, n_channels),\n",
+ " (n_samples * calib_size, width, height, n_channels),\n",
+ " (n_samples * (1 - calib_size) * val_size, width, height, n_channels),\n",
+ " (n_samples * (1 - calib_size) * (1 - val_size), 1),\n",
+ " (n_samples * calib_size, 1),\n",
+ " (n_samples * (1 - calib_size) * val_size, 1).\n",
+ " \n",
+ " \"\"\"\n",
+ " X_train, X_calib, y_train, y_calib = train_test_split(\n",
+ " X, y,\n",
+ " test_size=calib_size,\n",
+ " random_state=random_state\n",
+ " )\n",
+ " X_train, X_val, y_train, y_val = train_test_split(\n",
+ " X_train, y_train,\n",
+ " test_size=val_size,\n",
+ " random_state=random_state\n",
+ " )\n",
+ " return X_train, X_calib, X_val, y_train, y_calib, y_val\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def load_data() -> Tuple[\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " List\n",
+ "]:\n",
+ " \"\"\"\n",
+ " Load cifar10 Dataset and return train, valid, calib, test datasets\n",
+ " and the names of the labels\n",
+ " \n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " Tuple[\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " Tuple[np.ndarray, np.ndarray, np.ndarray],\n",
+ " List\n",
+ " ]\n",
+ " \"\"\"\n",
+ " dataset, info = tfds.load(\n",
+ " \"cifar10\",\n",
+ " batch_size=-1,\n",
+ " as_supervised=True,\n",
+ " with_info=True\n",
+ " )\n",
+ " label_names = info.features['label'].names\n",
+ "\n",
+ " dataset = tfds.as_numpy(dataset)\n",
+ " X_train, y_train = dataset['train']\n",
+ " X_test, y_test = dataset['test']\n",
+ " X_train, X_calib, X_val, y_train, y_calib, y_val = train_valid_calib_split(\n",
+ " X_train,\n",
+ " y_train\n",
+ " )\n",
+ "\n",
+ " X_train = X_train/255.\n",
+ " X_val = X_val/255.\n",
+ "\n",
+ " X_calib = X_calib/255.\n",
+ " X_test = X_test/255.\n",
+ "\n",
+ " y_train_cat = tf.keras.utils.to_categorical(y_train)\n",
+ " y_val_cat = tf.keras.utils.to_categorical(y_val)\n",
+ " y_calib_cat = tf.keras.utils.to_categorical(y_calib)\n",
+ " y_test_cat = tf.keras.utils.to_categorical(y_test)\n",
+ "\n",
+ " train_set = (X_train, y_train, y_train_cat)\n",
+ " val_set = (X_val, y_val, y_val_cat)\n",
+ " calib_set = (X_calib, y_calib, y_calib_cat)\n",
+ " test_set = (X_test, y_test, y_test_cat)\n",
+ "\n",
+ " return train_set, val_set, calib_set, test_set, label_names\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def inspect_images(\n",
+ " X: np.ndarray,\n",
+ " y: np.ndarray,\n",
+ " num_images: int, \n",
+ " label_names: List\n",
+ ") -> None:\n",
+ " \"\"\"\n",
+ " Load a sample of the images to check that images\n",
+ " are well loaded.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " X: np.ndarray of shape (n_samples, width, height, n_channels)\n",
+ " Set of images from which the sample will be taken.\n",
+ " \n",
+ " y: np.ndarray of shape (n_samples, 1)\n",
+ " Labels of the iamges of X.\n",
+ " \n",
+ " num_images: int\n",
+ " Number of images to plot.\n",
+ " \n",
+ " label_names: List\n",
+ " Names of the different labels\n",
+ " \n",
+ " \"\"\"\n",
+ "\n",
+ " _, ax = plt.subplots(\n",
+ " nrows=1,\n",
+ " ncols=num_images,\n",
+ " figsize=(2*num_images, 2)\n",
+ " )\n",
+ "\n",
+ " indices = random.sample(range(len(X)), num_images)\n",
+ "\n",
+ " for i, indice in enumerate(indices):\n",
+ " ax[i].imshow(X[indice])\n",
+ " ax[i].set_title(label_names[y[indice]])\n",
+ " ax[i].axis(\"off\")\n",
+ " plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "WARNING:tensorflow:From /Users/vblot/miniforge3/envs/mapie_test/lib/python3.9/site-packages/tensorflow_datasets/core/dataset_builder.py:643: get_single_element (from tensorflow.python.data.experimental.ops.get_single_element) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use `tf.data.Dataset.get_single_element()`.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:tensorflow:From /Users/vblot/miniforge3/envs/mapie_test/lib/python3.9/site-packages/tensorflow_datasets/core/dataset_builder.py:643: get_single_element (from tensorflow.python.data.experimental.ops.get_single_element) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use `tf.data.Dataset.get_single_element()`.\n",
+ "2022-03-25 10:55:08.789680: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)\n",
+ "2022-03-25 10:55:08.792682: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAB9CAYAAAALMPb6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e6x927bnBX1a732MMed6/H577/O4t849tyCCVREVES0ERCWgkgAlpBQfARI1EEwwpBJFBTFBIg8xGiUVCcHgAyghFCXyML6NQEAQiaJFuFr31r11X+fec/bj91hrzjFG7735R+t9jD7mmuv3++1z1tr7nHNn23v+5lhzvPoYvffW27c9RVW50IUudKELXehCF7rQhS50oQtdqCX3dTfgQhe60IUudKELXehCF7rQhS7040cXsHihC13oQhe60IUudKELXehCF3pAF7B4oQtd6EIXutCFLnShC13oQhd6QBeweKELXehCF7rQhS50oQtd6EIXekAXsHihC13oQhe60IUudKELXehCF3pAF7B4oQtd6EIXutCFLnShC13oQhd6QD8VYFFE/mci8t/5uttxoQ8nEfllEfmPnvn9PyQiv/AU17rQ10Mi8reLyD/yjv1/TET+wq+uRRf6YejSjxe60I8PXebjTwdd+vEnl34nY43wdTfgQhdqSVX/BeD3ft3tuNDzkar+O7/uNlzoR6dLP/70kYj8MvDXqer/8etuy4W+HF3m408HXfrxQj+O9FNhWbzQ7wwSkYty40IXutCFLnShC13oQj/x9JMi1/5EgkUR+feKyL8uIm9E5B8Hds2+v15E/riIfCYi/7SIfKfZ9x8XkV8QkVci8j8Wkf+riPx1X8tDXAjg94nIvykin4vI/1REdiLyF4rIr9UDiovpf11E/g3gTkSCiPy1IvIrIvKpiPw3v8b2/46n0je/XubiL4jIX1x29SLyvyi//zER+fc35yxuw8Ul54+IyD9ejv3XReTf87U8zO9guvTjTx+JyM+LyB8Vke8XXvmHRORPE5H/c/n7ByLyj4rIR+X4fxj43cA/IyJvReS/9rU+wO9guszHnw669ONPNr0Ha/zlIvL/FJEvRORfEpE/s9n3HRH5Jwvv/RMi8jc1+2qf/iMi8hr4z3+lD/VD0k8cWBSRHvingH8Y+AT4J4D/ZNn3FwF/N/CfBn4X8CvAP1b2fRP4I8DfAnwD+AXgz/9qW3+hE/qrgb8E+NOA3wP8bY8c958D/jLgo3Lc3w/8tcB3sL787nM39EIPSUR+L/BfBn6fqt5iffnLZfd/Apt7HwH/NPCH3nGpvwKbx58Afxj4p0Ske55WX+iULv3400ci4oF/FlsD/1Tg57B+FGyN/A7w7wB+HvjbAVT1rwX+JPD7VfVGVf/er7zhF7rMx58SuvTjTza9B2v82cA/BPwNmAz6DwD/tIgMIuKAfwb4f2F89y8G/qCI/CXN5f8KDI98BPyjX8Hj/Mj0EwcWgT8X6ID/oarOqvpHgP972fdXA/+Qqv7rqjpiwPDPE5E/FfhLgT+mqn9UVSPw9wHf++qbf6GG/pCq/qqqfgb8nRgoPEd/XznuAPyngH9WVf/50sf/LSB/Re290JYSMAB/hoh0qvrLqvqLZd+/qKr/G1VNGLN9lzb0/6Gqf0RVZ+B/gGnv/txnbfmFWrr0408f/TkYIPybVfVOVY+q+i+q6h9X1f+Dqo6q+n2sn/4jX29TL3RCl/n400GXfvzJpndhjb8e+AdU9V9R1aSq/3NgLOf8PuBbqvp3qOqkqr8E/IPAf7a59r+sqv+UquYi1/7Y008iWPwO8Ouqqs1vv9Lsq9uo6lvgUwzdfwf41WafAr/Ghb5O+tVm+1ewPnrfcaf9eIf18YW+YlLVPw78Qcwy8dsi8o/J6vbdKmLugZ087pvf9mfG5uVjY+FCT0yXfvyppJ8HfqUoRhcSkW+X/v314gL1jwDf/FpaeKGzdJmPPx106cefeHoX1vhTgP9KcUH9QkS+wHjud8q+75zs+1uBn2mu08q0PxH0kwgWfxP4ORGR5rffXb5/A+soAETkGjMR/3o577vNPuHivvh10883278b679z1E7W32zPE5ErrI8v9DWQqv5hVf0LsHmnwH/3h7hM258Om5ePjYULPQNd+vGnjn4V+N1nBNC/G+vfP1NVXwB/DeaaWkm50NdOl/n400GXfvyJpndhjV8F/k5V/aj5XKnq/7Ls+xMn+25V9S9trvMTx2d/EsHivwxE4G8SS3byBzCXGzB/7v+CiPxZIjIAfxfwr6jqLwP/HPDvFpG/siygfyPws1998y/U0N8oIt8VkU8wzcs//gHn/BHgLxeRv6D4lP8d/GSO4594EpHfKyJ/UZlrR+CAud58Wfr3icgfKPPyD2LuHP+3p2vphd5Fl378qaR/FRN2/h4RuRZLHvYfBG6Bt8AXIvJzwN98ct5vAf+2r7apF2rpMh9/OujSjz/x9C6s8Q8C/yUR+Q+I0bWI/GUicovx3tdiyY32IuJF5N8lIr/va3qOJ6GfOCFbVSfgD2AZhD4H/jPAHy37/k9YDNs/iS2UfxrFT1hVfwD8VcDfi7kt/hnAv4ZNvAt9PfSHgf898Evl895ip6r6xzCg/4exPv6cizvx10UD8PcAP8Dcar6Ngf4vS/9rbB5/jiUu+gMlPuNCXw1d+vGnjEos1O8H/nQsac2vYX3z3wb+bOAVpkD9oyen/t3A31bcp/6rX12LL9TQZT7+dNClH3+C6T1Y41/D4hb/UNn3x8txLe/9s4A/gfX//wR4+RU2/8lJtu64v3OomPN/DfirVfX/8nW350IX+p1IIvK3A3+6qv41X3dbLvTD06UfL3ShHx+6zMefDrr044V+XOgnzrL4o5CI/CUi8lFxC/hbsViNizn/Qhe60IUudKELXehCF7rQhU7odxRYBP484Bcxs/DvB/7Kn5S0tRe60IUudKELXehCF7rQhS70VdLvWDfUC13oQhe60IUudKELXehCF7rQ4/Q7zbJ4oQtd6EIXutCFLnShC13oQhf6ALqAxQtd6EIXutCFLnShC13oQhe60AM6Ldi7of/Pv/ovqKoS55nj3R1xnjje3/PFZ58yHg58+umn/PIv/zJvXr/hsy9e86u//j3e3h1IWZlTImerPGmOrgLiwHlEyrYPiAjiPBI6RJz9XT+s2wggYp9yLd3UyjxfV1hVl/urgiLtXvuIUi8lAt47nKv3bq6c7XBVIatH1aEKSeuVlEwqWyfuveUGm/qeum3ncidVfuXf/JfbB/qR6D/2V/05Sxc4x/JO7TkdIuCcPTOAk3IMlP2COMF7v73wqQezSNOHlHdYus2BSDlB6qgob03b65X+xYFCzmp9qIoSgVTebQZy6c8OJaBa+9jeZ4yRnLO923KT5Vpq2ynl5jfloVv2OgAEQbT0YxarmJRL35XTTq/xv/tf/atP1o88fOM/xtQ0dfNO3/8Im6OVTX/pST8C5JyJMZLSwxJWzrnl23u/8pNCIrKO8Wbf6TFsGcyPRP/F/8Y/UZ/CeFi9cuFxNu+2bXnf9iNtfnT7y59bJ/Ky4yxPO92us3lh380xxvGa1yrrr+u6wZd68/rwqhv6u/6GP//J+vG/9z/676uqMk0Tb+7umKYJVYg5G9/KmTzPqCqhC/S7HT7YmufLuJymicPhnpQS1zc3fPTxx4Su4/7+wOvXb0gp4bwneI8449fO27I9zzPTNJJzJqVMihkA5/wy1odhYOj79Z2Xkee9x3trQ0qp8EFby7LaNV6+uOb2+goRYY4zKSXjqymXeyYO9wfG48jQd/zcz36Tb37yEdf7gT/1577Nz3zzI+aUeHV3z91xsnPmmZwTIfS8ePENdrtrpmni1eefczgc8N5ztd/RhWDXPx6JMXJ7e8vP/fzP8+LFS0SE2+vbJ+vHP+sP/i0K4ENPv78ldANXQ883XtywHwKByI4Rr4n5+Jb7Nz8gzkeOhwOvX78mxoh0AzLcgPMkICpkVcbxyN3dHSkl7gm80Z6oQiQTNZW1IyIaEVWbH1qXSIeoB13ny2NhQ+3vtt0uqlXOedfx76bHjtmwxoeMe9lWzdu2lNPiP/e/fbJ+zG9+XZe1Psdm3WllxfO3e/BrK46d7D/9+8GppR/Pkc3Z6UQGFbq+J/TdAx7bcNPz7X7kRqcyTdt/7Xq3Xue8LC0ncmlzg83f/uPf/WT9+B/+S3+/VtnseIzEmNEMcVZy1sJHEprL/Ze1Usp6X3mdlCauz++c4EMj04aVL2Y1/tn3gd3Q2XtyLHJx1rzIk1kzWTMisN/37Pc9zgldF+g6k5M1n4g+1hJSUnIq92yOcaXrnYOhD3SdyeS+E7yvj2XzKOXMYYzMMSEidKHDOb/iI4yPV/k250SKxntTysQpk5Myz5Hj/UicEyj8G//SP/9oP74TLP50xDM+paz+BPToO22Fph+zNj9CLSB+XDz70hd9gpOfoC0F/z3KjFcVyAe050Jfmn7IV1d5lvyYzyHBFFe/k2kVgU9JHxz14df8qt/pqZD1roH7O7u/n4q+UrHkK2Xh7xv3p5LnhzVuOeodIObhGXJm+7HDv/xL0rrAPjG9bwaeO/59O06Ped87/KB33L6zH2u28GPduAud0gcM/g8Z8+foPWCxfmvRBwkZSFlJqqaFRMgiZHFk30GXICviFadVICrWPIPpgFmglm3nDRVvLInVnLMiZWtM1XBLwxhkPbT5W7VYDDeCvyyaOsSsgHY5LVY3CN6sbiKCLxoIFDSrfVSISUhZUCmKrKodKO9I+HJgW+T5FsHVmgCuaK6cay0q22Pa31br6nYkLc+2fJWFSLS89yoKrmKxKalObLvafGu9jr2MqknNRYtV7JAsd5TGyrRRBW4Bw3ngUCwQIkt722da7tIssAsUVdlc5XTr/N8X+mDaDq3FqrjsPrEuVstijHFjKQSzOrbnbDwXpOUTshm3z0rSfLUK7814Xbcftyo2l3xiq+LD35oxX4+hbfP6MJvt84/4gE7n2LrjA5RrGzpnB6jHP+2c9KEHTNfbzRHFmXa6eivkTHYe1Uzoeob9Hh8C3jlCCDgnjMcRxJFSYn91zf76htAFxHkUIaZUvD7MUui8X7bneaKbenI2L4p5iqgqvjmm7zq6rqOwVJsHAqGxLIbQLWt8ylosi46h7wldV95cnXOAJFJyi0Y7d5lQPIOqN8gcE+M0k3I2S2Sdq2W+rtYOm3Nd15FzRoAUE7l4CVg7PV3X4+R5omaGULwPvOByRGdQr2j0ZOlAMs5FPPZuOvE415G6RHe1gxRJ4okuksnkDDGa1SAlRVyH4JHsQX2xHuZiesiYi8q8WsXVraNYq/yki3HQth8Zy6rNMbXflNWbZ52XpUc3MhLLXrbHPzZB3zOlzs26Z10Zq1x4Yilb5Jf6uz5jS06Y3PLqmvVqWcNgI3ssvSPrtTbcTB/e4nTNqr2mm4N12WFrZMuVz9/r4UW/OuD4YM3BrHmtlXR7iP2WNSOsXoSozR0tVkNUkGwnOwRSkQEbCdL6SIGMk1WW8G7lmVmTyRYCIfjFG3H11hPULc0qlkz7O8ZMdrrcJ2eTeZ0z+dw56DohBMEJeM9iWayzWMWsjak8VkrZrJUULFJYRFrGmjYecLLgAF/ew4f07DvBYk6lAwz/kRFShjlnppyZNTOpMOOIviP3e3K2p/LaAkRf39jGHUC0EYpy+a0KGnW+SLmOajNR1sn/rkmzoeVch5ZeE3IBLxC84p3inKPvhK64C9XFimIWt86F4wRztMVDVEhlUFrf5dLWvA7SthkNo2/dvMwz6eknZCjuoyIgrriGOXOFWsCgWwHi4oZamIosnWHT6TGXTUFwZcYpdcFrhYzts69U3Qzr+8moyjLgW8FiAYvS3r/+rsviKmVhdRulg90/N+1XFcAtoHBl4SvZ5LMJvWVijdS/6dMHTsgX+pJU1/L2PZ4CxuoKl3NmHEemacI5x263w3u/HJNzRkQWN1W3COurO0495qsAjnWhfrD+ysL0lmMeB4tb3vEUYPFDrkF77tLed5zLRu5Zuds7QOMiokrt/x+mH+pVtkLjU9Kwv7GrhomoDt+Zm09M1f2dxVWqHwb219f4LtB3nY1R5zgcDgyv3xBj5Pp2dUOdpomr2yM5J2j4jrmh2ho7x5l5nslZGceR4+GIZsV5hy9g0bvV5TU3PDuE4toqJuCYEGTzIGUb+7viwgrgZgOsVcBJZV6h5tJqAlMw16esjNPE3f2BrMoUE6koWlNO5JxwOZkrF4pzwv5qT9/3zPPE3Zu3jONI33fc3t4yDAO7/R7vw7PI9y/3HWCC15wOpFlRelKYSX2HOvCd0IngsuJkIDuP7DzzzuFJHKaJt8cjMSXyDOkgkCFLQPweHwQXQSYwxpaKq6QBRRixmIaAErDBb+DSxm0FlRUo5ocP0gKgdTFtzsFAY6vsqSSc0cvIwylT52RRLjwEXS0fsF3N0ts09Ok7Uso4RzOCa264uiYuz/ScYPGUmnUr50ycZ1OA1xaJmFKm8lYpBooz9D4FYQt4BNCigKmgqcowNTyjnH32mssFlYfj4MQN9SmpWdYWytWVMhkYFGfypm6aUow5SxPrO1nbqlXxQlEOGWQ0V9biB5pVTUmn0LlADa0KnV9cTLMmUk6IQNd5+t6Uf8EHQvALRqn9GbzgvBSwmEgxmZGpuPQLFv7mS1iY94pzWqP1cL5KufbMLkNMbgGb0xRJ0WTbFJWUq9xdntUJXRC8F0tU45xJ6NnhnZA+YGn8QMsitPFgWW2xMMtiCd0Sh/oAwUaW0MQmLr60J4u/siq8TibuAzlN5MHg3AoxD9tvQt/p9VrwY+REcaJ4B84pwQudtwnVVbAIREm2UCZldrq84IwBrFyBCgZG9Zw25swEe0zoeypqAdMKBNlomOrfwipMrgKpNE0/7we/MqtiGWz6s27VJ9Mz/V1/0fLPAh6btW7RbkuLInT5nDrZLJN14/Kx1aJsLDQiiG6BnjaTwKzI9myidSVcH2ULnp+ekf50u4WfvDttfn6HVbEFjTHGBSS2x5+OVVXdAMVzVst2Hj41cHxwrXZx/BKg72vZPgMUH2/zw0c8/b2llk8szh+nJ7+Xzkgaz0QuGMjwCqGbQSAlj4rgNC+8C4SuH+h3O0LX0fc9+/3e1hXxxNnG7m53xW6/J3QdPgSc96RU/VTsOlJibwFCjIQSly3Okws4da6CRYrCrLS3KMqgxCyGan0MdJ2JAqnEWwpC33eEEMocC0v8uIgizpFTJoWAZl1iKsHmS0yZOUaLLM/Z5IaTtUOrttsJoVhcVW0uV8WP946+7+hCwMkag/SUNBQBcI6JOEezDEfQ6FFJEMxS64qHEeLJDjqnhJDIkhASaUxMOqNZyBFIAsEjwQROU0znBciJWty9SVCRdQ1zi3VxkVcqKax2kGb9bV6JbnimNh+7HsW6/IC2y/YHKXQ2q2XTN+dPPW3kc9EZJdEpI6l/fxVraouWqwLzRHbarDvvWWseVeTRPGGjANS2vzeXfwdIPD3k9DU91AA8GVVL33JrKe9NVyvZYvGrRiQxvlM9/LT9t+UZyqIYzhkQ2zbjgo0b66ZMztt+qR4hUmR9V/Q11bJonh+rZdE1OVhCcIQSH+kos12VLFAMlISwgkVxmQqfvLPvqqipgNeJgUDNSk7ZLJZZmecSM1+xD+C9EFyAArJdWRhykX/de8YcvAcsXl1dAzDPE4riZ29MPATEe5wPhL6nGwb6KdN3PTHbi8y5WhYboWtp+jIsCsd5yLy02W1/nwj87wGKzaHlAu2oVwsml4xIwgnsOmHoDCD2wcCivcSMQ9bFjaIFEF0W4VPA28gIX2pde34XOC3vQQv4ptEIrEylgjTntoL0cpVmwV9AorazVMnZJl4rW255druYsQT61k/OurZJm/d57rsKHaZzqY1kCXY/eQWbG2nVRrXotH0vxjgUViBZGLCoLH1fe143N7rQl3oPG0a/6YKzALC6nlZXU18UO2bpCMv4rPvrd11AqzvQqaWt3uO55qOcsMDNjjJBpGyv1mw27VyVHI03BucFiccsh1/GorhaE5sHaAHjY/fWGohwcviZV9uy6nL2FjT+2NHKw8x9qFrwHLl6PVUDkCg5RSIKOaEp4kSYpmlJ+hLnibEkdKmJMCpAM35oIK2+25gTMZqFbjyMTIdDAXrr+3eYMlQxLXa1rntvFkonwjD0DMNQvEvc4k0ya0ajubZO08RUkvXElNZkN3MkxYiGQJwD8+zwTsllvy0HCpqNf2pGcyrfVSmYyXEmJ3M/7bqO3X5HFzpiTByPRxDHVX6YwOop6OXNFQDjOENKTJoIRHQ+ELMjJ4/SgXdoTNbWnJgYeTveMzJzGA/MxztyjMgs+OwhCyk7ppTIAnNW0pLUplnwREBCGU8B8MX7yS0Cos2jFvid46va/Nwe02wr69pflZ3w6OUepUWL+/juZnnegtdnB2jtOyryTiv3tI38imgN5YIHho9GhvqQmPtTuWuj2GyOAZq1z+aeuUe65uit/PaoZfFhI57v/VWe78AFRyigSJysLptF6Z+VhkeWbbTqY9bLLUuWgTikJHX0hp5rWBYC3pklUAS63qyJzjnb7t0CNF3WcnwBeEWuXeJxxdYFcRA8dNXdHW9upQW4mmVRCMWyaAk3LXuiCLgA4gw+Z6qUaUpDn0C9IHLiwdh0TR1zpkR0ZZxlA+StseQ9sto7weI3v/FtAMbxSAiBaRyJKeG7HgkTfujZXV2REKbs2d9F1HWklFd0S0HCC686Mwmql0C1GrQPzcNBXIHHh5INjqKfy7po9LxEHBPeCbdDz81VwDuhc45Q7peSZZrLWPsqr/UiBGeDNTYjs9X5tY6Na9vl7N+rNe8ZxKK2CVIYRGXg2SQzTXmR6PJykgCr43Vr1anf2zYXYKey8EPZ3Ldob848Ym7WzxrrsaxF1ZrncnE/KE0r17HFN7Gi89V1+fT963KzFSiaZKfl9/U51mNMEyjlOaqm16lb+123gOYCFk/fxwlIWo55z3ajmADWbGQ5M88z4ziWawt93+O9p+9N+G0BYZsxVVVLBsi0iW88BVDPBRhbN9SN4qMBYdKogFuXlrV9lXd8OEj8ocGinMzb5bbb35oz10fR6ix0smg3j9ueqc3vCquOj+31fxxIcwRAyEWz7ElZDBiWwJFFQUEmTkdEhDHZWNRctMOlf0cKqPKeFCNTUYTklAyQVX5U5kLS1aV+Gkem41i0zOYiRQEYZs2COEfiXK5TlRHOcX1zzfX1Nd57drsdu90OEWEWh4hDszJOR6bZwOs0T8zzXJ7LxkYIgUMA7xR0YE6zWQKAktkA1QQ5kVO0T+GrOSam45E4TYgIu/2O/dWenDPHaeTucOAmZW5uX7LbnXG//BHp53/mGwDcvb3Hp5F7nXF5Ru/vmXNiHjpS3pGDNw3+ZK6/d/Md3z98wV2ayPFInt+iOdIlT5c6RD33UbljIArMKZmbqmY0RyQXAC0OdX1pjSdLcUPFIb4oCVRxueRYoAZ5cPJvCw7hvLSljzPd5pBzpKdbGwXxmeN1XZFrNtRWOnpyahW9da5s2nwiey2nPWFbzqwXNX55UZ6syGLZtqgbLTF37r2v57G1qQWLFYgAi/JGRMjOvAPONXcbO7le9Fzo+Maz7N3N/XJUsKwERyfgc42qK+tg026L1zYemLISi3tnBYwUQOScuZvKkvV/BYgiBkTdAvq0eOBB3wX63rwe+j7QDx0iphBM6rZjTsTeq5o3iN3X3Oz73rEbzNtDs0PVoFfNg2KGKYcXmzFKRIvbuXigKPwqz09OiVFQdUDCuZKaH5O/K6iW8rIE8zbpQrBxgfHfNk7yfb34TrC43+9Lr0E/9uScCZ25xxhS9fjQEbponxAI3oBYShEti9Qq8L+DHuw+FfLPWADeoyWScswizyzgpTLcjCPjRei9WRe9E4IIoVxyTgX2qZmOa7SjaWxPAFFtQ/ssjRZp+/M54e7ce3gCWtrVSGELaFwZah2mpoBbYxPXyzyMU2yDjSvOEtGzikcpDPHhM8oCElVLjGxazej1Jbv18PU5lja0NzuNGTzPebUCwtND2t/r9atmUBUVsypWl1t7L+++13PQh4KZB9rHEy3iOU3lu6792PH1mo8tvpV5P77vzPbJfdvt6n5qbh5hKY9hCT7c5hkrOKx/b5IMqD54jvZZnhowPvCKOAcYacAccpZf8OjvW4D4ZX5/dLuC0weAsW3zCY9bdp26frentkBxPe4xN1Rpf/+aQeMaj27ChUoRQNSxxpSVMQRL0pY4R8bj0dZT7+m7Du8cKc5MkwG0lIsbZ7a11KyPa+Ic40MlkboqcZyI49Qke5qxdWt1fZynmXmaF627SkmjX9pvrqBCF8r8KWEVOWfmaVrKdIzTyDRPAATnzd2KTEyz3Tt4tCrg7EUt6642FrXqhqqqpGiA2HnP0PX4EJjnmXTMTNNUYjPT0wr2hW6vTM7RGBm8IzrM+jmPaE5kyWjvUDyaMlripOM8cTgeuZ9HJB9x6YhoBA24DI4EGok5M5FLsonVslg9VQQBrfkcPOAM5omsEKe8LzkJwViXwgYEfojSUk/+kHO/N0e0vLd813Ztj2v2bXa3IPW5wGK9D5t3tLaovjtjQLpt4BO1Qbei7oksUekcj13XGn1wyllgeGbNOt1fv1vZ7bH1brkXp338jtf0DPOxukqajC7F40HwhdfUdomYMUe8ufy7lKmhqqdW2uomugDH020na6k3MCWbUNxH/VJyIwRXwKIWT4nyaXRYq9vvNnmmDyVe0K/93Y5VJyXpDqvlDxScFl5QZPPicedKjhXnznlHVd4hy5ivbrHmulqss1Vp+AFL6TvBogvmy+9DwIUOFxI+9HTdQN/v6Lq5AESLJ6gSv2pGpcR4CbaiiQEut0EPJzfcMKx2yLbKGH2AqtrDN5eU9dwFOOdoHzKqI1kmS9wTHSlKAcHYAqHFdackspnnzJSUrMKcvAWYQtEUNFJUbYe4Bei0GUBb7XrtpaoBeFZSZfHxqviqbheAJzQg6sQN9dSyuDZfVtDcXmc9swGSrei4dniKkErtmRSVODeKhkIhCD6Ua7jV7avev15rM5B0e38aAWWZqLq90WJF0TLdKhJehNxi5Vn0XM1z6vbJn5pa8NKCmXOg5jFQ+Jh1u91+F0A6t+/0Gh8q1G1B4vmx1n6qtrQmtqnHOefoum4DFNu2VCAJq+vHOeXHV0EnPH3lX5VxVy3qArTWvx+zgq7X3m5/CGjcHr82bMWksgFtTV6ylX89eL51Dp7O9oUHLHxwvYa2B55u1z+fm09+II3HA8Ca8KUdo9TtYuETWTxcqlU8xUQOljzNO0fA4iClCBPe+5LMxtYhJ5akyRwg6lplNqYOh3eW1TSWxDe6aN7MmmjhIWVJ8s607N4z7PcMuyt8COyvbri+ubF94nBiWur74wE/GsD1Y08olkVfjgvBs9tdMQw7hmLhlyoTUJPrUNqxrW1r+/IS2zhNEy5ZHbU6p4dhVzKmPz0V7zCG4Lje9zhNpBGmaM/rNJLmkUkdc1LukxKzckiQck9W4drDR32ik8i197zsOrw4fjsC88x9zoxz5JAmkipKWpTpGU+udYLFnbgJpqKcNMtBaz1clqgTTeeiE36Mt72L551dvh4CRZqWnL0FNNaodX2V95z3I9GZtjfL+PbHr4pk2yQRy2isxfpUlXAtfz5t7tO0Qx70+7uskwv3Vs5aFZedz0B975fLV9HMO0cobvMmstm9U1J8zOaOmhRfLYuFp6iay33XeZMZZXVDNSVsrcPcAMeqlMESwljCGpM5zfJbEu40cmN9j5VnVoBqSWuEzjv6AjSrzGnZWgtwRwovLWMg16hNM05UuZqcSWpAyoviSLhyr+BN8Zeckl2Rn6sclbMl7YlsFEviLJ7SEmm9m94JFsNuAMCj+MMOr9ANe3b7G8scNmX6bsccEt75EothmsvsLHgTbYACFmS/KBzrjbbYr9l+CBiBYrJfr9Fqs+rvrjnH1SBRVXKcyOkAZLIeQSfwQhwzc5fJ4hAfERcsK9KsxJhJSTkeZg5TIiNEejLBSoZIB9V1RARwW4DKSbkIaRr8VTCuOjBOONeqt1wHjwLkRuO5ucxDYb6a2g1PaQGEumQQrVdd+mhhjLD4HyvEuRQKzTBPiWlMzfl2Xt97+sEYhu9kXeW3eI11gDXui4XzaP2dVXip55jLXHOZqs0Rhy5ajtUhwjRBzq7VZJ/S9XU+O50T+j8EFD71/b8MvQ8g1u1zgLG6ktZPznmJURyGoWjatmCxAsZqfazJcNoMqO9u79NaF1s3VJXq3iwLWKwAsbqZvg8s1r9Pt88ByncBzPb6jx2jsgqjj/GvUyDYuqFWWLi91wpGN3wd3nv9r5PevvoCqG2VAuCgZiOwIs4R1Yxzni50CEKKkeNhZJ4nQgjEPpqbkyrSdXjBjm8yJFpSOcuNnjCw5cXjut4yWw8OXwSfeZ6Z42TZR+eJNE9m6XNHMhYs0/UDXd/jvOfm9obr6xtC1/Hio494+fJlaa9lTM058+bujvv7e1LOHMeJaTKwWF1og3fcXu+42vUMfaDvrdRFgc3F5bS4ndb/SmHrnBOpgsWcmSZz7+26juuba/p+YBgGQiiBPk9Mg69osSPfXjMNgeOd8GZ8yxwzkjPjcWJ2ykEdr9QzqfA6wpj2pLzjduj50289L0Lkk2vhOy8dfYD/32tBPjvwxSS8uR/5bD4w54wSUA2oOpIOzFyh4klu0WCiMqEyARlRezeLYTGfgWvtfD0BkMCiBN76ErVTSdYv3Z673k0fHtveR9fvRYG8nLfOlGeEjA9IpB018kxo7D0NqJvB43NYAEI1EnjvN8c9Z1s2I+Nk7VsVy/UA++OrfF1XV/3SFudW4DV0lnE0Z4ilPFHMMEeTG1PjkqpqSV8Upe8Du11Xsp9WRT8bOc2XpGAPaR2rqplY4qYNiJo50eIpTeYPriapEfrgS4JMYdcHrvpQ7EcPvZqgVF5wJewrC6p+ub+5KCs+WSmiqJmxAEYc9MGjfQmby6tsW5PexKQlBt4ZQHRSco86hl1H6N5fluidYFF8rT/kloQ2zgdC6OiCuYpU7acTKck+GpZyolUxgXzzZ5PMgJPJco6Z6OaYDdgs16qgtB3dIjUjnGJcNqKayveMw1kMRUyIyyXCwh6lLmA5FY3tFFGE5IqfuXjLAosuz7IIREvzpFHPNM+w+sWuT/McPLRB01K0GYu17GRRWcEZy4DbXuqRfmmvsYyBVuA/PadquqomxbREmpQ0Z+KcFgAGNiGzc6iH7ChpiMsL1zPRoSdgo/69aX/LLXTtN23iEu1dnICuRphfrY7Ns6g+C99/zHp4Dii+z/W0/a3Sc7ldwhnZ4+T+7wOK7Xa1DLbWwWo5bMHhOSvbqRb366D13mXMbMDXChC3YOrdIO5Dtr+06+nJNi3Aa4HiI69ywb4L3G0f8yFoXSyYm4s8du2vHy3Ok7liKsJSpFdsEbZYv7y4Tla+S1EsmcKilnIR1Dt8KSfhipTt/FpbUZxD1NaOhW1JWZeLoNP5rmBVOz5rLnzI4hht/TYg5rvOwGIIhG4g9ANd19EPO4bdHu/8kiU15cyczZqWc0bFI85Eh9pjwTu6vqfruuK2VbToVQio/LdR0i0fWPZZtnETcGxOG/Dsuq5kQ336BbImqgveMfTBBLApcHQlpF/NFThnZcZxBEZ1TBmyBlShl8zLvuPjXvjWlfCdlzB08EWG27vIrDCHiU5GVAqAVl/EQMFpIOMLyMurbCCtRXFRoax4Z9l4sAKWNfx0fW/lDF0PpPn7/OXWHzbnnjlmw8vbc1cZSB5e/EemZY3b3HzLv2pLHrWWPXWblntvefApT15KZSxg7cNDTBZ63/HvWfsf/N6Ip1+lB04tT1FBYq1fOHSB4J3lRElWxs9lS/qVMvisOK9rwpvi9t8Pgd2+M1dU2mdicR914gjOP3hHWVc5I2dpvJm26o6q/KzurK4A3Vq6KPg1aY7qah01W4Vx0eDteGP+UBM8LmCx1MBVLTKw2H2ylOQ13q5X752X1LDmJptyRrLVgtfiESJS8N0HLKfvBItxtuQRmhOhD6jAPl1z+9FHdMMAwXOYZ4a7exKBm8/vyATGGInzRKy1phbGomRfeulESDifurUR7je7zb+/agekALCa+U0w02rnvcVieEfnBc2ZQ7znOFrsQJpnYpyJXhgOnuC81RwJSvQeVRjHyDxbnai6jTjUO9SJMX7nbeFWCySV0jCV2tb1eZYvYWPJAjFh4DlJWYJpq8DRQm+tL3Rt4gZ8LEeeAkgAFaSmBl2us96rpWoxWYSGrMxjZLyP5JSZxsQ8ps15zom5M2ctKcw9ouZaIPb6l/VtaXttawsUH2GGUjVuVbCT9TqIwypoyuZ4VzWD9gPVV92u9fR9eQqCzm2fCuGPWRnPHdP+9lRtPbNnYYDrdHi4XfuiUgsUY0n2IUUj609qJp57DlVdLJE1yU3b1nc995MDkwVvNeOsAYotaKpzpZ4mBYEtYFLaUcmiNS1/nAWKD8HgOo5bK+Ny5fpPlU5Fab3ut48m66G1zaxC3HLdx8ZbO+/OvLPmLmf3PzrrnoG13t6+tEsLJd5MFsAIQsrJQIbmAr56A4bAXDKebrXnHtQUlJ666LsS19iTfSk4nYqW2TsLZ1HFYaEwgpCdKTMli1VzDlbOI3WBEK1WoWVDdQaUNJPijJAZD/fcFbAXvCd4R86Zt/f3HA7mljmXOmH23ktfJMdBEhpn5s4zBAU1gHWYZ0vWkxLjeCDOE8OQ6XcjIcygmS50dGL3muZYkk8J0zguc3bY7QjPsEaOx1XO6bwniCC7Henmhl1wpDQzT/fkHEk4juo4ijCJgDornZIz+/nIlUzcpszHJPaifHfX8Xs/6nk9Oz7dwUddxxiVw8Hz9s6A8TEl7nMkZWUmo5LJomQ3o1JiT+uwgrJu1Qm7ArCt5r3sZstf7dCNmFuUGaw3ONHsaQWH5959/WldcJf7bbPE18W2BY3PQ8Y/dPN3fT8qde/TW8taIL48ZRGA6nqWF4XJqrBXzJXdLULZlwOMawNW8L8oVVMq118zf2vOTb3zeuoJeGwuubFpfAVU68KKrK6ZQZxZ7cShroaz2XttS0aW8L7yGt3C67yrWZ6bZ8tYuBwsZSgqabm/aYtqPLGiS9YSoHjZ+FLip4LbUGSRzrtiLTTPi+BrvGMjz6gu80+kKXNU6yAWEkxl1EdPypkYFJccvUvElAkiHL0jJls7pmCyztxJSWQjDL3HB3OLHbqA96bQTHNcgPW76J1gcTq+tRcnjmE30O/3hKEn9B3zNHPz5g3h6or7+wPd/pYvXo2E8Jq39/fMr15BtLiJXIBIBqIzH9zVHCw4FXwjACzsT3Vx2Tx1XFiFqTLbRC0xTUH1V0PHvu/xTuiDo+scKUU+mxzjXURzZBwnjsfDYhVNUe1FlrpOmjOH48Q4mmvtFM2ci3O4TiFkEA/OI+IQrCBKdbxK1Myi61MV0WwtGq+yyRj4LHx0w/yLS6jKyi7F3l+V0jZNaBjLWeG/gsECEKW6a8r2edYJXP3EhaSZNFvtyuP9xN0XIylm5jEzT6k53j5pSKQ+4bygsUeuivZmcLh+HT0r09biUqtrutUHzW8AX21obXZptJOMLjU02/NWhUVatJpCkyT1yeldFqBzi8u7AOa56zx1W88pFmzxWn9ptc9bwaQKK1s31CUTo4jFNFUPhxPA2NKa+CMu1/q6LIzSrm4tsGokwhpLsQFWyzFbsFj+Wo5ZBHhpwd+JpfLM9nL9pV3Ndh0/ktc2S9N42Mz1LVhcn2993ecB4wKc4YTjNxc6BxY5Kys3Fz2340ejb337Z5fLr7YfXZIq55SY4lwS2VhMrXOOftjR98PiUj3HGc0Z50ta85wQtbXIe4eTnuBrPcNgnjDVHapImx5zgRJAnUNdqfeIuSrlmkugKHC73rT04hyqkTgdyNHxlsw8HjZ8V3PmOI5M01RepaxjrPwdBeLouHeOLnhSPHI4DGTNHKfJAGayMhjzPHO1n+iGl3g/ELznZtgxhI6YIofDkbm8t7v7O3LOXF/fsL+6puv6B/3wo9KbNybn9MFzPXR0wbP3wp5EnK65P9zxxavIccrMKrzFcVfS4wmeoLBLmdvxNR+lA9+6mvguB25c5vr2ho9vPuZeO3773vEn3wwcovD9TzO//r3McYJX4wzTyJxLUIMzsJhkRDliwqlHpLrJVWRWqUVsPNyuDLYFbifnaiuDtHur8rjhy2fXNq27C+9eWPgqD0iz/axU+Xu1WttNWTnKu+//ZdaEjRK9WcuWUKlF+a4FLFqiowoKqwxcLVgb0M7Ktz/Mw2s9t1rWqmK0AhMnQvrA56vY3pXvd9E7gcSXpM5b/VopljknUgw+loBLxJmxp2gjsq81CRWKrGbj0J6z73yphbh0SvnfsAlq5TKq0q4+7iLXLrLr6jHmPaUtZphqwaL3DocsLqneiWVS7YKBvuKSXwF9ytZ+L8XYJdAXRZ2D5R2gLNbFlDLXXWScEnPKvO4992MkpsR97xjnaGF0NVSntMEsnJ5939P5YDlZ5tmqIbyH3tnHKRahzHe4wSE+LFqKrk9E4Pp4RLqeq1f37PZXDIeZcU44PE4jRRdq8YKORZBWccuSL8Uq51a8YpNrQfOrW6DSurJW5mNfTqykhSsBpUPnLdNp5+g7R3JK8OWamkk5Mc8J52CeIlOw2BFh7ZhpmplKBjmrIVlGkU+WytoJltksm7BShNxVc7MVhqugU8WzKubJ+7LF/gi0Kdhb772Aw4r2ms0qrFUt14YxnSxMp33RbNclbQWK9df13JyVnJQUM3FK5oI6ZeYxlTbJon2PIjhJuOxIc7Y8RR58brRFzX23zXnI7R7IueeEURHMavoQpC2/NPsX6+IzSKfnXExP3Uvf5ZZaj3vfdc65rD5Gp/c6t//hQvfw+FP3l/b39tOmA/chlFTYK0g8BwBbN9bWdfUx69ZzA8h2QVqmhO14pzKAcuzZbdYxJ4+d+yNun957O8RXpLY+ji4tsja11zx599I8gbDh+e0tTp+10oN3+WDH09OwK1k0i9BRXSpTGV8pJRCzMAbvC1iUZZ+PgRhnFG0y9a4Kk5b3VSVUSslcsep9S3ZRoUSAi5RyHFawwrwwbE1zzjIFV7dtKdn/0DURzzxNDzxcVG0drEoa18w5e+X2nZOBxpw94+gInlL+YiqWxczxODJNM0465ikSY8JLcaMtMZpTmEnFfbcqePr++bKh1ucKAt4N5pHUdcgwkBykNC31LS1fgTBrXbvtv5CVPs30MrLTkWvuuZFE8oHYRY5i72zEcz8L8R6+6DIuKaMoXcmSmtQsTEouSW2spyk9bEC9BXCFqmSvtT/OwSJtmW9z7jruHqyJ7da5c0+Pb5R8G9mgBYqPrMc/Kp26oa5jpeYekAXsPpAR6pFn1qsvc2+owLBuN8c0x7VAkrqtRW48s6Y/dr9TD5l2f7Vabda9Umcv58fBwVaWkufqrsfvX56jJqMxILiu7a6sQ6I1cdgaOmTbdRiW6zSuobXjbTysa4YUntkCdahxpYsku1gf11qMxZoYGrBYeIV3VgqjuqJWyyaIxSSCKfQ28mTxmHKr4Ss4s1YubqsKyWU0gxfHFBPTXHKsJCy2Xbx5tCSre++LZTF4c7fd9R19CKZQEEug9j56J1g8fvapvZj9nsEHfAhoEPqhJ3eZKzIv88cM08jxOPLtn/kGffAMkomf/YBDsuD+yuSjg8lq1WJ+g6YpcwYtTcNChYfWPbXm31b4z6VWYi2BYWh87zt2g2kfrofAVW8d1AVzQ43iGLqOoR9w4jgejoAs8XJxjuTSwU5cESidFfgGgtS4FIeEDkvN6VEHOMvklrBnFstLvmp66kRQe16zrVWhqRm1z0wrwGl+W0wBTSY123Fy9hmOIQ+3t8Jm3VEyppb0vVqAYpyj+aCPkXlMpJhJs6KxuYAIWSBJJiI4r8Quk7qEeiH05v67NsEWBlcT06gupn9oGKyePFG7uC1Sa7NAygPx9cE7kGfsx3dZCc+5C9dz2nPb384d99j+H5ZO33X197f71GNOFrr15OUabfbTxQXVOUIpO9AmtTm9/6LBK4ltWlDZltj4yiyNJ6BKm/uXxqyHNhO2tcyVaUFd0JbrCYsCqi6Cy/1cc7xAk5h/ve5yjbWtzRQu21XgaQ+Eatoz3lZFjdr29WLrFFnH5uaFlN/Oibs0V938JqcKn7X9D+b5E9H9/RsA1hFdamBl+15dpjPROeJsLlXTNHM8HpfxOE1NWYxypZwiAgTvi6bcxvI8R+a5JK/JpZ4iQKnZJyKNQkUtO1/oUM10qVvrrTm38WBc8YAlhljAu5RC10s9MEthH7qS0E1XZag0IGaaZ+Rg8/b+cGCcJrMsHiw5Tk7CPFninRQjh+ORFCM5J6ZpKu67avGP3tF1oTzm09dZPIxTfXh2wZeyGSWbLEIIHbfXNwx9T0yZT6bEkDOSZpyPOM180r3lxTBz0yV2PiI5QowEjlzJGzrpOOaeO91xwCM7h/vYc5yF799B3yXGmHiliS9yJJKZdDLPHtRqMuaSQfOBYlkrE1nXv2YiyAYItsrrenrLjx+et2y/ZyI9SFxT5t7D2fpMyKMZw+tDrm1aseNqQ33wJn8EoLixLLJ2U3v/Frita3dRmue89uHJWr+933Yd3VC9Zs7Eed540rQyQgjvtgVK852Rx43Bz7BexmQ3cxnU5wWsBWfjOiZdErnUsLwVRPoViJd9vuZUkXUxkAIqq99nqwDLCzouhq4CIq1khRS+bLjCZAiKy6g2rtfl25XMq03tRql6i3LNLBWAGrD14hiCt4Q+IiU8zqxsuawtyeei9IPgFSUwDJBS4GrvmGMq4LFYLmnBtllpRTwIxJz4AC/Ud4PFN7/2KwDsPvqE3dU13dVQBLQdKkJ3vaP/6Jq51F88vnnD649v+IFLyJ/8Fe7mozHeOKOamZxwDBZPkcWTfEBFLEmMVZ40V1UaoChLyHfpPgWNkCKoEkSLRlC47XpeXg8E79j3gV1vMYveF8tUUu73Pcera6Zp5v7uAOrKIpxMd+cckq0OiY0Rc2F1zhGGQOisDlLGF5jqLG0vlpzAzL5iWVXxS2rzGtQqgNeqIVyluU2ShOeihkPaXWX9LguFeVvq9hxpT95SI4uW91W2BRNIAKqLLlIEHxMyUswcjzNpNiFivJ/IUdHo0LRmOq3uZTEpOkecK9oWsdo33eBBxYKLyVR7hrqVOeTSz8BWMNN28Tx57hXhlN8U6jOdvIMVANi7fA7LIjwO6h6zkj127vuOfQrS5t1WLedJi8oUWAFvbZfmtR/b7KXVrcY5U+LshmED+up16qJY+7peY55ncwUs6f1Ps6cuLXvGd7MkM6h/2w2NmW9+rNtl4ZLWGlqFc3k4B1nHZOPNugF89VxOzt0A2XYuL9trcgp9cFBJiIayzJKWl7QPJ+td62IMbNnfl+wCXZReJ78ryCP860ehLz7/gW3UF1SAVVwUGxjIUhM4nDM3MwOIkwk8yWIAzcMiEouCddrtydOI9wbK1rlQ6/UVl+wiDMa+t7hDcSVFvAkyIXhCKG5d5b8lOVTVJiuLZ4umTCQu65O5yK0WfYtlDOz6nbUnW6bwumJrydR6OIyMxwNznHn96jX39wdSyhwOE/OYmD6J/NzvOqI5M+fM69aiWSzSzjv6oZbO6Mvzf4BU8yXp9dt7AOa+I2hm7gNOM102R9Oh39F/HFAyw/Eeff0Zd/OMz/f47hWOie8OB759feTjPnLbz/g8onNkyMpHeSaLx8c9Xm+YCHz75prv7l8w58Cvv058/NnEfcz85t2EvD0y5sxBFWKRfbKUEl2w1iSrVPjmOT9sbT7L3+9SwJwoG7WBfwWgbLnGuZvx6BGnbX5K0qpI0GzJ8Up5Cm1rnoqs4PgJWnGqgG4dXU9fOxSQk86E2OQEqZEdFrYqm3utoog262XTHttp9VDHcSmhUz+usSy+U1Zovqun3YOjn2mNHKeS+EuqG76Qg+CdLgBomqv7poCTIjq7xQOgleu8txIYVhddSvIYRZ0g4k0mL/GF1hdWCgmhhIhV+6qBOxFLwjN0rkQwLmjFrlvO1SXnmVUMCL6OORuHqmb1qzPKl+cITrjqO64HM2pZ3KOVWEo5l/YlglOmaGD++lrI2qGKrT9qCXHmZPw5ZWWcssnQ6oi5Q7Mn5cicIuP0I1oW5/s7ALr9HnJEMJ9nvMVDdMGZaVOVq+srbq6vyOPIYei4EsyimKKV08gZHxxkR1JIDmYpL00gu/WlleSxC1CEVdapk0GyuWc4SmkPHJ2zWknBe/og9KFmJSqTTs1fN4RgAcVLfKEW66LVJkl1YRSzTDpfLZSBrg8oUsCHMe9Yk5ctAITSNlnwRtXOlOUXV2LgVLag6JkwxuPUTnipb0NWTf07T23AysklqxWkupxVsAiUdyJorn71mRxLPcuoFPRtfdNYHTQVtu8hR6vHKFIDhE+Ak9ZHsyey5FJnsoQu/zaAsHmmh/Bmve56jW3209V14XnpnKXwXW4pj7Xpfe6op/Q+19P6u7bHnFp116udPf/0Wm3200qtNvAx19OlLWqu5+0i27rSPfZ8z0GPXV9O9z0CnOSx7c2nFTjqj3VSVPD5yK1Orr9RANVjy7Y2oJPl9wpgF7XvOo/OPVOjTV+/1nM/hHR5zofj4HS+PhXNpTA9mMBigoZZE2tdwTVoPSOSEVFiTMR5LsqPTIoN+JsnVDPB+2JBrEoT+1QhYIlJKmAxOUesmVHxpigr/LfWF/XeN/UPrQSHAUU27E9LXWR7tLKGVU29smQerrhDXXXBVSwW3kI8kibmqeYGOFoyl8PMPCXG47SJp9IYrTSEsKy3orLcqyp0lriuJ+3HUqrDCXNMeBGCVT4sxgGH9wMiylWeuQqC5IxzkeCOeDdy7Ud2ITGETPDF80mtRmOfR1Qcu+y41oEOJYRM1ztmddzPic/2iTBnXk+RwU2mwFbBF2C4KNuaOr7L1GsVuo8s2sKC9cr26TrxrnPbWPL6ax0f5+5zxoW8nlOv8xxgcWPW2yondWnc+rqeqgX64F6rZ9zq9FqbVdei7TUs+68dq4skfLqObcFp5W2n12o9aeocq2un974kjzq/9sH23SxA6RQsnrvxE1EqlkUtbvIqisvG90SUnKslVq38AxV0lzjCAogXOdyta93yXlnXM+r5rpHvyvOdLilVoevrvYST/iy9vszTda2t17JnkkVuzOWaNYzOF2OIJehcwaICkiwTiogl7syGyuiEZdTkXNYJtbIiKVmuFSEWkO3I6kjiUISU7fM+eidY/PxXfgWA+XBkePmxDeiuxw1XSOiKABctUcnbN6QvfkD6/DPC68+4vX9FGN9AstqLaGZKwjE5smA1haQDEStK6zz2OBCLcJFEiMUyl4BYmFbMkZhnEHNTqZa/3iU6l/C1rmLpGec9PngkC1fXe15kK/x7OByYprEEgGqxQjqur6642u9KoW/LIOScI5RsQiAFKLoS15iJ0VD/MUa0aj/noglkTeDjcPRiWZ1MGV/cMp2UxATPIajWmdJM7lYL347k5rhG+b9ZpKrG+cFlTu65CvHl+IIZ6mRPsdSxnA0oaqZkPBWq5lSW+1FO1gU4asoWB1t8ERZhu+DvdfGQZQGpbdfF0yqvqyjaMEmaa7bPdCqP2h9O3JKM6bmsivAQ9J2zFp4Dhh8KgD7kuMfcWR8ANCiLc9G9lQUuzqtFpFpK6uJeF0oRWbR2WgLCK0d23heB8mG84ml72rqMNZV0tUSei3U87/bztOVE1mvpye8rEGP5Xgdc275lrNepuy57C1hbTm0/m/us86b+3t7Wvuqcsd+sELAuC95aU7Am8zpj6ZTGOiHNkzftWR5k837WNr6PjEU1zGj5/XkyE0MTs6haMn+be6fvPE5rvIsr34qI+cfEGHFuBYu+uAwNrELnMAzsSgmL6tpKEQBqzViXooVDqDLs7PgKrioo7LqOru9AwfsO54K5x84zsYAk7/2iVffBWakOynzNdS6X1cs5xHkrHg9kyUstRdVs7rCieB/wLiDi2O32VgNtTsyT8XtgSe4TnGe331sMTc7ENC8JfKZxKtYRuNrXpD5PS9WVreiKqRg/qimiBTEvFud46ZWum0iMBDkw+Dt8PvLt68wnL4WbPjB0e/LOM7s2qZCiY0Lu7nDJ432m7zIezwtRvn2lHJISNXFU5RCVz45CPmJlN7IyZyvrRVXDnF94T2hddylv74GMr7qd9NudJ0Bx5etnAWYR0hU9ycPwPACxpayNdWepg9cwP9Ula/GPzs1b0GZ/q64ShNI+cT2Wxe28rik1LKfrVnl1ZYeyfi/3qnFrlVes73tpmVbL4sR4PNrfauVorMD8yVrXrCktrcPr5H3pmYOfkKobqmSry7q4horgnckLcyoGHe8IJTuquOJdVsS9rBW4qVnma+NbI1qRa+0Ymwf1XVXPs9p/NR+KEwjB0wdvYE9lc31rqpRwNikA0NEFtyTTXJa1vLqIe7/GN+77gT6UOrusYQgxmfdiyok5mVXQkHyRi9VygGRVUlLGyc6Zo/L2XjnOSspwjMKchWlyvDk4xvFHrLP4vf/3vwHAi5/7Lt31LfNxpNtds3/5DcKwN6AYJ1JOxE9/QPzer5G+/9t0v/1rfOP194lvX1mQtprLaHQwOSlWNodogJJVrKLcKLJYHKM45oKeZ5RJLZHAvSTuJaEC/qon+AHvPVdhZvAR7w38idji7bpAGAJe4YXzdPsrpmkucRGWNjYny5AafODjj1/y4vbGarvsOqv7Ilbbz3kbYOZK6UgxcX83Mh0tAYAeJvJ8JGVFpoRGA6EBh8dSAF/7QF9SAhsQNUEneXkWsLgKX0JVI9tiU6TJmhGhERC12V1PXVxfRLaMpL38RrCtZURW8VEzNpiTCQ3TMZHmRJzMqqipjPvlXm51adO0WBdzyqSYEDEAWc9xXkoobE1TXdzBtDAcXZmfljlWi6uqrs7Oy9PJ9hnbd7Jo/KUEVZ9bPJ+YPsQ6+JhF8THQ88MCoVMXnIe/r4tYLsmhclbujyN39/fklDkcj4zjWBY0W+QFK2gbgsUadF1YFjlfPAN8UQA5/+4MqPM8M8/TGhPCebDYvot3gfGnILedVKzax8bCtkFwK4qs46+1Xj/YrsBRDKjVW23nqZ5cfk2f31oEy8ihDuzglCDm/iNeDDggzAnmtFyeqpRx5PW+jXp6M2LaSdUg5g9yHW265zQdfN3/TApwbm5eAlYG43AciSmW7HeuCDaeLnTFHV9xhffGOXLsRuNhOTMX7X8Inr5kTPXB6hmLc4v7dJuwQhW64loNsN/vubq6KkDRmXJUxEpSdOaedDwc6e4PVp5impimEdTiIr23MkQh2FwDiKVEhmbFuYBznQlkXW/ZVlGyyJJsh5zRnPBO6Lresop3kZQU5zumcWI8RqbjXK4/M44jbr/j9sUtL25umeeJN29eczweyClxOBwsljFlbsv7fmqKRXhMap8MNlSzJZzxTuidp/fCxwFe7ka6cM9w9YYr/zlBDuz2PVe3e0LnEfZECSQEpnv08BpSJN/NuM8P+Kj0/Rvc8JrsHd8MgfAyMOEYBk/oA/dR2H2uzEcYM9znVWGgxQSyYrG6cWagV6VdETgfXaAeAQAtL98oVRvLzebWy+8N8NkeQMsHnpKqi7IB9EiNOV20xycCzeOsXc9ubn6q76WCaV0VonX3lseBZmWcZitBo1ri6MxtPFdFtlTwUkQz56iZsa1uq72/dj2rru4tVI0xcff2nvvD/RLfrDkTusKPStKsVRFZGinbrnkArVuFwTNRdUOVAs4qSJxjtgQ2KEktR0in4IJf2lmT2dg7ycs4rdZKWZ4BrHpBWWm0JgtjyVBa50QdNr7EKToRdr1n6E0+yTUvCxWo2/gOTYKb3lscoi/JasISsiHL+h1cyYAqQh+CxatT+HBxJZ3nyBgjOUeOcWLO5t1SraeaIcYiX0fl/pCZ58xxVj6/y9yPmTk77qIwZcc0O97eeabp/T36TrB4ePUFAP3tLePbt/R3dxaQubslSyCnChYj+XgkH+7I929xx3v6eaSLIyxZvZSoELIlK3HZ43LGwKKQxJOBJI5ZLOgzOsecPVlgUsWb6E92mdklsghBPV5yyTyU8ZJLFqWKtoup2psmtMtCxuqyDUPPMPRmeZhtQIXg6fuO3W5YwWJftDHOrmWjwoFaG9M4o14gCb48r+RscZWx6tsN9Hjn6FQNLDrTWDo1kJhEnkWwWcBCZSVVW9EwgYd88+Hqccpcq2Wj7lvE1WaCLYtGwzyLYpycMfCXilZnlUmXVrVi9dKkamHMuq5fZZe0gHU9oYrjy0VkyzVOJMpqFWiebcNU19bVsxZQXIXh55JQG/oQUPNlgc+73Eq/zLmnbqi1m7LaQjZNMzElDseRw+FA6yYqYjXh+s7maa1nVK0m56yBp7riKlRX99XTpAJnr/HIu3p6y+KDX5Z/t1Y1odmx/PSwnQ+VBA/H+sNLVpDYnmsB/avwuXFRK/GKNb23CEv8Zcrttdt7tuCTpU1nJJL195M59l6ShludvNyn7ruWaixgVhA3Q7KX4lxVbAR86JYC9TUJgqojBCVJKqWJzG2q6zqG3bC6Xvqw9G9WRar7aSMY1jnmQ7BsqwUsVuVKCB2h601ZGxMhxNWi6Usohw/LvPIh4AtYXOqQuaJ09b6wc7fE3CzwYbOxuo/W9xQ6CzdYFTQUi6nFb4UQGIahCGXmdlrrxMUYDbTWheOJacOntFmftJRf0Ao5hJ0oL11i7yJDmLnpJzo34vYOvwMJgmog6Q5VBxJR9dbPKcI8I3PGieK9IuoYQsd1N9A5x03suN15wgyfB2EoY3sCS2C09DzFOiHNE9DsbWk9Zmsl3M6ZR3n88ruu5zZWrWXf6fq9LI7bH1qw9ZRUgRqN4rEJatqQnL62B9SuZef3b5SidY1bLH7STgd7PWqeNDWm2TlnvDQLOeRNHOHKt6p7KhuA2GYFz2kNz1iUs2XexNnqvKZkgAZhSRZn7ujN2lGEtC1rfqi0e+De+8RULf0VgEuRz+oyWLmfYiUsdJkHdZ5CXn5pxq62Q7K4gRaZrXUl3sSDLq2SBbxWC6N3rTHE2biDRTfhxDat/rssZTSCd3TOl7a6Eg5XlHa1rmTZVlUSsshGNX48FW+rxZqei4dirS5QPjEq82yfcbLPnJVjhDEL8ywcZ2GM718j311n8fvfB+CteH7rxS/w6tPP6Pc3XH/yfcKwN1NonEk58+pP/jLzL/8a+umnyA8+px8nE+Yd5OBRwdLLhmC+yLPCpJCtY52UbKIF2GUB76yYZG5efEbQYIWGsxPCzY5wc4ULnmHX44NDvB1cDVoqlIxDgnilAwTPzc2eeX5RYj9mUpzx3nNzc8Vub8l8ut4Tuuoy2ghEau5XwXkkK32wVOCkTB880xTRfI/GEZeVkBM+K704bnziumgd9rNQPFvNFfV55BprM0Ju6lbmYsWxxALVDK1lktqUXIQ1Wf6hFSIfiunLVc62wFZhLHVwglw+NhnNn8Bp1XqxWIFgFZSdq/E3oUyuRT+zEbiNx+i6VpaGOmdWRlGHeleY5OqKUK9Rn2uT0mbDKFtAtG48P0z8aul9QPExCyPLAkoBbrZQffHqNb/5ve8zzTNv3t7z9s4STITOFyuH4+Z6z/WV1WCTEOgGhzqHeI8LAWepw1Zjd/1H1wRGuRRFr9YXU8hbMfIFlHwIFnlisLECudP7NM+xAYrN/hbs1jlSryr16tKMYS3z6PRTn2mBiydgdQsybWGFnGditGLy3SBLDHdSSlFpVuCtiuZISrEBlxVM+voHzVq/efbtYv/OF0rlRqf9Wd/1c8zJWjza1WetWbCLkLpYOMp2ytUNtXqyFBfFVDIWOiFFG+c5RRDTGo+jhUzknBagZ4JnWqwp835HOt7b2C68TIB+t6MfdiDCfJyYjhNZi8U92vW9L9bEItBIybyXYiTHVUjRIrnlnHCzWRar4AklY6faO/felK4xOkIX8HOg6zLDrifFHcNuMECLgcLD/QEvVj/SOcd+tyeliBchxplhGEgpcjwcnrwf+66sL045zgdiEoJAXzIY+jly0Jks0I9viXdviPNbuv4evTqS/WhKk51HJABKoAeEJB3Z3aAuMXPPmLL1vwiZaJ5EQblymcE7vrVP4OGYBI+Fqxxm4fv3nt+69+Y6lh1TLm7A5hQOyzivCajaaDnz3rLpsbqhSjlWtUzOZca1E79629geFiFa13m7XrAc1oJLabbrvudZIVerXlUOlrbX4E4FGm8n2bCLk3a2fz1o7kNgsQDGjZK0eY9iYG8cR+7u7kxZUxQwrsy5UErHtC6m2jageYU1vCLnzOFwYDyOOOe4utoz7HakFEvm5KIcyomcrTxPKgm1pMSwV8taVfxte217b5rxc/bVPAEtznWylg1CMG+9cs8a8pOLkWEZgssaY66pi05DWWWFFiBDGRpKzAmQjTKu5jxxonhnGVmd01LOYo2HlxIu1wJS7yzWsPOO22HHi90V3jl6b7/V1WmrYLE/5nlmLONgTomYzCU35mRlQrzQu46AI2eYZguFi0m5u49MkyUBenMXOYyZKSqvD8phtlj1EawEUPZEujV3yjvo3ZbFX/1VAI5fvOaLN/fIzQv6/Q1XH3+LsLuy+ISYICvjb32P8Rd+gfzqFeF4pD8ccTkRvWfuPdkLYeiR/Q6cIx8m8tsRTclYXIlryQFSwNxQnTC7Ej/ghF7M4tgNgWHoUO/obq7obq4R7yF0SFn0shOyJVglleKe5kfs8N5S33700Q1D5xahMkXLtHm12zEMQ0lus5p4xVVBiKXYh2bYdz2alDjP7ILncL/jeBhJ40Q6HnEkwjThY2Inwscu8JE4eoEXwFCYlpMNm34yemBZrFtVW6OrRVNUoViCEQOvdULUBWVlslXrdK7VcgIlm4mRpcQcWqIaS2rD4nJgLsp2L1fBoKwCsvNC8B3B12LsAStaLNQUxVruuPiGVwVj6T+vzhZWUXIuC23OK1isrW7eS9UcVoag2mRebTVT5d3+NNCptfCxY87tWxZRavr9zDzN/NZvf8q/9f/9ExyOI5+/fsur13cgws3tFVdXV/R94JvfeMEn6Yah7wj7HXvnkeCQLuBKvTqaxa3WWVJ0EaprjbYYZ4slK+6rzpsbzpcBjE9Jrae5FgXKaQzJitmWCbg5ZmsJfcwldb2Xc+CdAceauAvEAHxmPZe2DWVe1HhRVXKcSPHeXGU6T+cHQEiqS8xXnataS+PMR4Q1Kx1N4jAo2R7b512f6v0vsz3kHKiX55uKNf18TBE021qmtnaJA3L1mgBNmVQAYs5mYbByFKmcpySB6Kx/FgFPDUi9ffNmUXzM81w0yJbEQoDdfsf91Q4RK0kxHUcAdjfX7G9uEREDfnOt55dMOBKz/PmlYDSLl4cW1zWzOHaLayvTCvSrdkMEPJb4Acx1fLcbmGOkH/sl2/jV9R7n4OpmTxc6e9aYef36DcfDgS4Ebm6uud7vyTkx7wZyMiEuzjNv5/igH35U2vVmAc0aeXu8J+dE7x1XfaDzDp0z7j4xaiYcP2d6/Tnd/Ia4f01Od2g3giRkl0G95T8Ie8CB9MQwkFAm6bivLsUpkqcITtnvZm68w3XC9X7gWyEzq+Ob145v3XoOs/CLP/DI9z2HGd5OgTeTJ6mQ8CSKJZiSaa/AyGpfUQLQlafNjXooL9bKjMlNukBIUzqIZmo08hboNbNzkz29gtTHZBk9uc7TUS0jk0sN7ZqVshbzqdYzG6JbOeaMnqk+zrbtrOtaBY25ugerNoC11X6V9qXM/f2BL754Vaz8ReHtPc55+n5YLeql3Nw825wXWIClqjJNE3OpffrZZ5/y6otXdF3Hz/zMz/DJJ59YCZpxYizKoZTiUrt0LpnF7ZnLs4sgeV078um6X593eQ3PpxT3ddGqYFGk8MwGqBbek1LbviaiypUS6FpCYFJdCNb1tF6juhLnlJtnquusuaE7sRIVnc+ljnu27YopxJfL1vrx0oBFz8dXN3zj+obgHX3wVrqC1VKYVYsCz5QAx2nkOE2mGMiJWB+8mCpFhMHv8E6YY2acJo5jYpwSn77KvL2PHKfEZ68n7o6JmOEQhTmV3CidgPfkLER6knt/b74TLOZ70+Jl8cTPPkePE93+QEpCGPZIVlw0hhM/+5z86i28ubP6Qynj1XKViHcQHBI8vgvgPRIz6idW172C0h1QYvdUhFTWJHUGAC2NriN33sBiFwh9h3i3JIhRsRFTs3q2KvsFdHjzC85DZ24j0ZGKP3LXd4sbj4HF0k+ORfvii/nYDHIOvGkhhqFDUyKnXPyPS/9qxuWER+gVBnEMwL58DIBqcVV6WhJ5mORh1X5p0cC02kBdgGQVthYG24LDJh3bxgL5QGiT7Xa9V9X4FBWlFB+DU6OKNIy9BoSLWHp4Vy0sDSjdtGfztGV/a7koDKlqzaub8XpFLW2SsiAsL249otUofoUg8Ud1K33f+Y8BxQ91Vd28q/LusirjOPH27T33xyOvX9/xxeu3NkZFQDwxJcZxZooRcZZEainTIGJz0LXV/NZxuC7gNfNpjVsorpOuCg2PqznaZ3kOF8Z6yXZerfvOb7/7GDn7+5LuW1YXngogXT1P1nj/bczrOp9knQmrJcwJaDJ+tdSQqvdrm2xxbEqxxGkVTmqG4oU1N8/abp6+fz05SLcXWLbLyPiAcf7D0ua6i4UhF8uGtaMWes55zVyqRXGyWCPqWC3lLLIrNRRjKcc0T8zzRCrCxDxZtsyc8lJM2YsyOXvW8XBcLHDmIeVwzlupjGgCUdZM0rQoBOp7TSmTazbCXBLWVAtqWVPNW6PWDyuKF5Va1ZolJtg7XF4TUVXX1NBZPE69riVuMMBddSNr1tZsit9MSWrx9P3ofRnfSUvNsRnBE7PNnVjrs+ZMmmbSNJOnieyjgW9JJZtrRLIacNSSM0E8KqHEtHckAok6RgzUiQqdqNVZC4FuiEQ8h1k5zML9JNwOsA8GQsZocgQF1OWFkbAAMcVA3mKLaeJA6myWDWjLWMHoekSzb0EIVS6Q5rxK2szME5G7xZKc/PCEtAK1CtyqM6K1XUy9v+H7VbnVWoQe0AlgrG94tSqefpYrb61wapb4CgBbi2SbGTgXhVJVeM6zxfj6nC0LseqiCJ3nmePhyN3dHX3fmyJiOb8CkTUUY1OrGFmVrIVPnss/cM5z6DnDbFqLX6sU3b7bcsAiP9bfq7WvbtdnK8evd1n/lTX5XlWjtGWpnGgJbQMpiTDbj3dCV3kfFmMqDVgM3sBh7wPeO3of6IIHikupWNxjiutqZ4m+Sq1EXcuEtB/jp46ULeGmuTjDOMNhUo6Tcj8qd2MmqTAmmDOIp3hf2nmmrP0RweJ1yVgQ70dG9wXp7oDr3xDf3JO7HpfBJ3M94c1rwvEtpBFQ5sEz40lXA/HlNdoFtO/R/R68Z+6PjL4nx9SoAwQNDu18SXADc2V73pGdxUrk4CB4cELqBxRfLFEec2+yuBHnPVIyj7qazbPEx2VToeILUHAloNQ05h0hBKrL4wIwpVi/KNr5JXC64CbnGPZ7xHmycwzX1wxjQqYJN0VkjnggoHSYO2yHEgovf5ZEqGeoMmzNZtE1RG/rvzGR6p6yxT6iWgqJ6sKDVTDLJMX/W42RLlYJCgiW+t4sURBaSh+IKQBwBgi0OJzXBa36+dd378ukdC7gQ3E7lgC5yc6n9kKzWoxrbUdenr4IwxUgFrOjYVV7tlbRUlNH19i5jWsrm80tEP0xpFOGfxqb92W229/edbyNo7xYF0Vcia0KNudLPzgfCH2P7zwxK4fDRE7K4ThxPM6EoITQE4Jdd0wz82QujqHEAKuqCdmpamft2hZzvAqtNOPife/r+cAGm3Wv0WmVcckyVA3XtZbFBj8250kF1MtpdaFPxUIDTgKhxI4laY+qN6ztW0GiOIVsYXm5gKGUZuZ5NBecbGm+jcz9K2sizSPT8d4AgPR0LiBq4MaEdMuAvRRCbp/90c6Rk0158PMKoFme4anp1eefAjDNE8f7O6Z5JqXEVFy/QrD6gN67kpDLaiiaMLKtCwqUhHHzAsKcM87kvSW+Sc6Zy6gPzRyzd2X1FCuom5Ye9c7R9x3OecMDZcVfco6JELqO0AVUSzxTNG+fxbVfLJbRVQAnblHWmJXeVsKa0KHrPF0/2PHFfSqlVGqXWdy/uGpp9nQhcLXfM/TmMRBj5O7uzoBiTqhmxHm6MCDOP3k/vry9BWCcDqjOTLPJBuPxwFQA11DG0X3OfBGFMTpujjaHhiD0EfYu4vuMdEfc7g24jqQDWXeo8/TXgY9+5rbIPBP4EZFM/yKxu464oMwOAjOJyEfBk/eZYyeMn3QkcdzP8FuvMr/1KjJFx330HGZv81FYkw3JjGIgQ1Rx1FSv66IunGyLhaXkukYqVgJkY1mE87Opoq13z7TnXBcfuIaW5lTBXwuAb5VJ9fjH1sHH7rO5V/tf/b3KFycqyTaWt+ss+VRN2lbjeSt4jDHy6aef8vnnnwNwfX3N1dXVcoyqebMdxyOH+/slTvFcPL/VoG7qED7yXKf7HsZQPu+aCI1xRmr2UeODJCFpoy3SxQZeLORbRWU1kviln6GuilVKqyDSWQ2+tbfUrhE8dAY12AXHLpgMuu8C+67DixmdhtAZVKy1Hg1mFtBosalTnHBJSGnG29QscYfV4jubsionEhPq5kUpmCyAvGRdtX6dnSUem+bM24PydoTj5LiPPQf1jChTtyfmbNnK1aFZwHcQbhDfl9qk8+pe9A56J1h8cTSXj3m8w90dS+IZx+QDKg6v0GWzTHlN9DniyExdx2E/kLxHX97Ct74JwwBdh9vtwTkOhwNvrt5aRsvgcV0wDWXwxZUUZlUmNa20uZkWV4mqnQUilEKr4PF4MZAXfFeyyRnCd0UxllMizabVEc34InW5ZrLW7HAIJWPVapFcQU+xcNVBB/gug3N0c0S6nuvXR8YZ9HhE70dgJAA9ykBiUOjV/gZBch3Mz0wF0CVNKNkssqI1+y5O8nLg6snhqHEw72SlyqKpUuXB5PVeUG+p9oO3zIHq1MCiWzVx5goliyYMhNA5HOYC5XxP1+1xwSHiydkiCzWWYtOiqGS0PEt1czZyjXwpRROkaPmGJjmslrZUrao0C+wCmGWDqtt4xx8XejSu8B3H/rDbp/dSrW6oq1tbCB0+ZOu7oizxoWMYdnjvmGPmzdsDYx+5vh7Z7Sb6Tum7TN8Vt8c4k1NCBPoQ6IJb5nhNfW0pt30Bik2duaoY2K7lXwmdwTQPwd/yu4BrnLmb37fHy4NtobEe5ERKI6jS+R2d700wzzZ/VFdZErZyX7WOIakUCI+oKHEemUZvArzrCd7itKo8qjkSp3vGw2tTwvkrJOxxKEGUzpfoqrzC9gfP9UDgat9ew2BOdj0HODylH/z2bwIUgGix+/f3Bz7//AvG48hu13Nzc03XdSXW0NYd7wOhZD11BQCK1Fp61va+79nvrRRG5z27Ybe1DsByHUHIOaIxmuumPy5AoAuO3TDgQ2fChlaQtypTF7AIxHkixsnWMx/WJDtiYlkFi9XDo17HYXUKQ1HoDTtvhbCduYTPJYOfxduACzWzsQHqFy9uudrviXHm7s1r7iZTOld1xTDs2F/dMgy7J+/Hb33yMQB39x0pHREScRq5v3tDmidSSTyk3vEmKX4S+tHzYnLke89OPPt7Jc8zXS+wB7lRk1fCDXQCLrB/2XHz8TeKwnTCd0dEMvgDuHtUEnOMTGkkZ6XrAy+cZ1bH9Q4+/jiYS+pvZnrNHCfhs7uezyZPzJYYcBJX1nZFJTU8oC070k72st5pdcErMWzYmqYNoDxL2qjcmmtuRfItrSqop6VF6aJ5rUvZ3LEu0+tyvQVA7ff77rOCwmrBrMCxHlP/Wa1UQCnHZnO/73v6vjeFSddtwGKMkePxyG/8xm/wS7/0SwD8zM/8DN/4xjcIIdi5Xcc4jdzf3fP69Wv2+/0WLNZSEioGmcRk4Y0HyvJuHl8ET4H0cwJFsGkDVqrCvPMcMZosV+9c37PXss5RSzoVK2KjQNXyPjauwbrKpMCaHb2Me0o4UnBKX7zu951j11uSmquu46rv8c5xNQzs+x4nrlgTjcemvLolO5TjOJYFrSpgzANAC8ZRSk1MzSSZUW/hBinlUpoJYoSUChAtjzPNyhdvlTdHmKLjTRx4m40XjF1gKhnLk5rvojHgHlwoYYBHkPe7978TLHbFHSWT8ZpIyuIOlsswK9lmqW2wWCAleUcMDroOGQYYBqTrycOASjGZDjPJR6QL+K4zoagBi6lJSWu/myWClC3bqG5TCBcjMFVzu2Reo4ldMylmZWrlhfsmlf7D+msrUDS56URrswhnZh3xWHY6VzLLqfNksSHtsKyuXqW4nZbEENSJ+wxM9ME1tfkUBlmtZXX3KT84YaIL01AtrmSybfrJLdtlo77PKiBLPb8Ih/X2Sys3Eqxdp1qKWi2OKRFsjJr7VXlyqUJYFS51AbWttC7luA3UE8rvpb1N4xZmdPJu6hh5bvqyriCPWQU/5PgfZbsC7WWRlTUW1YTQZriVv1PKTNm0hdM8l8LZYgXNY0kUMltiqmVeYqCH6mqDLlq4ZcyI8GBsf8WI8V1DY4N9ZJ01j7mnPjx+nWOLy6caD9dck1U02UxZx3Er8y2/lRYs1vWGllpmGXPPYeU1xlMSmq2PcM7ur9m4tGFgW0eaLjntHtk25PRtbb7qCdvefL5+nSeLC8yq5Bp3GCPT8cjxeETIDH0HmEW9dTUTJ6iaVORcTYhjggGs82d1N/LLdhVAfOjouh4RIUUhopCK4IMUz1BZymlYBu+SyMbb+mRg0UCnCflrjJrv+tX6X/m7FKtoAYsGKL3F9IiBRedq/DnLAF0FbN32dZmTVWC2OHAtiXt0GQ+qujzLU1PfWTzf1HVLFsIEi3UniZByIDkhqjKqKTuHLEzRZI7QKWlUW8tdgsFqSzuZkT4h4vGdMPShlEYx5bK4bOW71Jf1S8wrQpRBMhKETuEW5SOn9J1yu4OrDiRD7yCUWZxwOHVkMUmjzZYn57RAG8lANxnLF1+DBlAu5zdywub85YAqKH4VKptt07Yb5c8GIJ7y3gU8V5Bw/hLbiy2b6wtolztd3rEsf2+VfLKZ1+dKOOXCL8Zx5O1bC9OwuuATVhfckYtLquXcSAt/Ob0WrBa0B2tPA5hOqXVLXd05n3+dPOUPtbahK8CvHbUCi5HDqGljkSsrWNzKdfLgHr5aXXOtZmrAteTSIzihazKaBu8JRZnXh2Cxi86XJGNCypm41GvTJaZWqR4mptBR1nWZpWptiT+WAijJZIWUxa6plGtY8popKnOEKZWkNepIOJIbyKVarJZvcIjrUfFFRvBmsHkPvRMs+lI3qy/LR4+S1eogLransoZEJ4zBYg1j33Hc70h9h7u6wl9dI7sB9YEcOlSEqQAUycncmJxZe7JQgBVk59Fq4es6fG/ZolxSfBEI55IeWNUCgMV5C4ptUo+74qKGggTTWKiWgFKNDwDgMuy0MsBSh0Xahc4tIGfVCK3+4UkTMc1McULyhFfrsg6LUbxG6cv3YMPm2VjrUkewDsJzSG7FTMWaugXIVcA/pap1Xm9m91mE1QVVVY1Kk+1LG6G1MgNXGlQz67TautpQKSJNQYXmaGBZ6LImMqm0Q5bENirF5VYN+BUUWdQLsjTPwOKa5KZm91uOF9uvC0jUErbqFmZax8NPGj0VOHxoWVRSikuB7c47bm6u8N7x2RcONBJn5bNPv8/d2y9MeBTFi7nqvHn1ih+8fEnfd3z00Ute3NwAWJKIlKyI7W6wZDjBc3t9zW63s76qsVONMmij+HnaV/hBdO6em2nUbNf5Vefgqgmm+X29aP0dKQmzipIDtZJFqKIpMk1HnAjTrIyzWWD9Ym0qyrZynZpdEcmETnD0APRDb3XlajYBpytfnWdSjMTxjjgdyE6Ikyd2zoToK6XrrI6UJtC0FVObV/H+t7k5eBUJnltUvbr9aL1t0Sb3u7fEDMP9gd1u4MXLW/quW3ieojjnlzAHH4IlenHOFNql9VZGY4cTxzzPi5DYWkxC19H1PSLO3vUc0ZysgLxaDODt9cDtTgi+KDJ9X3iUX1zSfPD4YBlbj6KMVUHrsoFaSpkL09yRmxI32c1FYWchIw4leIfQ45wvILq6MVKU9m18l62XcZ6ZphHNmasrm78GsGeL/+96UqkP+dQ0dIM1b4jMV7fsfeBehPTmNUcFzYnjPJGzBcX0V1do77k7ZL54/Zp+jszZrOVDBy4JfijWjiHTDwnXzTinqM+Wmd1FA5WiBrwZgI6gAbJHs+Kz4qPVfryOMy+i0ifHz/aB8WXgOHsGlwgSmZLj9ex5PVs/zTjQHgOBCZY1cR1jbQqaNemNQuPq1zihsplr9c8CjFbQVemrBYqlOWWZ3raz8sjHeYlsmvu+li/weVE8F0VzaYGJO2uKnwduoYtMujVOVFqUFAX8tfvrvHHOEYK5o+/3e25ubtjt9wzDsJbBaRLioCUEpIT+rOtgjT3evp013GH7e7vOP5eM08oNi3zopDxLUaxhfVAzybbGmwfPwHas15FQazIKQggG+kQEh8cXua7zwlDykew6x773xQ11YN8Pq2VxN6zehsW6PzWxqZasrLj3SzJNT1XOLZ58RTZXe15f1EDeBVJxkU1Y3GFMcDgo4zQxJ+GL0WKbZ3W8jT0HDSQ8s9+RXcfqsIu9P/H2rYLKvHjgvYveAxbtpXostk4LSk9Flp8EDmK+8gcPrzrP5ATd9aSbaxgGwotbutsXuN2OCMwFCKr30Hcl+2YtiKnEnJlTtMXKO9N+OsENA/1usI6oBTez4o4jyrFMoDXTofcdvrihLnFxgDiPdKFcg02h7hYsrm4GK9Xip3ZIDTgFr01dqOpznCJzHJniAR8nOo10KDvgGuEllp/sVmEowySJ8v4u+/KUUjExi4Em442rxrBdMkQsprAylJoe/jGmsQGLC7cu36rNj40Kbikim7HspWpK7+KGakkUHKI2ObJqYcZYTbICFFMpwWGxqp2tXDmSswPJ274rfshmWM6L66MQEFyxSOmiInSNtspXwZnKnOrzWwCyAlJcwyqT/nECix9iUXxqoHh67XmeGY8H5jnRd46PX94y9IHvfT9AjsRp4re++D73h3tQtVpGCCF4Xr54ye3NDV3X8cnHH/Pixa0tIFq1fwY+97uBq/2e73735/jmNzoLJh9KLLKXxkWkzHfev+A9Rz+6BeFtF95VI9put8CxmauyWRaXg6rbqv1askDDUmlcUVKcmNR4wmGcuTtMZFWGYWC32y2ukS7U5cHmjojS9Q7X7RGBru9LundXFiPz8hjjgelwT5pnpsMb5sMbnHNMnaMLgA54eclu8BZLMWdT5mgpn5qt7Scy33lq++eDTng6evHRNwDzIumHHd57rl+/Bgnc3d2x2w+8eHFL33eL8q1F9YJlIu2LCxPiSkyexQIGHxCBabbi9bmsedXtrStubOIcKSop2vqz6zw7b2U7Xtzuebl3hCBWV3h3ZeC+GVPmnm0p2N+qchej8VevZI8piFOmegekuJbsqApTRdFkdZC6LhD8NV3YWZxmbkS1rCUTdklClTM5RaZptCyDIfDixQuGvmeOkcPhjnmeACnWk+OT9+O+N9fWDqF7kUnzFV8AB/8DEgo5cZgiR6ckyXQ3tyS5Nu+o+88Id5FpzPRTZu6ULgnDFTgy/XWiv5oJg6IaLRepQvJl6ZKaYt/cs51GQhpAMmmeiXEiZSXGiRyPzFmQ3RVX3/Aco3IdMoOPHKPwvbeZOZXEPNmBmhpa8qEARkgISBW2i2+TaimuUQRYrclxINZjSgc+zHGqC9Csf9uqfx5yfUlnmC9HG1awZmNfPEs2zJSNUqqy4w9uXlFkV5mpKplBSrKQVrG3BTBV6X5qWQSKpTAvCjdzW1+t6TUsxzlP3xnfuL6+Yf5oZtjt2O/3dF1HSukhWBSW0jgboHomWcZjnizt+n7OePAUpDWL1bJG13wVjuoiXceh964BaZW/SllDq5Kq+OxJVSWuslzwdl4fQrH6C51Y5QUnwuCFfXA4B7vOc9XZO911A7t+h3fm5r8bdmXMYZZBVRJHJEdLzqWJMc6AIi7hvKlsrDZ8kaXVwCNYhlXxjiSCD1Z7wSROZUxwnBLff3Xk1ZuJWR13qWPMBhCPbmCWHVkCs78mub682aokKi8DK72T3bTgoHfRO8GiNK4EvqiRFpN+YSdSgGMWYXbC5B14j3aduaCGjtB1aAgGiKqlSDjNbbtoXnOW4nZS7L/O6quJNxcOLRKFOsX5aJneqgamTjyRJph31TA4h9XXc7qkj/8gFtFodFc3A1isVrr95MXKmCxIXFdrlaUYF4KqbcOC+Rc58hnIXADrfVYX3HrLxVpx5nN6na3fez35PG32LMymAarNHEfX37Q5+VwPZTUXXtW1j5cLbX6jWRlqHAblvCa2QXURbLLWd7LYVZpnLkJpOd82bSw/9s6ekr6s++mXud5TWhTrthatpllGLANj13m6GCwmwYGIEuPM8XBvcxkDi957vFhyjq7r6AqAqQqgWsDWFSWSiCu1pYqCoXlVK+iSD55iz+F6s17uIe95t4vpI9snQ3/ZLON9Eeiq0KClpAMmhM5xRLMSgpCzcSPnqgBUkleJLt81nXnV9q4NqAoZy4Cay8eyoa4xq6rmYuNKFk3nhLqul9JfzTN8wLuXBw/9lZAP5r4Yuo6+HwpoHOmGgT5G+n6gH3q6Uj+tFa7quOxCoOv6Irw5xJnb5xpDQ3E/WmvH1YU9hLDUZrNYHSVnXxJnBJszwdGVcP8+wNDZnFlUoSK4Ujssi9UR8yXRSY35rWNnWduSZXalvO7qoqbJLJvWjhpr3igKT6m9Zs5mhSz5AkLXgcA0hWJhKXHPz4A2amKm4D1D6Egove8IzuOtBooB9KwG8nwgOSW6wJwDOXmmWZgnxWeQWeiSIqnIMS7jvCkoa7VwU7y7RZZCqhLLeKFZTxI+C2QlZKXPCVFh7zI3vSXeuBngZrBMqkNQuuJOFtVcUs3tG9YsoFJcUitw2s4XKf3tVGveOzu31qY76UtdztPN9nrAeY+pZwGN0gTybIDByXrcgp+T809a+WBzk5/gdLscuF1dHvLtVj54zKOtjYs8Z+Wr865aGENJyvgwhKr2WwVRTVMXXHWeZ56uMw/kvmeWc5qW2Lh7cKv1mdq/dVlDTtbXRjvQKotXN9TyPsWymzoR+uDogsM7rD5iMJ7QeSuJYdlOw2IgyFiMcFZtXPFr/gTz7PNV5pSWO5YtrRJqBcSWeUfxC35KqsQMxxnuJ11c40e1nDKzeKJ4lIBKANexoY1SxFmNxQ/ox3eCxbgm+8RpFYq1+A2blfDOC6PAceiZb69JXcDdvqD7+BNktyPc3hJubnD9gGqtHQWaE1QXlZwhlWLCyLIoOB+Q0Jkbme9wviasKdNRFRGP9906kAuTMI2KtdOhxfWi6NNUl+NDeBgD0S7UG2vjsgA2AnHdhy7FjqdpMpe7cWQeJ5hiM9GEJBaMLijJ5TUGhWpgf1pqheRScmjRFiprhlKzJBb3hTqJ3scQ2v1lYkBr4mdj2VVngk2tfuC84LOs40rW0N/lkqWuDN7arw7GOMFRcd6RQya7ZBbRDrquByzuI1e/7woUK7AvKVetDlpJY5+aOotl0RSEXC1SwuLXrmQSadHy55Nx8Wxatx9ylX0MyL3vmC97/TY19ziOTJMla0jRXEYtAzH0wZOHnm998xPmmJjmiS++eMGbN68tYcjR6kg557m5uma/v6LrOq72tu2dYyhB/t47rvY7hqEG/Uc++/wV3jt2u86AaRe4fXHFbtcvmsotaDtPz2JZPHujIgBQ9Ryr1ro5pBEcVjAoArg1KRXFipDjTEqTgbdimajCYyoL2Hh/z+HtnQnr8448WYKhrqsWrzoXbflKXvBL7dkrQqiCbs0onHEefGduL75zuKKNleAQX0FmyTQNdMXlPCukpE3dx/Jvq5xrN08FwCIgPBy9z2TOyLF8KfMEOXrSPOFEze3TUQC68Zc1ZmVtkhbgZeB7TTpjrtg2UqY4M06T8alyBcGS0UyHe8BifGM0MJ7Ht3hJiFd6n9i5GS+JkBUZ58LXlwTkRVhwiCohHxncTMwwzsIhZZJCjJmYLIX78f7eYjLFMod3XQG4Reiqtfxc9U52pb6mrpkNW/VCViXlSIrCROb1a+Fwf0A1E1NE1WL+umqBffJ+tC+HYx/MUpuvrvnGy4/YBcecJg7zHTHPEIQUrAa021+TP/kWbnfLmA68ml9zmCL7t8ArpZsSfpg43N0Rsi+hMdXrxC8KyyyOWMMhYkYmscQWByXdWYIgh+dKe5IIEvbs+oEJjw891zc9hyjsP1P6QRmj8vnbyBf3VUE3ojqXdTWQJSyrq8kBRZFUf10AowFXWVQHdeS1HLMKuPW3xiX17LTbKvCelBZgVNLtlswaG4s+Jwz13RdkEeVlEW02fEecAfLlBeQTJNZQG6YCLJa/czGLi6t5SWZTjz//2DUuef3U40MIZM1IhpxLske3jkO3uHc+VFqeB6nr9nOF2yyZosUtWCOplc5J0ZQu1QksYbWXgzpwik8WOy1V8S+le5rkkWuSSlm8xnyRfZ1AHxy7EAhO2AWzJnoRy4bamWzc+Y6ulMiQbHKkcT4tlkUbE6Hw9c6HqkpFJCFSXU6T1dxVy8eQYvHkyJZ8LqlwmD1jDMwJXh+E+xGOc+Z1hrfSk8Uxak8sczv7PSoDWsr2rBLHOevhh/ffO8HiVPY6tWQ3To1ZZEyoH53wxjvuvRD3O8aPXpJ3A/3Lj+i+/W3Cbo+/uia8/AjpOjSVAtlqWsQc5+J3lMwJtxQ51xKbQehw3WBgsetxoUecEGoRTKDrE7t9SXZTBkiNkYpWsdPmsVZ3CVPvVUtkV+JJqpDbamtWP+jyqlNatLpVIDbgYIwxJYupOB6Plnb7cGQ+HK2mZLF6IEJ0nkkcopmUhUS21OPoeUHyR6Ra7gPB6qtIHbTGAauVQKS4xISwZIl9yPLKpSozOQWLdcEpYLAFi1XZ4Et5DF+y51EypKorWpVM0ToDriQtEkGKGVYlM84jYzrivCNJImnEd56bFwN9X9x4NFtNq7rQSV76WhrhNNdyKjGVGmNtZljBO11AYi5FWY0pxDUTWhkTdSH4ELP+V0WtlvIxIPghx7zv+ouFoATn3719y+vXr8g5m1AZOlArctv35hr6nZ/9Ni9fviTGyBevvuD1m1fMc+TVZ695/foNgrNYjH4ghMDN7S3XV1d0IXB7e8vVlWWMtHI3VrvoeJw4HI44JwYWe8duNxB6v7gEuhob+x5m+RyWxXaOt0LXopQqzVpif1stdBXWxGISbWoo4ooyT3VRaqX5yFSKjJNniFNZNe2jmrl/+4a7168s7frQM++G4lrTk3dDqaFnx4pYmYWuC6X0CfS9xb7VGAhE8V4JvQfJ+N4yXTvncMEj3kCj8+C8jbNeHD6YknCOSky6CNJrP0ijxWcRRFvXXW2FrSfpqXeTRst/nnNkzjNRHGk64lFCcMbbarY7rYnYCl9bqhGUot5YzH0I3cJbXenrOUbGeS7u+Kuwk5OVQ9FsoCrGGVTZ+cjOJ4Kz7b0vhaXTEUmmLOiclKyDlhhliZXMijplRnh1n3h7P5IyxFL6IsXIqy++4O0bcy2+ublhv9+by/duoOt6VB0i5kqencVLVrDoncnTbhnjpeZjnJklM88Tx/sjYK64/RCK8sIxDD1diS980n4s8bKdOPb9zspZ5YR+45scrva8Pb7l+68jx1mRIJa4zwnu5gX52x15ihy/+JxPv5fw44EXPhF2kWGXoR9xH8+EJPRDz3C1K8JwZ2nscVbyIhcgMDuYgATxPhNfR8jgwsBNtwfnuRl2pKsdyTk++XjgO9JzTHD7W5H9PnI/Kr/2WyN6HImqTESiRhIGTFNRgprzqS9AcB2UNeleTciXH7C/JneDrvCwei6UQ+o/m7nYrjNPTYs7pRY+Wb8XsCi0SX9WJvLOqzbKqXJOIxOqgtT6lBstELQvrpUtz7mhPga8vPcMw7Bsn7TclDQFFPrmG4rnQQhmpElCdhlfrGBVnnF+6wK7XnaV69q2td/PpRB34ss9TK2kWGbRMSbm2TKdx1KSZ9CABKXLlrI09GCZQnVZH1EpXpKUDLEsyrhQYjiDE0JxZBw6z/XQEZzjqgtc94EgQu89u/K+HB7BkoVJhjxnU3iilqJGDS8F5829Wzqc9zbTNFIzn8YkpBRJWTkcheNoytJjFMbkiNlxPwcOqSNm4c3ouJ8dU1K+SD13klBxZOnJWJWK7HaoK2jCdVDmuFFxbSjUZOd4b7+8EyzWQo2qzRxbmLwtztEJUcTKZHQd9D3S97i+xw2DfYeAhFAK1OdlEpk7UhG2XUnG4JK5naqatrO65xSgVbc3ySqKVt2yiBVAoLmpHdLqY/Oq2XpEm2MYSJZvJ6sJvprjm7fE6s64CspW3DgtRVENrBjQjlhtMS9WSzIhC6j9Mkj/Q2kL5uzbNG66aOTrs7J8PwSKZ10QKqCW7aJQFf1S77XeerGQSHPfVXu5sOHtxVgvYHJjLpr2TMpFMeAa4V6qI+P2zlov1zS4rnGmrWoWPIqrq5hAV13zckn1X/+rrT11H/kq6UPu+b7YwnPHnHNBPv0+BYs1OH+cRg6HQ6lpqsX9zeaKc44A7IYenLMsp2lGNTHPM3G0hB0gDIMpAKqWtesNePZDzzAMRbljC6DmzBQjcZ4tnsGDYpnLcqoKIQMfj2HA0+d+asB4eik5s09PjjvdlnLikphCyz91XqjFgqU4GVhMEdKMZXHKgHl1pDiR42S8ykOO5r6fg9V0sslm11MR1CnZWQtzjuZWbJOkEaaqsmgtzm5eDbLIXlpd9Ctfp2a902LNXKl47DQgUTYvrbqKS3k5q5VjeZPN9tPRkrglU0Iy1oyzUu+3mR/FM8UWAzs156JZtpCEKoS13LeCwurapG79Pc5zAYtzAYvmUeGCltddYtAU63dNy8usitBsSecpv5bzBNVESraM5my1S2vyjTjPOOesHEhOJXkSltG84e311S+/2U1YLVVNP1UekmyN9urJQQrf1aXNT00tz/PO4UUJPjB0PZqtlIX3HhdN/lBxNi18gH4HLpO7e2YJJPXMSYmzZVFMUybOCrPgQ6oBuVRgVvFFfReStExRK1tVuyw4wWtA1Nzy1TtyyTifg6OLcLsTbnfmtLbvMoPP+MIP1sIYWvFOoQ334WTm2a+qzfhoAMUKEx+4oerJNc689A/pmi9FC+ihPt8qCEtd77eM5PQC62bbxJbPtpylzpN606rwa85bHdBO5UbOjuXT9bQFZZvjtd6yTbq4ArmtG6pDZLWyVrmtVUK+y8X0Q7afkh66zkojXxlIzCXvRE36ZWFfy+JSX9FqDa7XtrdR+Nz2Y/so4NE1H1/AZMl2KoC2PFrKLavX2mKesNes1UvPEt9kahxprVdsPHaOMEUlZeE4w5iEmIVjdByjs+3kGZNjzlZFNYnFFGcJixXRLIp+adumh/SH7693xyyW67qSmdDr2hdZILsAuwE6T7i9ofvoJVztGW5ecHV9TRh2uP2OsNvhQqDLHV3uSqrxWBY6XRfDnHGhA/FkzYTQEUqconehWBMLUHS+CCRFEFEluoTGCKr4yuCKHOPK7M9xJKVpYZjVBD9NE+M4NoPfhJfgpQBW0LwKmLVkR43LUIV5njkeR+4PRw7HkeOcGGMmZXN9PQAjSkfmlQo74BPgCuhFuKbWXHwmahbvFRRWELweZunLt1qjc4zk1LLYimkmpNQTVoZWXZIEy5oXQimZ6iE7Oy9T321R0JUSAEkVNNmkDuU6DpRIShPiHDF6YrQkNHjFO2+AsriCLcJm1alUnlnctrWVQxcGULMQ2oHOFV3skixoC56q5fLHhX4Yy+I5t9LVOrKm9jYr/pq97e3bt7x+/Zppmvjeb/4mv/GbvwGqfPvb3+bb3/qWaTuHK/phb6/XJ6RoP/ve8/FHt6SU+ZlvHTnejyBC1/WlDpVntzN3U+ccXTBroqoS52gKGjV3uViEa59M2DQXuuoZYC4njwoNz0xy5o9FsG7mZytoV3y0YDJKnHexXKUcAWWeJubjkZwSx+M993evySmiDVg010B77jjP+BzxAld94MXNvhSB9wx9qbGHUpV6MWdSPJKTcLjDPEWcI3QDvlh9clar2x4cw9UAYkXPg/fEnNBp5NPPP+Xt/R3eB66ub9ntr6hZiusSZ86MlTe1wl4Fx5QjpVhjVw60romNxMbTzsnj/d3SPwaILRlNnI/kOZLIpCCgYZ1DYMrO4mpa55Epo8w9zBehJNRkNyGBD2Q1numDZck7Ho92vgiiaVG8WXyiEhykOPH6TcILhCB0oWRDDH6JN41ZmbW4QmVIpTSE+I6w63EZJBapxieubjLibQ5eX1+z2+8JwZftHSFYG82tqqb1N/5gBajXrK5ZM4ij6wK7obP+VLNS55yY55FpjIRuImdWy+J3n64fp9kyrDpX4gidxSTdXN8wDB14uJvf4oOYLU4iQsb3Pd3H13RayiCMCXc4EN0bvrj7AeEwcT1Aus10V5BvEl2KhGLCUG/AcUozY4poBhcjbo5INm+WcL1HMjjXl4LfxYJeMGcvypVkggo/u3fwjY7jlNmTeNlnxjnx268yP3iTmbOY23OOZHV4CSXD+5rBExG0ZPLURYlbaZldyy8VfK7722lavboenPasZNbE4r7UPkGrvXgHL1jB1/ZJzx23wOIWhEq5dVFIPgYS4xL3K8vaWsM35nkmxrjxZKu8QlyxRsW4xjKfHNOW0dis67RAdH2uU8vhudjHrwIogiWsA0oiHlkVj1K8coq8lhWCAy81VZMWD0LzhqxrpRchlPqSwXu6EMyVNNg650QIweITnQg77xlcIDhH7zp61+Gd0HlPqNnCF1dnS0mTivInkUr9ciXqTNKIoqXkhbncH8bMOJs18f4YOYyRlJS3x8xhNLf/Y3aM6snqOWjHlHtzSU2BKTsDlySSt8mlEgwkIlC9fJYxq5uvH7pf3rXTFWnfO8UrBKnxZLaYqA/I/grZ9XQvXrL75BPc9Z7+6ob97S2+H/DDjrDbIyGQUEqqA2JKzNNsLijJrBGalTCOiAtoyhvzfHDBUskWhF5/ryZ1BZinYh0yd1ZbbFd3R82ZMc2kUqetC+bfbdaQmcPhfpkEVSseSo0qVUVdRhuNsKXFLVrXbIDz/nDk7v7A/eHI/TRziAnJMKp13yvgXpUrlD3wLeBarJzGJwhXP1p/nic582flp1UQrfyU4sora3bPlXmujOKstqu5UV0sqidALUzrRBAvZLHU+X3niYAGMcsGyowVl1ZVy4ZapT+N5Gx90/uA732p6zkTk6LiDSzOgvMmNPlQasxEi5WtDFKa517CDso3ssjGgPW11HchZQwIlmFVtuBqOf6ZGOk5DeU5OrUQfghYbLfrIlUXnnZb1YoG12xtVdESY+R73/sev/Ebv8H9/T2/9Eu/xC/+4h8H4Pf+nt/D7/k9/3b2V1d8+2e/w7devDABq8t00Vw4+v6jUvNsdSOCtZabCeV+o+CJcSbOidev3zLfH0glm/IcE95lQrTFpktrLSrUob5xHXpPVz25G+oyoRoNfFkA7X6s2EhWsNTGe5mVqliS4kicj2iOHO/vuXv9hhRn7u7e8Ob1FyUjZUSTZWML3kCDiMWc9Z0Vhr4dAt+4vTJA7yEUl3UnumQAfnM48vZwJCvM8xG9s3JFw/6GYX9dYhN7xAdLK359xW4/mMX3aKVT5jjx5u0b5hgZhoHf9bu+QxfKAkypEYjgxJO15TOF/zQC3/K7sMS3QAWLum4/g6B6//a1tcI5fMnCHWMkjiMxRSASPeQUWdC/lGL3oTP3XU0GqlI2FzLnre6hDwzBymKEFHHBlKxdF+j7ofBwxzhNUAC7xfIrnYddJzjJzMeJw/EeQbnaD+yvdqsLmrPlf0qJOaYi9JT6XAqu6+jdlTnozAmiWarEDwzX0bIC7q/oB7P6v3xxw831FUJC8pGYpqJEKp8clxTy9inKVoG+79jvrVRI8D1OPMfjgU8/e839/Vu87xnHiO/6s33xo9A4WoZVq4ncGy8KHd3tC5SE7xz381tC503ZPN+Rs+J3Pf31x/ShR4Y9LndwODK9/h7H779G55kXLpOHRL8HXkb2eYbOIZ1HerPWH6eZ18doygCUGmV05R272725I6eApBobLJAEl2GH4iSzQ/DXjo+vAlNSvnmV+c5HmfvR8W/92kyaM8cIaUpMWUh4LEijZIMv76Im3tEle8JqPylq8eXI+rUkz9E2HrGZcA0+k0Zp8uTUKPqlKpo2cLcFiw9auWlq+/cSsrM58cQT7NT9ocgXtnl+zY4xLoCxKlxVlePxyDQZr6zrLRSZM1l8c4yROca1fmsNPSjXacOqHlgkFy+H1SBwCghP3WVbee/UcPDUFLrqhmqyooitmV6KCzuGh1QpCbl0BYyaEXVW97XESHfOYhBdUQINXWdZTxuw6GssvghXvmPvOgvH8B297/EidN7ceq2kVPFZRZlSJGernTjrTMyxGCgiGcMIUR0xOWJW3hwSr+8ic8x88Xbm9b3Jr3dH5X5SEoHRCbN0ZDyz64kyoDgilvFUFaLLZf7KGgayCBLvAIqbqanL3H5vv7xrpzTToZ1uxcBqi7P34EvwdijxbiEsGlKzCrrFOrdqawQNxQpTXEPVKT5GvPPkCixOLFjLf+3A9vbynPM4l8i5xulVLUm5RgFHFmO4MrYaN5JSotZyqRZDmueubTgnWKdUQG9104klxkNZsoNVUedQGE0uIFExEL7nIbN6CpK28zadubUobhRv6wPCI8zhHKMwrd75obfwUimAs/Zfs93ceDuAF9TJAnSdL0l0nO2XGotFdQOo7ieyeYamNatlsU0oUuomNU1Z21S1hY9Mr+eIcfuy9Ji76bsA42NupadWxdaa2ALHCh4PhwNv3rzh/v6eV6++4PPPPwfg1etXvH37lpxNc1oBKJT5WeIOrT6i4CUslo8KEKFa+WWJ/1rjj4VqWVqeA9n20inf/ACgWK/1tG6ojcsWbD1DNvPxFBQ1u1Utu6imxd1UcyLOE3EeifNMnEb7pBlNCc2z8aLgyoIqqLeF1ZfFc+h7us6bN0nJUlsVKjlb7JuIaXBTtiyd4jJdWTDB43IqJSCqRtiTRUpMkY2lmCLTNCEiBcxmatY4K7a6pkdfOefyxk7eDcuxdX2pvGYjwz0xLWELda1Y4irXJFmLW/vSoNrmVlNfGlfe0SqsFQWJesRlnJr10fsyL5wrMTglmU6pGeaducx7gaim1ESVue/okyVeSEmJJc61JhWq61BJwFnaaV4a4iwuluzxASgKW+fDahH1NV5KSlKJ6jJWy2TYmtsCitUyI8s67dxqedWSJVXErJM1a+hT0iKwCwXAmqzincUkBW+1MLsQSEQ0yvr+a4hN1yPDDlEh3Q/M6tHkmGZlGm0exZ2SJ/OcEXRZtzSa623K61xbJWS/wrWFaawvUYoXlYgwOFAnJUuq47g3l9qrXuiDrY4hllJVWpIQLSslq3AHa/yvroCp3nql97uhPpo99RngokgjseqJrLJhAG1u2EeuRfPMJ+cuYLBZR6t32ylDf9dT1vh+EVlAHlA8DTKr51q91mqNz1mXDOOna3ddl89/8iLf5pwXEPiYG2qdj49ZFJ9D1lnK3En91IRc5hGkCqImhwdXktMUMFkVqg77vSavCQWLdN4+zhmI7ErMovHLkhW1OW8JZqrJbMpcrJhEqaLl6lavrN5Y5iJrbqapfM8Jpmif4wzHqdRNnOE4CwmYvDA5U9pE9URnRo8knix+uZ+1oQDEhTeua4r9244hWf5d93zYXHwnWOyKPOd0ZRIZiMCEMgtEtdStTjNzNDdQH6PFyHiHJ9M5sQXOB7Qzzd0cI2MpNBxjJMzTEtuUFwuADW7Qot02odAHt6QMtzThpm2sRYoXn+ZUgEM0gWpZrEqdxnGamCabXNM0kmqK95La3ZhCAbOyatgXUCFC0sTb+yOH48Q4Tvzg89e8eXPHOM3cHSNjSdYgala2CbOWdcCgcAB2wE7gMzHX1K+C6iTcjC+2zGBhGDxkEu+5+gaX1ix5VdtngefFnxtdgJmU93rqdlfnQb8P9FcB5x3764H9vl8VCCUFfzc4i3tdJvOqHFhmc/sOnODBMgJqky5cWReDsi2FGYkUVyCna9yCrDEGzwkWPwTondvfuo+e2z53TP2tbscYl+Lg566tqrx584bf/M3f5O3bt/zWb/02n376GaqZX/zjv8j93T37qz1/ymef8/nr1/TDjhcvP+L25Uf4ELB5XvrEsYyZKqxW4VKxeKqsxQJNxneeYdfjoyNl09D64Njtd+yGjv1uoOsHs+o4Y/7NQ9hY0bUPFyDwLH1ZBeSGbZcxX3+nmYOGg7XUpDUeOY933N99QYrm9jgf78xtbxwZDwfjofMRT7ZLeQFnge4VSDgH+93Axx9/RN/3/OzP/izf/e536LpATnNx1y8QorgOur6n63tizhzGmftxMkVNjug8kUXMkjZPCI2GWq0sg3SeHEyIHTor8+BdNsuoVuBSQggkgPji4dHjvdVEZREHsHtXZlE+gi7y2iL/Pr1sykefWJ1F52w9cs4xTRN3d3fMccZ5v5TFsIZZo3wIdN2wAEIwYdFcrM1K58USQAkCaZ2Hzrkle6oTZRc8yYHrMm5ntfJuusRVlxDF1uhYFD1vjtwd4kaAEhF83xH6zmLqpTNvDmAkE3VGVYqyocYeg/ii9EgT8xjJyXPnlBRHywYrM14s1GQaR46HIxYjm1bAqIV3qjJPM4cCFkdmBGf1FQW6viOEjmE3PEuCm1//3q8D8HK/J3z8EWk3ELzQd848VELPyxcfsdvvmca3HJwS40jvA8yzZUIU6F7cIPsdWY9w+BZ5vGZ0d7z6/BXBR2SGvSh9r7gh43fRyoyJY+d2aIBQPhUrzs68sUTyoshEIprnAlh2+GwW2UE8Tk0m+yQ4wtWOQ8i8+gjGKXCYMv5VhDczswp3GY55xiScVjnT1ihuQNUDi+AaaqKwKMVrhON5mHi6/QxUUUZdjxvhuTIJedDCh22ysXn+FroetP7QAsb2dq3eubH+WbZwc4HuiocHYNn0Z7PKi1jMvilE3VJiZp4tkWJdl6sc/aYknmrdWatyLudkvCV4Yop4b2EdteRGV8pvVIBYy0GcJt95bmX40BWLpgg+GE/YucAeRVNx6cfkua5z7PalpnJn2c+Dl+JNaF4qXbCSON6ZG+rQheLBYGUxxElZHk3+HEJgV1xSvVOW+H5VJJsXlIhbEhupZMRXnFQTRynHWTjOlkhxjMIUHTHBF4fAqyPMUXkze97EjpQNC4xOijXxmuj25i0nA0l6u654S4cpFO+/mrDmdNBtSU+O+GHog8DiIjwDSYRJYKQARpSIvUSfIhojIf7/efuzLklyZTsT/ASADmbuHkMOl7ycydX91PX//0nXQ60iWbx975lyivDBTFUxSD8IAFXziDznVNGDmsvSLczNzVQVgEBky5YtEc0RyQ6vhcmL9VMbJ9zpHnxgi5EQLEBLcSN6b4IHWD1j6Rm6Snx1mIKeGF2kbc7TODHWhpilWDbv6OSWUlivV5brtRo76UhnjBs5RXtPz3ZoTe22CNmcJeGA+FWHFoFclKeXK58en1mXjb/8/JnHpxdiyrwsG0s+OvJ2L1/Q2j0Ffq6DMArcO2sG+taH3NrJ6rc0ZNp+1VG0VwHijvLcBpF/8zubia41kf7YU6r+zjcnmFsUqdt6zCnx3hby6Txwfj8TBsfdw4nzvTUH16yGYIgiXhGXaxaj1V/cRontNii1dk1MuMMJFOf221S9TG06zfX1tuLUSUsU2Pj+Tkb1Wx6/V2vYjhb4HFHHI3J5pKwcfx7RyfbZ67r2OqkQQu8fd/y7z58/80//9E88PT3xL//yL/zlL38h58ynT5/5b//9vzPPM3/66Wd+/vQbd3f3/Jf/1/+b6XRilFr6Xdkdvhp8aQMhLWbfBayKpl4TMIwecRMp+R4sDoPnfHfmfJqYxrE64kMN+NsNbGj0fp3f/Gjz5CZYpAMkt8HiriqMFlM11cx2feLxl7+wrVfStrBen40KU4W1LKOV8WQLvEWQqiBtwZ8JDt2dT3z//XfM88y//Xf/lv/yX/4z4ziwXC8s15dKsU9mk0thnGdO5xMxJT59fiSlaHatRHSTLuJVKho7jANuGBAs4zF4jwLzuLNBvChxu9as80ZMCXC1VVKwAP90T3BgwlWBBti1cRRRo5G/Nk2i38w3/e6HfwBMxXQcR5z3LNcFP35mW7ea9XPdFrUjhGANtZ2z+ehMfGmaJk6z1YxW62V/ENX2tmxKzDlX24wyjwGKY/TK5I2SOEk0x6ooFyBGA3Jjimypot45o5VJ8/Ddex4+vEOcr85IMLVzyWSJtgPm0tKNncaKKjmvxC2TnEPTynIZ8F64mxzTIMQtsiwL14u1+GhTu4knCQbertsGmqHiIYbvlRosmgrq+TwzDG8Pp/6Pf/4fAHz/7h3nIKjeMw0B3MQgnjCMfHj/PUrmepl5JBJXjysCWySXaJoK7x/wiGknbBfKcuH6/AvLLxdcysginIoyTwU/Z8KdtTcJdxPnhwkJDj+Cn+1GlbKxFQNsvMt4b+tWs0OzAI7gYag1nl6VoYZq4xB4FxzLpCzfB5CZlzWh+kjermxZcVtEiqnhJhlIEuhq94f52usSb2yjfvlUb/fZ/VeHvdeiyt8Nwv6njmYzaVmynY32pUN9+/S1jdCvvAXa/nAbATawuP+F7vb99Qe1PTfGyOVy4fn5GVVlHMab/TSXveawqaGqWgY6KazrtgMtB7rq4+Mj67oCe4YStNfrh2AaDuu6EEIg32emeeqqrMe2G8Mw1Nv6bQHw18epBYtOao9DQQZnZUcFjqj/EDzjZDbHmDHB2r85CwZbH2YLEGvNot+pp6Gpm0pjIFLfU5mQDqC2otLCVppfa+yHFg808UOKoNmR1YLFx6tlE6/RsURPLPDbCzxe7PnTWniu7UA2tZZ6Kp7kzmQ/W2ZRRrJYeU45KFfjivVwb4cefx4YA3w5j/+fHH+9ZvGLBST9XIrYo/XFKxhNqRfcFlO701J60amI9XnBebyrlE8aJ9o+rFEStQUN3K6326BCahGs27NRTXGoOrxOhNiRkf38VakITayLs9w4x/vd3SfmF1iU2uKPKbNtkTVGtpjYYjKRjaJ1f7WfNnj7IDYh5IRNRwdE3mZgj8dtsNju0yGLd3wve6DY/+x3jMXuWMtNENVRu/rizXd1I76PJf3nkf5p2ccWmDvfMsqeMNjPYaiUxEZfQzE1Bu1/W0+U15hoP+fjv6T1RuuMZfS44vqbv7LTHSbHfqvediRfBzK/Rzd9/Z7fCwSPVNLX2cRjrUT7eQw0X/dmanPkiJy296eUuC5XYtzYto3Hx0ceP38m58zl8sKyLihKmvdNzxuvzrKIpfTxy8WoHbmu3Rg3VK0PXM77d8cca51drck5DIWhkocgrV5jm+Ovn7/5Ia/IIDfT5IDk89rFqayHUtBKPTXK6UqOmwWLJhHXbU0r8hdp1HxAHYgFHiEEpmlinmfmeWI+zVY3qplSYm3ALlXev9R6Rt+RblO4bXJYxYLvFoCLQvG0QuA+R6Durra2rU66qrgWC2IQRet7TPgm1ztm63y3E7p/JjVo5GbpVzP09uPoQ6PaBlyt0TTKtO906S9qLZuhrMavAXLaN7uDAAVt7basXpXG1Ia8K8FiBgsaQq3RUali6bcBda57lYnKJTRlnPdVht6+vvUws/29UMQaLTSQxkCLauHVqNAlJ0QdKVZgqjhyCGgVn2p0OTvnFgbfpFv6Ntv2VC3a18ltPdXtWn6LY6k1i+s2saWNmBPeSxfhEecI3rLcqYruqQ+gpjRLqcPpqnJ7GJBxQkpB/YiW2jYsOuJme0twCkMxobasmBi/28X4XGNQYGuh6gjY7d+bX6AZqX1V3U5wxeMYRChi/eHOo43FeRBOgwG111xYE5WK6iha7a1UddybINAOubGHR+rpwU/7IgO5v//rz9/oaAhzW2997bX1d/hWefVK3+wPv65Pfj+7uPs5ovuc1lf2W0V76wbgZr/tpRwu3VBCG+UU6MwM87FLVcrd2XdHEbqWjeyf0/Z/NRuSpdVKmu1KORFyuAGV0Vufbw+4DzdG+//e/Gjru2mNNGro4AwQOZ5GCI6xBogheKYQzFd0h7YY3jF6b59TqajSgsVeHlf7/tb1d+wvavfSfAlRE1Nzbb43Uaj6zqImEJaLtcXYkgWLa7JHKrBlYSuWZUwqZHVmc3GUqrZcKt1UaerLdW7Yrl7XoXRGXL8pB58c9NUQ/a3x+uu//6vB4s3H1HVYHOTBUZxQBk8ZAjoOJOe45oLbMtmtlKdnhhC4UyFMJ4acGcURprNtGDmh0WppSozkNRqKHROkjBQrqNe6IJwPhBrNO2xUWlBYSsaJ1Ua60W5qzoXizbFNWySG0D3/UgV1Xl4uPD8/0WqeOlWyRQiHjR6OjndmXTcuiwnafHp84pffPrNtiafLwnWN5KImif7XxqA6CSqWsV0F0jdAcIbBhtmcNLr32NLux0hPsIXZjMNNkFhvS8uStt93dL85hNVJaRkR3ykNUJvcmJjRYLUgoqbq5Jyh13II/odpYDwF3OC4f3fi/t0JHxzjKeAHOykzyPUabryJusk2L4T9OtuYaEMO2H9tX12D5ubH9Pe/CtCk+TpfBqPf6nidQXwd1L0O+BqS2VDNo8paO9r72/OvfceRmnmkqRz7Ov3www/8+3//73l8fOR6vfKXv/yl//0WTcThj3/6E7EU5tOJp8uFP//0E6fTif/w7/4D//iP/8g4jnx495539/cUVZ5fXnoLji3lXhf89PzCpb6ekj1ijHz+/ImXlwt35xP/5T/+B3788XtO88wQBLQQfO3ZFlp2C14Hit+Whno8WmjTKC7QO+zV7FEtRyOXSIkXq1GMV0gLkjecRoJkQ7cdvd+Yrc0jXbPVRFk7i+A9P/zwPf/+3/87zuczP/zwPefTXDNbxvKwgP65Mi8ScTNaYc4Zp0aDVLDatTCAQsyZmGt+okQ0qQVGNW3cAg4QnCqU1Ds6DB68cRw7/dy5gpOMEAFXBQZa3YirwFCLCm8D8Rvf5o2P6+Xa7zMXsxjrtvL8/EyMVo9JdUYQ6Uh08J6Stk5bXS52P68Xx/NTVaBtoIDB1eaoAE4Dcxhr1j0iYUMoeFfwPuMwhczRaBI8nDzbXSBG4Umy9ZJFIQwwn/DBc3d3z/3dHYhJti8p1xY0mWteMbEh0x0AQbT1lyzEWh8rIjgfEOcZh8AUHjhNlgFuLbDQVgZizbVNpCMS/MTpfObh7s4A3HUz0Ccn1vVCSpFcwPlrZRq97fH58hkAH5SfHu+Jmrg/nRmmAQnmdwzO6OsMiXz6QPIz5bqQrxc0JUQTWa8UEVwQzt9/j+ZEmSeKG2BdSe6Znx4f8ZKYz8o5JkIo3OMYpxU32H3yw2H/8q4G/Yq6ygjwgmkTKcJq9Ws4chkpZaIgbDmz5UQsMJfCD1PhIYD/h5nv7x1LzPzhtyt/eVrZcua3tfAUIxlhYyQxHCBy6UFEOy++8rRnFqvT8wra7G/5vVDy7Y6jm//6N5Uk+7Xs3+HogNMNprFfw/ETd2fi9X2q7zi4H6VYr9KSLYvuXQXeajAgh89tvpN6jxYlb1tfawJoPpaNKEWsvc22bTcgC+yurBYlp0TcquDjsoJqp8EOPhitsq75Vzfvq/fpzY9DQDgEzxA8p+D5MI1MDaBrAaU3JeUWCIYqWNODP2o9Yt13Wn0iRyBNLBBMFbGyYM++YK9ZxOr8+3pwlGLJrlQ8UU2h9HkpPC9KzPDbM/z6bIHjNRbWlElFeNmES/SUAtfi2JxlC5OauFgRR3YT2Q0oQiZYEFmBIFV2pWLlAHTsvsTr4WqvyOFfX47dX/d1/rrAzb4GmhIw2QtlcGTvKFOgjAM6WLC4pYJKYi2wpYL3noQwnc5MJSM+MJ+jBWWp1rikTIkbZbNeX1qDRUqV6o5WR+hGJYhNCDuhKhecbYHgzFmdxolWMNwecdgI3kNVtcy5EKM5m7/+8isA5/OJeZ4QcQ0s6gFDu6mFJs5QWLaNl8uV55crv3165KdffiOlwst1Zd1SDzA6OHcckBavOEGdBd4KPZv61kejEyjaG34jdKUpanBENUKuX/l+4h3p0mo0D6hXo+RyMDCNTijQs4JOzIERFUqBoVIZjU5jDg9OcZJqxkGY5oG7dyf84Hl4d+Lh/cmC3FB6U28V2IW99uyF0oq56WMKhgJ2EOYYBHEIFFtmVQXLmNT7UFPELZO534rDCEubNW87mF+jm/5e5qsU2zSsHtfqG1rWbds2y95Vqon1S8tfzSYen7di/F2Aw1UqnamEpZT48ccf+Y//8T/y+PjIL7/8wjzPFFW2bWWLG2sU1n/5A3/66SeGYeCPf/oz//W//Tfu7u753/4//xvLsnA+nSj/5t8weE/Kmb/8+c/88uuvpJxZ1o11i0aD/PSJp+eXmt03yvq2rfzyy888PT3x8cN7vBScKOfziWnwOPRmc2l29hggfvOjTws9/KjYpFrWzPm60WEq1ILR0vJ2IaeVsr3UYHHBl4RIASlVIMV1Z8Hq3uzztWZqwjAwTgPDMPCv/tWP/Kf//B+5u7vj7nzmfD4ZAFDrO1o9d0r73NnWlZIzDjW6HoIPAz5YPYnbCrtiitWMIyaGZjmvamVEkNZ3N1t6ZvAeV9XwDEjT2rrJFEUFj4hl7ixgbGqOdn07JNQNm63E/4n+Ur93NGrlkc4dU2RZrlWMxcbC4iVrhyE1WEx1Dm7LxuVyJafclcFbxk6zCV7Mo+PuFGotzsg8TQwiBEmMIVkgIWKN/YDRw+jNoXk4BXgYiFHQvLFcMxnw84ib7gghcP/wwMP9HYpQLitL2ihaWNfEyzUDwjBOXRug5Oqc5sy2Xomb0d7UWWPseZp4dzcBZ7OlVVlctZBjQbPVLsZkzIB5Gjnf3fPh43fkFLm+vBC3jXVduFwKy7oRckHEEWN683H87fmTnb9k7j6fuOaV70ri3bt3DBM4cQx+IniPGxV3iuRhI+ZHFl3ISdEcSc7uQxgG7n/8wezq6R3Jv6MsG8vnP/D4y5USEw/3hQ8xMg6C83B/FnR0JhQ4eXNKPRYsimVrmxK7ExjqBla2hbwtqDpyOtX2QY5t9Vy3YMJ5XviHWSgCP9zPbJy4ron/c0o8uAuXqHjdyFFJGPhTcEYpL3VzVb6eMXyVddxtqNmy1++3Lfdb2dnjGjdpc7n5jX75tt85lS8DxcOlfvE3hw9svsDB3+gZSG22oonZaGdpeHG9xUgPdcXKd3DeGr2XQtwMqNFcyDHtvls/z7UDniGEG0DXeYdifxcxZp13jpISeZo4TSfKMFrPc+hdBnqN4O/dpzc+GhvIiWcaTL30/Xni3358x9089uy7+SHSr9H2O3fwoVtQpDRu+zFjW9RKzhq4nhr1F6x3MNbO3tdg0Ytl/0FMpbsYi+aaApcUSAU+vSifLsqWlJ8flV+eIGVhScqWMkWFTUeiBkzddCA5o39n8eTa/iLV59Cop+5wRe3ybidy/9c+3Y4z42aeHN72dx9/d2YRYe8r10bLmVKhBN83CsQmWK7BXFsYIVlfmJISRZzVwKS891hsdVQ5W91NpSOVUoVuanG90VMq0lpu+721IOZ4A75UdGpQAjXDaP2p9r5+LcK7MS/N9h2yi+VAs6uPbDWTpZ/DrTDt6/OiBmhtdrdeYW993AQvzQrKPnX2QLG5WL8PIe0Bo73YDf+hQWGveaRd3k4j6sZQOCj5VSpAtbA9myP0DFbw3hqvB4+rKsEiuQ7Vbpn3a9IvNyZlX2CHAK/Tq75683i1qnbD+dc2vm+Rkfp7aaiv5+fx+dd6MH3t8bXPPNIzj2PagkbvTU3z7u6OnDOn04lpmg7tNyKoElMilkxMiZeXZ6anmVKU6/XCuloD7G2LxJhIyWqeXl5eSClz7cFi5OnpmaeqsNrW3rZtXC4XLpcX5mmwQCdHYgqdBouqqYVWagoEushSvSfflIZ6OGxqtUCxtmjB5L+7OWh1CVpqPbe1wjAKWmtm1NZOo1CLZeXqa8etwtBYEwMbay3nNE01iG4UHUfxO+rda4A4rLEG3mGUIS+muNi2h8MqqX+nuzL0TS2h9jV4kKTq123rLKOlshKq6FgHcl4H3/1MGyVVduTzTY+2Tm7XV2n9POsYSBX0anUdnelwAN5UKy0tRYoqlGwPVRiCOSoiBCkEly3bJYVQK8zUub5/uNY7F93bRnnrGRwqQOiDJ4wW4IfBwB5l3yssA9jEq+RgE77cB1uftxqV217esoj9/vOFc9OBOqXbEe3K6W2/aPtjs1Vvn1lMNSiPObGlyBo3tpiIOZNKIRRPc+G9eLwfLFvkh1pWYwTQUp1qETodWYcRN54w9ZqZxEDWSMxKTDbXcyyUVFCP1SKWmwUEvFrDh/3OxkD7WJXa6Nuo2zYHgwOC/X1wwuQcQRwPkz2cFOYAo7f1ae6qrS/B39jA1wHjvvQOr//OvnR7vP161D6/mve1/1ttcn95fr//aXSk6eY7jgAf9QYcHYQD6+roPN483fcad6TjH/yeSs6/KfcQpJ/7kTLalxe7OJ0ToyAL7KVa/QSUZnObEGQ5AMXtu453s0OOf8UHeauj25o64w0Hs57cY/A1EVHZa4c2eu0eWrJgL016Hegf9yVVS6CoaNfRb+rW5ipLXQf13je+vlivNUXZcmFNpQeFS4Qtw5KENclOPc3UDKLVCVuAWKmnOOuTWIPFTgVvO+LvRHbHgFD1sB4Pv28X/UXAf+Mb/+1x/ButM9jjpnYWTvDVaR/nmbv37xjPZ3Q+Ud59gGG0Wpp1qZmAlafHR9blyrpGYsz4EFi3xGVZLbjqvWGUZblyuTzXICz2hrk5JjNk3oML4E0yzHlv9BcRTucT59O5O6+N+iJQ6Y70QmKT43aVpkhvfeGzVmNrxscSnNoD35Iza0wsW7zJcqScSbnVJrZleZByPjoyNThyYnQwo7/e3uZvd/Soj136k115j33SaQvOab7N/rfHBd2yldInC+YoHfb6HhvXjKEJFQWGYUQoxCHjvAkiOeerbLllRadpJIwmIjEMwWrRJFkNh7bwrTofrX2GglJBBDBBhb3bQreZx0zhbv/NTDlkd4zq55fmsByMvl2uXbdzR2Di2xy/F9C1LGLLKl6v1967Kb/aDI40y+OjvbepqB0P730vhDcV4uEms+i954cff0SBy+XSM5jPLy/887/8C//8hz8QowWKKSfEObaUeLlcwAnbVqmyMfH502c0m/DUf/1v/51//pd/IaVchTos0Pz8+Mjzy8WEruaJYRxIyfr4aW/+bZvntq78/NPPPH36zDAMvHv3wGmeGMeR9+/fMc8zznmGwa7jfxkNVeuGWAoub6BWD+oxar1mpWD1etv1mevLp6p+eoFizcFFql3U3dq0nzW0r+vPatruHx74/ofvmeeZ7777jtNpYpp2JbxGX/XetodxHJmnE8EHa6JOzVzHjS3GajDs25yC1qbxqnSafTcC2hZe83JMEKDeCmKqgipaAYBcrEn6eMLX/o3DeMYHY4GY7fd1L7Casd0YNYvWNt63Peb5BFB7R2Zjwig9KPLOM1ThG99EcFxTdzU0fBgiwziRs2XFr5cLuWQmr5yC1SQ+3AU+vpsYg3AaPfcnjxdM2CtXdVEXKH6y+1A7JmoppoDrPN7Dw/0JPxiiPd6/Z7h7j/eBu/PM+TyTsvK8RHIRSwxLQFpmYpjwwwRIVRO3useUMjE2Jbxu5Lsj2qj6zjlKVea9TfJaWUcDhFr7l6K2H9zf3zOf5jqLv82R1YLFZVv45fETl20hF+X9/QM5Fx7mEyc3EIaAl4n76SMyFjYdGLdM2a6k7cJ2fbT6zZTR62JZAhfw3/+AKzCMykSs7IDPPF5/tc5po3J3KkyjUNTXPpxCmRyM1Qn2iqt0f8lKjrZ3LRdYLxX8cwncBuIYTyPDfQVXKnqjtKbhsIWC+4eB787veVkLp/vI3efMNcK/PAv5GikqJFWy+r0cgy+w0/1f2oLJI1D7Krj4RmN4+yWHIO/4hT2Kk9tf/Y6jvCcO6H7AF29vpg+xbF9lBrjqP76es922Oo+fPadqQ0pjyNGCSPvLUpX7rZfiDua2enE7n+NJ0v0UA1tTBdsdTqy/oKvlXIKQoiVtnAiiSnC1nGuPW195r/Tv3P2gtz1ipZoHn4k547IQW59W9fX+NziwmJgasmOqYueX9djCooaCevQVm097BMnNh+9VOnkH0BoYqyipKDFb7+6nrfC0FVIRHlfH4+JIRXheR551sg4SopQARYWsgaw1m0ggE1CpmUXM7y1Nr0Fe1XfvI3B4fOVXX/3HFxFzvyd/z/HXM4uHmd7iAHFi/RSHwHSa4f178sMDnO7Q99+h48j1+YnP0TIDy7Ly+PmzoQKXK9frBec9MRWWzWqYjOttX/Jyeebp6dFqq3Jii8a/1pysl0oIN8Fi62MiTrg737Hdr3jnmaaJcRotMEGs8bQIwzAyhJEcLFgsNRgqWXvAaFoC0tiuJuWuSky1jiJG1tWCxWXbqqBNtg223qjfG8qeaas1ks67js7LV4zrmxyHhX+DsDQE2oHTFiw0Q0BHLL+GJh1fc65tIfboAaLb6QJtoVnmw1DwEKoDJYUYTFTAnGXr3SU1WJznqQaLFqCIg1yNQVvEWiNAo53mep6lo29a3L6JNEUm5cZI3FyTuG50bh5lrx/qmnENwavOeOsv+i2Pry3wlBLLshBj7BL+KaUe0DWU8nbsXH/92POp0VaPgWST9m/01faZIQSGYKbkxx9/5OPHj2zbZpnGaeLp6Ylhmnm6XFmWlct6Ja8LiLDFyPPlBcTqvVo98adPn3h+fOZyufB//B//J//1v/43y9xo7VmUM49Pz7xcrgzjwPc/fse79w+UYiCT4YSlB4zruvLy+ERJqQaL95zmmbu7c1+T1lajtTPod/rtx+7wpCnuSslI2pAqaR6obRI0k4rRArfLI9fn39i2K5oSWqxezQkWKHEAeG6X5MHmOB4eHvjHf/w3nM5nvvv+O06nmWka8c73eeucR719yDiYSmfOQ88mllJY1oWwrbdiDYAQarmA1jDXHrk6MW3d2ZsF2OlOMbYG7oV1W9lStCB+OhGGEe8HpnNiGGejdoYRcZbFCQzVobZKE1rgeIOTv91xOt8BIMvCdVkxbXBoiLDznmmau3LwNJ966xZD+mvLjJNRWC+XF4oacPpuFr6/E6YgfLgf+YePE+PgCE4ZahuZuBXWq2Uiix8o4WTORY6UHFGyBYveaI3vHgbevxfEeeb3H5kfPvZA1gfPFjM/Py7kYmi4ymClCs7hw0wY5xsUO6eEWyKIUeP2W+zqvml0VVoGBchOTM1N6gJQy0Suy5WXYP3D6gaMc467+/tKk0+sy0JO8c3HMdVg8bIt6OMnwiVQivLx/j05FfRe+Ti9YxYY/MR5fiA4IbqRRTMlLmzPv3HdXsg5mu8SCwWHO7/Dff8D+IFx9CYUtV5Yf/n/8enzLxA3Ru94GDfiJIBnDMHqFksAGWorIV9FdoSclBShJOV6UV4erfF3mDPDvOG8Yz475vtgWRltSW01ZlfOZIQP88R/+PHM86qE88Z0jjwtmWtZebpupAqWNsdZu0FpgCo35rEFim2CNKD2d483X5LHIFD24OmL4/a8fs9ZPrpjx+zUzdv7gmj1iDtA7RptuGW+6tudWPlRY3QAbOvKtq6gVMqoP9weA3BvMoAHsPg2u7/7bKWqgocQmKepBoE1UK1CkHmLJFWCM0DAO0+Qm0KkHpbd3Cv9um/4FkcDn4KzFnvOYcmYkk39XOXWoh/GJWupe00hNvE+VXIDMQ5z9FUOzNT5MRGamOvcV1M2BeuikOutv26Z62Y+/+c182mr9Yhp5CU5igpRRyJj/QLL1itQiu9iUlkDSf1tsAiVL0J9/uoieRUrKF+dnLdD03am12virwSdr46/O1i8ObT9WqpTbVx7hgGGkRjC3lSX2jcRJboNt1ogEHNm24yuUj/JkOXq6DYhji1ZsGi0tErRcYoUrZx6Ux0VEQZvm3LLgAzDQFMSowZA+8/qQojJXx4R9ZtL1eOjNRg2KeJ0bEPQAg/oDW37EBwiND1Mgm+Bdn/9eDUReibg+KtKg2hGyF75HVRjP+Twf9g/9ubVw1fJ8VmjDjSJ+Vbf08eiFSS7W7pB//vfv9YW8B6/Vw+/P57aq1D4K6/qq0cbyf0zXmfo/lfTUNu/X9NNW8B3PNo4Hyml7e9v6GVV/atdz1H4phze27dnMUWyln28u7vj/fv3PUC5u7vHOW+2IJuiiTvWGxzG2DKQkev1yrIsLOtSBaOqkc35RsG4U3qwzVGLqRbuVNtKFUzWZ67Zl5RyBYgKzt0K+xyWwxuPo82vPn+0Ul9KMeqhYEpiKGi2+rUKgmhTxqTs1Bv2OuOumtgyOG0+1jXmva81ixPTPPfs8I0YQj9R9s2pIj2u2tVcCkNvVVT6PFNVE/moY+Og0/KlWK8qc6zqa42B0L6vgTY1I6wVvS05k11CEUKKtSWFUXacrwBOLZI2Wma7Dsdx3b7lcSMecbhzLdPQ/6v7yq0Na/avAkti9GDvrAlm8MIYHFMQpsExDp5xcHgpeLEMZpbj2qNnj7sIgraf/YQrPdLVPbIyW/yuQg6H/a5fjBwv8nCl+7+acqv9/SuA7bV/8so0Krs9QU0RF9UqROH7OXyr3fJIuMtVKyGm1DPnrTVBLnVeicNVOmoYRgqFHAbLxDuPFnM4+9oxhQ1kGHDTjGqBMFEkoGIS+lu02twUhRwtmnaDQ3LB6u/oDy0N3Fb72Zky1SEUxTnFe1ND7sGiQnGWZRGEySmokBXuJuF+dhQ1xdQ5mHSEMRtMZRVtjmvd/74Yxy+fHV85vv1bjOURCK84xO9/z9e2+de//7u+9Pb7G6BcjrPqsNcej14eRbMldV8Qo/Q3ELp9UMsmtuFuF3xsE3fco79eXnJ4ftjc9j1Ydvt04D7+Pb7gWx39Vsl+e1t2MBe1JEeRvUd4HcuiSmrlb6UQc6rJJMsEHtlw9eO7WrivKnKC1Rg2lmAuYoGmWtIo117ty6ZcN/vca3QsG9bSJFugWTDRyg4cysHbd67u73vKoT3smg8wQb/lh7H6O55/6b+2Kz98+u8Emb93/N01i13RKRV0M4n2smzkZSGHgfF05u404+/uCJqJlyfWmilKOZEyLFvk8eWKIqxb5LJslFyMjhgsAn95eebx8bNlFbeNrRbPX64XQ7KDqe75YQSELSXWzRSi7u/uub+/JwyB7777rveDSjHaIyVenl+4XC7EbUPEcTqdERHu7k6cTnNX6AShceAVqbSowhYT6xp5frny+fGZ67JxXY2GZLLjx2Dw68PW0fXSqKstU/VtDj0oX7blb+1MbHI6NePkcH1fQk06PUOtE729iLbwnLjaQ7E6G823aBKO1eYUbVLwtWtlZTCYsyR1c/NoaTRno5uGugmbQqOzv3NS64Ase+FEaz1trbExL7SbN4HbJt31HBvG1NxJqHNcDo/XBtIJFOtR55CeOW3gSHPE3Fc2h7c6XtNJG8V0XVeu16uBLUfBGtmL3VtGo2hhOLxWaibHaGXxUHNUdiry1Xo6SUVF53nGecf5dEJOt7UDTRkV4HpdkDDw8P4Dl8uFf/7jH/iXP/6BnLNRu3zg7v6O73/4ge++/w4U/vjHP/LTTz+zLAtPL09Gf/cD83xmHGdU4UPKpFwYhoHvf/jIu3cPFrjElZwj59OJ03wmx4wA0zTiJqMyn88n5mliHAdUlW1LlAIh5J5ZdMc6kjcdwP2na8F2Tui2oGlDvKOUAZzUAvyMUhBNDEGsGbAOyGDUU6Gh2LXFQaUz2dqTSiMMDOOID4EPH7/jhx9+5Hw+c39/35WKm1gAKGXbTAE1JZZ1ZVlXtJhq3nyabUNOW6crl1qrZ/MxdTpWrgGiVvvZsk0pZUPhgcYsUTE1ZOdto80h9zVcciKXjDhz4MWbyI0LA672YhynE8EPOB8Yh7lm8TzeT3yLRH9rqN2o3mCBhD1a6ULqa0nE4VOi1eFAc4JsDngpvD97KMr7GT6eTajmPAkhCOIFzVq/r7CtkXXZLHs3DkAC8eSUjF5WCmvMLNGyEpIViaY2Hf2VTQPOO4ZhIowDMSpbVFIRktZ9Ixdwjhw3YjvnCliUnClpRUhoFe4wOf9EXO+I20xKkbRt5M1a3FBaHdIOTAiNvm9B0LYu5GR0SpoybgNT2Peytzqm0WiuThyD84g4cox8+vQbcVnQGPkwn8klcTedGccREQ9hZDx/hBLxeFOCXxfLEF0vtgZSQi+PqPM4LUwPHynnB7JuLNszebtw4Zk/fP7M4DLfpUIuMAzC+YNw9g4JhZItkwywXjPL1V5LWyWsORiDZx6NdDV7ZZIGFB7uoTOKsqgiJVlpjhP+9YMnBMfLIgQd+H6EZVX++Kvy69NGUuGijrWSnFtVh22oxzGpgf0ef/dX27NvtzO2Q48m9qvfJ9UR0n5Gt/v88e/6c5FDkKn9g6x9kAFay7KgpRgFvQpaNdvwNZXx9s05WeYc6loYx+5PtTsm0Mu2GpOj9QhvvRX365O+t0MTdYykJMQUexnQueoKnE4nYw7NcxfDuT3D/XO/RTbxeJzmWv4weKuxdpAoPG8bRbSK0+3DUWjBnCmOFlXWlLisG7kUUoaYa9LoMP+CEwZvPtwUrMWME6svXLNY78Ps2bK3TGF2bDnY68nqFLMKVw1cykDBkd1IltF8Lu+YfAsXBcEEp5bsycXVc/akqqraEknHu3urekJ/Jh02P/6F9rm5YyHHlVD296p9yi2a+NePvx0stjXR4oWk6BopKZOXjXxdyX7AF+X+fGJ+94AvifXlTHDCtq0sF1OHW2PmpQ7g9brx9GIGdZwmTvOMc47n52ceHz8ZsrdZE3BUebm+cF2vVh81TuYwinC9LlyuCyA83N9z//DANI54scyGd46lZidSjDw/v3B5udZ+NJ7z+b4Gi2fOZ3N+wzAcsonSHybNX4PF5wufPj+xrpHrshGjoW+toa3KPlDH/xcql7q0Wh7jt+8T6u2P22CxIUe7MRSk9nhqLSvsTHLO1iqtTsIdKTsEixXtOmYDO+30sKCz7ipTormj3s451IPzhiRbo1SrgWtBRwgDIZgTpm3OI1iTcQv5nBUJWN8ZKTusWFdN2ytVDtoB0mM/hMp+AkSUlu4Q2ffCjvLVVgte9mu/CRb/F9JQmxJjzpl1Xblcr6zr2rODQM34WdY9p1SBH+0ZeBELHpd17Z9VKsX3iFZaPaTdrHmeOcVzb5sxjCMeEyJqdMYf/+FHvvv+e2KMPHz8yD/+23/H8+WF/+///r8ThsECzzrf7u7u+PGHH/j+++/Zto3/87/+V/77P/1fbFvkel3AW6+z+3cPPDy8Ryqy73xgGALfffjA/f2dDXhJGI1NOE0jaUvWg+k0M40Dw+C5O58rrXmkFNi2VNd4xrnmZLlvEmQc4Pl9M8iZsi5otGuVHFBvxJXirN7CaWQIJrJxs45Vutpn71eo+xxGhHGamc9nwjDw8eP3/PDjP3A+n5mmAe+PQIehRaUU1mUhpcS6rKyrBUYP5wce3r/DOelti9DaCzCnGhSmTsdqdYdFK40/5Uph3YibgRIp5q4Giglbk0UoNVg0JyAS63XF8mz2xDlcsHYNIQyc5gcLfMLI6ZQZxwnvAjJ+G/CmAZlN2XAXfKp1NWo0Ksm5ljtIry2Vlm5z0rOgkyucTx4vwrtJ+XgqDAHGqapJe0fJJoKj2do3LVer83U64nxCnJJiIm41WNwS1y1Rcqm20YzyplfGrDjnmU6ZKZ+JSVljIdaaxVIz3apCitDEZUr9/lIsWHQazSnbmoBUYlsXa6uREmnbSFXFcc+3tv2kCsKIiSSVVNjWK+tyrc6UOW3eO6Yh9JKNtzzmsdVEVpl8IMXIb59+48U/Ijnz3cMDxo9SHu4f8DIQholpGExhWUZChLwtLM+PlDWT8mZjUR4t2z6eCO++Q50QJePziq4Xnn/9E59/ekZyZt0KLhfm0ezi6ZRgELMBLlEUlmvkckl132oZa2EMhfNoe+kcCpMkEGdrSasAki+A2UcpEaeRyXn+8eGeH96dua7KvYz8m8nzdMlMyxX/tLEioJ6sniLW4svc1LYh1wwoVX0ODj+Ph9z8+BbH3x3KCAcRmi8DxpuXZZ+x7SVbvjsjK+dsVOmcGcOADGMP2oAvMn/HrE5KibX2+5zGsfsQr1lKpYsqpr5XPz9buQZwAwq3khERug5B29OVwjxNPNzfcz6fOZ/PzKcT0zwfWDpfux3y5di9cezYgsUQnFWbOciaed4im5YbymjLGhZsf7lu1uP8skUeL0vVN4B1My0SY0OaBZqCcAoO74Tz6LifTURszcI1ObLCkjyX5MkqrNGzxFAppjVbiSOFmRRGcM5qu8exBqBwGlvOMCB4MkJOni3V3orZGd0bQKWXpdi9fn2f9fA7rRqp9TU5MumOA3KMQkr/t/SscRdo+Zvj8jeDxYbAfJFsUTp1Sov1hPqq4Fx1PPJRPTSbxPgWI7lKprfF0agfKVlz+xgTilrT+3WrjofdKkSI21YXgVFYU4x4J5XjbQhaSolYe9R0Z9hmji0m16SFfc1GthRxvVS1SZlL7eeWUxfaSPWzdsO5X3e/h/AlPqCVkqrHpPjv4WD/k0f72q/Y6ddBI3XD7PQ1cYiUPVDi1liKtK5wjVp1+FA5Ghal0e96P6L2abI7WnKgZrUaq05DbfQI7LNdDcpdpRJrbaTabHvzlzuCeBiCZn9bXNgyio3iKqKHzziM7vGSWmD8+qZ+o6MFf6/pok22P7/ajI500z3rZ06n1n6W/agB5Gsay2u14ZYVb+sZOKid0usfd2TTNq7z+czDu3e44Hn37h3v3r3rWSkFzqcT4zh2VFOq2pk4IQyBib2B/DRNFizWrNIwBMZxtGbyAqIB0dZ03gKgUCnq42i1lk0BMoTal6ndhgMQcqQyv+XRs1Ad5dMbcFBb8IXs4BLHseEwD78kn3RK36vX25rudWqHTHNbrvUj69/c1ngAncpq8ymbEIMqORVKsXPx1fu3e2m21BVFPaBCkcLgCxqM0k/dxEtVFhMBV6xeExRXs5OlXpto3ms2tBjwVEwpNovHiaOURMkWVPfa5Tc+Utt3kgXHr6lgbY8xCndV9ga7xtLOX+hK0q4QvDA4IXgDzvxB+a+NY6vD7cBA0b4HK7KfR27noz272wxeKgWXCs4LIRu9qomzSQXcjk7jUQDLbHkv0K+/72dn4MFBIbadZ0Pfuk0+2Bnp33H8rINR1X2ZvLmpPW5F9TxahjyWwhZNIXWNVkMbc2JUU5yk1taLH3DDBEXxw0gYhn6fkjbfqNSYQ3B+wI8nC4jDTJYRQev3mVZijEqO1Ra5QvEGlpakFvwrtQ9payhuzp9RCHNde3aBbS13Zw7qvmvO7FD1BTQI50G4Hx0lKafgGL0J/blSp093aLvVtI87Uu1ae6qGFv/ePX/DQ9tGf/iKPpVozsDf/u6jb3I0G7dXS1eG7a+/ooMWLabPcJjnv0fV/r/T5/j137fvuz33fc02j+1YXtHARn/YC76qQnw4336PXx9vvCAbvbRNHcVqBVMpSDLfrHnoPVisYOS6mYLxumWWzQRyLFi0pIBj7yMuKnhsvxoc5GwGwIAyNTGaYnTsrBAzbJX2ndVopwpkZ/+mSIdHbAs01tvuZTVGXLtn0jEI02NreseHeXwTNrwOFi1gROweNU+gxSz6SnH89qiE1O6C/E8Gi2PdKBrvV4EsMDjZewNmRVMhLisvj5/ZNPPy+MT15cq6LqZydrlUwZpGRTL5/HU12tu6bVyuF0C4Xq88v7x09CTWgnaVC1speOes3qb2U2xtK5xzpGky56EUUtxYlyuC8Om3X/ntt9+MUnVdWBdrpuy8Z767wzthOs0M42SGN9TaA4GYC7FYRvHz4wuPT09cl5XPj888Pb3079/9rH05HRIIOyalbaDqoBbjN7eM3LeIOY7oWVPBOgZnDut9iFIFWszhcnVyq9snabugHuJWRVcRscKIuordIQpVahs11PgrNcVXagRnTokSgonflDKYQ+WEeZo5jTM+OMIg+NYb0g1IzbjklKyeSTMRJakJJJhATTZfrJWA1QxMM0SWlak0saK9mPiQlDEHtS7I1svNWLY76mequu2efBuqxsvLi33XwYDHGLm09VWBEKH1v7RxGYehKskO5Jwr3bdFzfQgsH1GrHU6rYFwjCbcMY5jVQ21AD5VIZK2Xr333N/d83B/X2ks+xx7eHhAnTUhF+f47vvviDGyVArNMAz88MMPiLMswvc/fM9//i//xZzs6ig68UzTmXGcUIWUrG4n1JYdLYgZg6m/heC4O8/M48gweB7uTszzaKjrOFig6DxDmLq4DaVY42PnMKGOt1+R2pyCA7ZiFz7CYE7qcl0oJZMpJLLVReVEymuXRve1xleL2WBqVi/FiGrpm75zjrtczK5hKpZCy+bsmfCWVUFtg7P6Oc8QLBhHYBjGSv2UymizwHZbXrg+P9VAprmngrgBkYoUu4AbbG2EMDDnWvCfy0Fhcw+6trSa0nQpXKqjnovWLGPuIJ5qdX5KQrdMyZEEMGyEYWJw4ZUC59scf/zDv9g4lkJqaoVoV9hugbmIAR4lF1sXtRYTVROQqTbtfO+5Pw+cBs8clGE0NVTnvQVnRa3Re8rWPiVntNSSkLRBFY2K68ayNAbPyrLafcMHy1oLaCrkLVmvWl8gmGOEDAwjuKL4UBgqmCve45yp4cYF4iFTKgyUXBgGy6A679hi5OXyUlVerYcydZ4LYkrn68pyXQjOevu5miGe57m2jHSIG0AcWm3RkSXzVsey1P6IPhDGkeAs+7uuK5sqn54+8cef/sTj8yOXDwvDMHGNK3fTjDvfMfoA84nw8AFOET/PjNNISRvX5Zmn50+kHCl5IV8zitFdH777D5Scubo7XvKIbldW/Y2fn39hcIk8FCRk2/dqlgVRUlZcsudDUIbJ+qs6XYjrSnZC0YGYBsR5JJwgnOgOovOIOkIw8EfVWUPwCvJ9N42EB8fZF/784Hi6DDwn5fNLhrUB4x1WxYmvDrGgMqDiDXwojWJ9PG4Dujc9OuD2ZY1eA02/dhxftrfW3swHr25/X/Nf9s9NNWDb1q2KMGUYi5WpOOth3Eo9ev1rzkanFwN3Xl5eeHp6BnbRuQbwHvsgfy1L2dTIWzbRVJd3UbsG+JRSCMHYdNNkLZPev3/Pw8MDYxXAKTkbIFj3Dm3fdaAavw5I3/potjqrsqWCFGtyH7PgnNnZUsscrK7Q7G7Kha2yONaYeF4LOSs5CzFVJlvdNxtEGsT6nOfiUUxAyjurES9q/Q6DeuupmB1RnFGwpd2Hhtrm+jTiUTzCoIWp7sNRhaierK0MrbWpgfEQMPaA74BM3HrflbsoyiCmpQqHv1MMtNWqvFqsV6q2aQt9/e5x6N9XjfpXg8WhOcKyb8rJwWD9KEko5IKmbMHi50d8Sry8vLBcLqybbQYvlfZpij+uOnrJ1O62SOuTZnVXG9dl6eIVuS74NSVelsUCiNEaE7eslkkRO/LdufZjNIdvWxaKKp9++40//+lPh/YB2rMdp/OpB6DDMNTFWZFxtGYOLaD99PTCr799ZllWPn1+5un5YudeWrTPzc861ocMgO4v0px040zrAcx586N+nzsGi82R51WwiBBqNqjV5fVsRkeX9v/vfRKF4hStAZy0ekUwJ6fZmppJoE7mhq6YoyC1183YjeRpmpknCxZdqCi7M7/HeZvmyW3Wn6z1JpNkRk51LzQ/BK8dNEPquRwQxA6A953HaiLVXisVrdmDe6mXtbcU+FYCNy1YPB7LsvD09GRB2CETcNwsWj+91jKmtYZoWUkbWu0AzbZtLMtCa8HRehM+vH/PfRWQUrW6MyXV4Obas1SneSYQeuZSnOPh4Z7zuwdKKXz4+IH/9J//EyklHh8feXp6Aox+I2LB4g8/fMcwGR3cV2oNtZWNFiHnwuVlYVlWCxDHwSiw3nOu6p7jMPDxwwN355MFi/cnTnOlBlU1YrOitbVCdQBSTPU+fhs6sbYMk5g0dp+QYUDElN9erkbjy5rZSqx1GaWKTeihVhgrCYhmR2PcWLelB5Rd7RapFCN2QEGMkmPrXbp8uqp2VV+81SmOU63DGAd8s5PZGAe5KHl54frpZ0O4vfWeQzxhuiMMVgfmnFFGW4bJPMxmHetuVhQTt1Fi2iz4LZnnbWFJkVwy121ly5ZNj1skV5GieN3IMVO8KfyVOMCUKOOE+rdfj3/8l3/u4yh1LAw884csfg0WowVU3nujcCYL6J2Xbtc4n3g4T9ydAkH2bI+45vSa+Etp/YpTMupvUUhbb6S+XTeW60rKheW6sazRgLmw9+7MseBJOKdIKLUFqgM3Mk7e6ne1OfsWYOB8pxvn2uJEfDAqvyuENJCL7a0xbrxcDQiIcSOnZKPcMpsx9RrrsZZ9eG8tV+Z5Zgg2X8JotafbtvHy9Gz1gG98tGBxGpVTpQCWlGwd5Yy1phHmcWJLkbu7e9YSSfqO8/neGA7AIN5Uje/OyMMJcuTpt7+Q4yPbqmx5Ia0vFCCcvufdd/8WFY+XMykO5PXC9vl/8PMvn3CaKE5xLjMEYZ6UabRSDXEF52udolPmUREpFBJpM2XXlEdctGAxzI7AUIN+LFhECU7wGlAVXPSUogQcH+eRk4zMrvDDO8+nayRsmT9vV7TS0XfHxhxuDxbUywASSFJMZbYqk/fjFe78pkdPyuyBXBNNAtvjvgbI7z6/9Ozg7YfWbHv/gv1xrB3ctpV1Meo12kp09qCvgbst8Isx9u+7XC48P1uw2FVLK/jZAs1Syl42cjjPJubonGOeZ+ZKJe1X0Px4VUSsHc27dw+M48iHDx84n8+dvlqK2fSjGmtrP9U+ox3futQm1wCQbGfysgKIBYVrri3ttIPJRUtn4cRUWGOtly9QiqvJEEdwroL9jui8idGohXgqgpPA6CrdFE8opqVBFpJIPZ3K++lZhV6AZvRQhUBhMpENogZSGcktSWIeB2FP1eOo/YPZwZjWkcFYIdAK3Zwok4sEV/dydiZcygZyl1ID1CYKyF4m1zWxAP071+PfLXCDjVP9IT0j1JzwRp2iSTPn0ttRWIbQ+PNFmmDBXluTSyZn67OYi9Wu7JQ37Y5/LhlRMRnd2hJAxVnPKZHe1sCc4Nhrt5rDa4qHrgtXOO9u6FhNla7lhrtDnXPt8bZTY3NtvFxjz1sDJEa5/DJo3GP546GHv/8WdvR4JnZ5e+VI/129jt+bOJ3B8epaD5/Qr263U7d3QPvsPDzYv1PYax73cWq1lK42+67BpRhFS1VR8RTJlQYjNzfxi42hjUQ92TaF9+v8aniPtICx3yw5IgG33/ENsorQaqNu0bzXqqd9Q6zPG0Vtp8bs59bB08MGe2yDcHwO1F5Q9j1FG1US+/wG2Bwoq8ZdqhvKASkdhoF5mkghGD28CoS02jlxVjfcZMWbwJFi5YglQ3aFNOYaFFmwONZA1iipI+MYej/IYfC2IYZgG0Wj9tV6ZCn0Vil2b7Suh7cfS309Bv2w+V6loLoNbFTQLyCpNg9ELGMjpgjqxISqjsGi2bpdfKn/KfsauLVhO6XYeesLaFlKc1Z21bw6hYplPrtdFwcuUySQ1WrlxBVwwda5rwDVAbQSQDplb6dPO9SaMjsLdoK3BvJFCng1ahEFfEZqZqsFv85u+N+/I/4/OLpNFbkBz0R2WtcX9C453nGtjowtF9/O3UFvz3NAjr9KZSsFKaai2WtWu8E9zBMO311vSVGx0o46Hk486tTEl+r+W5W8bq7j9fX0a3eO4wST/t3cTLL9/MvXx+cwL48lCm999PZZ5bjWtN/rBqptzrHGjWVbGdeV02QZ7qEUAqDVfxA1ET4c+CHgQsBlj5RiwZNifVUVFIdzA2E8gUL2M8mNaC7EYiIzOZtF8GLqpi4onj1NIFraIqRxYyyod4iCqxRoqeCY2+8q3TNRsexJwdhi2YSyjr39vhghlYPtOH7m7hXclCYdx/gbrsf6Bb/zsh4dlJu3H6+wZ436Z1X3/RB4tf31CzXS9lou1uy9AshHfYHelopappUPSuOvaKXH11/TUeHoL+2P9vr+e1M/DsF3/YJj5vELcPtr+2CdA83H+GZ+TjkGTNrjizZXU4KtsopabICatkap67fT6g8PoJ9/kdpDvWgFaE2gq2dtaqmb2URXA7JWYtHuT7v+jKoJlzlVXKmgTj0vY5uwd0yor7f9rtUdthpECxJlD+SE7rcdwz0hYxWPde+oJt1a4tmYZmn6KUKjpdd8CNpXKYdr+f3jbwSLt05Nv4ggEJwhlSEgYTCKWUyI21jX2Klsl+uVT58erUG31N1Q4LpaDaEV7KeeYcwl2013FelpJ1CjZgVyymxEnAhDMGOsKsQYuV5e2DZT8Xv8/BlVrdmLR0SEh3fvuLu/xwfP3d0d5/N5F2mpzohdq3GTX64Ll8uFdV357bfP/PrrZ6u33Jo4R2Ve6pd3rCA3k7RfCAdnrf/+ize+2eE6SaQ1Y3U336XZ6GsAGirFzbvq8Lco8jDRD/u+FqshNd9D0baqFKTx7OpGZCsbtPWwyZCTLaS9Z49lNYK3bEdwHi8BXxEhX1ttDMETBjvHtdQWLQhbcWiqd7PWUFhKf3e1pT2pP7q4vtBxnXZI/Zwb40kznOWbBPe/d7QMXFNcFRGjSm23qpQWeO1o47ZtpjzaNodgf9sNGbtD1FrXtD6LjZqqqrzUInpXA7dKNCR424CC9yzLYiqarWVHezjLehRV1voeo8UEHu7vv9gU788ngpPDqNlPHargVFHO84lcszV3d3fMk1FkhyFUGqrnfJqYRhNxCUOom6L2TdDaVuwmsxlcU+41Iaq3PkrZg/6mVkrZ51IWQZ0H7/HU9kTVUWllSF5a8+RmGO1RSibXVhuuBVjO8e7hge+++8A0jTzc31vdRnMAakuAVjOoGFo9z5NlG2qtKMAwz4yDZYD0sO5LSmxVEOeyRZaUrM6DQFQLNMWPiLes5DAO+GA1hZ3JAAwIvgaQwVkG2NDhhGjBo5ycZ6q2WiZram2lBzVYxVHwqDicHyx4vFFsfJvjx3/4VzaOzvUgugc0dbMvdccPYaiCO1ZPmdKGloKTXB/KNAYG5+p1O2NTiKAlUUqsDA2tKLrWcg5zNCVvVlyDoJkKvDjCAMPkamYxIN4yTEMwmnajW2/JU3AUMQYHqrWXZ+1ZW0ClKiOLw/tgdXQ0p6PgAwTMKZ1OM/NppOTMpjvTQqrWgA9mQ8zGVC2AZK1tlmUjxRVxsasTqxpoNM//9/Dtv+eIde9zWVjjVm1DqT2QzbdZc6JsyufnJ/7lz3/i1/kzz9cLPgTuz3fMznMfgo1d8Ix+QnRA0jvG+ANuWyhPn1m2BVJCL8+U9WeQwJQLH979SCmJF5d4lkiJVx7jJ9afPuFJvJuVd6dM8DBNhXHKlsBHCIJlDENGQqnlM1YiIOLIBMZs83Qcpyq84lAGwFOKkFdjMa+x8NPPV357fOLztfCHP238+dfES4ZlbbulzQ9LEpvg1iBWQWXEOmsf4kpbAO04+jjfcuc8AGn13weI7SuBUfvxys9pAbJWsLj+mekDVAGvaEKMJRfLKsbUAdOUzJFv++hON32iFFMjNzFFJaV4Qxdd17UHco3JE6vmxjHobDTUZnvaexuzqCVDzucz8zzVHsPvOJ/PPUnyur1WA6e0lnRZ+UPu/kXRWx0EgPMbjt7Pn5d6Is7ARXGo+DrJISVh23xtGdOycVqH3ULMomCtMJp4TAN/ChlBFNYqwuYE8lbYnnPv5e6DrZEkE+omBMcsgY/zYEFfymYfVcl5wUyI4HPAR2NVaZ5YdEJFWFRZ1FqqZM0GHKEMZIKakNseOEpliRhwnPTgl1bmpJPMwMrIhgh1z7A9OavrLM5QApna99G6Nxu9Vh1ZhSwJ63nwt/fHv8vyNlRJwZwVLxAEBo8MAYZgkXrMgAVScUvEmLleVz4/PrEsV0OXKx0oFUsxl2I1Z3GLB0GAurxFUGfvL7q3RUi5QIkdkQ61piPGjev1iojjuS5IVauPTDHhg+fh/TvOd6YKeHd3x+l06qhPQ0pKzVDmolyuK58/P3FdV3779MinT5/JtYaxOZ5dXbMtswZK6a1JtADmdcZxN6ANsXnroweLNVA8ZhNbjU2//hpofIH8VfS6X0hFK1ptoH0BR3ijPth1ttUC05KpdTZQ8h4smoGiB+7OO4LzNWD09bm9PobAOAyWhU6ZjDmnUqQyX7TXT3Z88EAhVTVKlGNfJiL0rEb/v+7SRLag9982FPrVbfpmR6epHALBBsr0vqTLalTTen+cc5a9y6kKuwxMteXFEYXMpdg6OdBQ28bUEc3L5UbBtG1QrSYyhMCyLqzbaqDPIZPR6JZFay1QpZP1QET1JjAVgXEI1Rg3pFWqAWqZZqM1DiHw7v17zudzX5MiWsEk3+tcfdetsnnbxsvpvnrb1EVMGOUmFfJGR6lNwGlOtAha6VqKkJyzLEWtJ/S+IVI72OadY6i0X3uPuwVBxDJULZN4f3/Hh3fvGMeB+/PZKKw9yDSqTENcodYyzjOqyjiNzLUdh/O1p64qmp3ZfVFKimzrwrZtfHq+8PnlQiyFpzXzvGUL3AYLFp33zNPIMJk8/OgDwQW8CLPzjGKZzLvJ1CYBSk1WORHGYJux1ZaYUnILoLQGUVuiCh9YvUj+Bi0XfvjxH+q9dl0gAqh7lpggWjTnKvjAOIw452vj9pWiGacRrytCYaogh69OX1OEzlGNsdOF68xOtmAxZUOZ29ahfsQ7q78fijBoqM6TARACDMEx1Cgj4dmy4doFwXkDIMQKgirCfcwquFpHafddqi31QVAJhOCY5hPzaaLkZAXrzTBWm+CDBzVJ/86OSHa/1nVj2xb7Hpe64ztPRpd76yPWgFiSsMSNoqaNMFXAUp2w1dYt+vJkrS3CYJTU+3uWHHmYZ1y4Y5JQKbQzHkX0HSMbPhp1Wn79GXJE1xfKpoh6xof3nN9/b4CaK1zI5O3C05+Fn3/6jGTl+3MhnguDh7tz4e6uEIKVBI0eozKfFBfsPqccWYoF56oOcsH5QMDjZALxODeDzJAhr5ntkrkukZ//svCHvzzyuBb++EviL4+ZVTyLO6Ey2V5Ynd1GVw9S5wPewBpVpCv1t7Hn226QtK+xOabovgfp1ymo+3nZ08bo2DOH+1ukGlgTabR9al3XroC6HdTEU22F0ZhtDUC9Xq9cLhdUtbNeBMw/PdQjtrKSFuy1YLGBwl2kEXrN4uvyl86yGUfev3/P/f1dbRt1Zq7lGK8prTeU1erztf7EPUjtDL2vZCTf4PilBoviAy5gpQtStTMEchK26Mm5smeo9E8Hwe/4NM51n62XPlH6FLRElQVqa155jgtCYRxGpnGybOx0IsxnxHlOYeY02IfnNZLVAL+8RXIVO9M0mPaA86i+Z5WRIsoqhbWlFzQBqWYSI45YZ2zLLO61v6V67MkGpdaoF7wkglwZZMUBI3tvzqLOHhiol7D6S89AVkfGgQRE7ZNz1UT4W8dftbwHl/nmmR6cP1pD9ercUJEQHwJe1ZoAN8lurOhZqdSPQyq3Z3ywzJE9lVthAmlF1bvzTstx6M4fFzkosVU0wXzWWrN3mOivU/Y9td4mVDHF09zoA915bicitwFJpWa0X9cTv/l3Mzp7Gv/429u//JbH1+hM5nBZtnAfk91ZMO9A9qBKjvdsj5AP/aJ74sMCYssKdUXU/roesottPhwoau07W/qvVH+/BaMtMK3yw4o5MYe4+BDota2E/l1wMDJaN5qb97dgn95G5naU6uz9BsazHa+VCdscbrUGXdVT2bMQWDF4o5KKE1JOeHynZQO9VuH1599cYc1iqUgX+KEF9oeNo20+x2DRjL3rgMTN59qH0+iNBQt0tG6StqFJDa4MubbzCzgJDMEUUdvGqzRHhqqqutOljg5LsyFtblB/1X7bBJje+rjVL+0QkwEfNBpS7jRfwByvKk7Sa2uwMdA27/u12sUG7xmGWrcaQs9EqhqludGSjo7CFzaBL0EsaTai2cVOrbIsV8pVhS4X64ObcgXJpNPicEKpwV/xheBy3ew8RRzBO4bqCICVrZRqw7UUnLfApzjXl36fVzc2ZD/ntz7aPXGHOXZsqEy3q+XGIWvlEmiP/qpTc9wT96xGA/XaPzmuK+esHRGHXUasxMIEhoAugmCfYOvMKFVNrTJX+fmmAtjo6/s8qPi91nNv97etf9Xbn7VWi/Ja/v+4EG/uZjUTTa031NcOBpy3H0PY968GSKdqC4sTa/6NiUYgVgKzpYgqnZI6bAOjd6Q81zV28JG8R8Jo9nKYcMOIywWyQ0qCoriS8WpKts553DAbgOVniowWTJREzBiolqmZDGPmtOfSgNe6hzWl7wb0KqWCtQamNew3JYhrYV2y9XBcEuuSWDcL3nOuUEtQxGlfV41R1f4t1JlmRsPOSfXoROw+5LdYj4gBwvYPCxrbefxNO/7KF+mP9tvS2w0cFcKbAJzVIBrY2dg97dHYOq8zgi0IpO21FcjpNc+vgr+2J7fM4bG2crdFu187HITt2qOrjR8///A9x+/cfb6bu7T/7hsF/im3uVNwYnbR6rYBqbIXZWdtNAbZTgCz97oa4Utzipq/viMD/XpyzYKLgnOKzyZQJDUz7qht3QaLRnPJ1h+xqqXGVMXaqGJA9XtU6eUtjSIuZESt3ZIj4aiZxfYQCxtB6v+NJq4N2C0ZJO8/HQe/VzAVEsv0G7Su0CV9fP1NFdZstNa/Yyz/vsyi7E5UwTb5LKDeEaYJTjP+7o7h3TtknJjPkel0JuWECwMvy8JQqZzPl5dKeZR6YRbADSFQanDZKHYml17qd+/BSpPibsvIag5Kr1FsrzWHdZqtj+MwDEZ/+goq0hZhD5hoCE/kulyrcmviVoZd9v/X//V6MW59Fz3OTNlfL90gtbvx9kfnO1eq2009W3MQmoFDcV7wrdD5EDC0+3NjxI6edsFEocScjVLr/zQrJZlTUjJURXyjo9Z/52homhbwrs4BbLl48Tb5E6RiCLpmJW82FikWSA7Jvj+sRirvY1GFQdopt//Lzf9tmd1KDnPz3OTStb/7SHD5msF9y+P777/vz9vnH1VO1+tiymESe+sJ0Ip6bogTthS5blutX2nzUtnWrVIP9+L4m/pD+9J+baFuRCKVhlopLd77rqS63wexJure9YDb+qXVkck2IQSrW3QoTgbLCGLiRzYPBe8CzjWzZabQe89pHhmHmtnpQIwZ15yrgxxaWxwDLfpuUXIHKlIpHdDKLWB842NyrwRuEHKJRmfJmW195uXpM9u6ANkykaqEcWCc5y4+0PqzDsPAXBXwfO076ZwjjBMPd/dWp+I9lEKOicvTEz87qx19eP/AB953m9tsw7HR8ziOjFVQrEl2l1K4PH7m+vSJuJk69Mt1Y02R5zXytCViUS6qrE4qBTmjuSDFGf0m23V4reCDwliUUGDwng93d9xNk9GyUiSVbHvFMNRerJ6706m3TGliA1qFNlRMlEX9XEGGtz3i2uhSYvOq3rvUavGriEUuparOhrqJW+N6UIJkJp/woqS1kKIn+WBAQbEg2wRx2jp0uDAiLjMmZT5ZbRQt+AQYJmScKSqsZYVrREuVWler55ymidM8ojjWtfCyXMlq4hGpCUdU5o+qdqEh8/3ruhHriStDbcUjVn8cgo3R4AeysmsBABasQmtNJFAzxIFpNMr46TR1+tu6LIbaC6S49XYlb3mkxjIoCdkgpGj91ryh9cF75sH8hlSB4uADw+eBP/zpD5xPZ75//57gTNzrPAz4MDN4h07W69mVzFw874onLwv518/k9RfICVkVeU7gPCOZ+3ffE3NGViVfocSVmB552j7hJaEuIrIRvOK9jYcPypiFsYjVSgbHHCrzoIjp/gtE3dBtQDWzJW/1X1vhL3954dffFpYl8oc/P/LTrxcuWdkWwUcT4gglMvi6lp0B+d7BSGGg9oTNlsXXkqGU3l6ioZgWu77aX9/o+BKCa3u83P72i+9uvlAFcnJrTaO1lrB9ngnXbDGyrksVWXvh8emx9kmswnA163ekox7po63VW2PjeOcIs9mzv+YDDo1lUQrLYiyOY1DaAsRWk/jx40fu7+8JIXA6zbXllPkwOWec9wythKQ+fF+rzSdqaEANKtsdU70JVt/yWC52f5wv+OxwviAe/JAQV8uXasykZLOnKLiC04I47fX5LY7IPc199NkVCBZbOCE7oBSKenL2eHX42Vf2SuDh3Yl379/hnCOtG3HdKLnw/PTM03PtB1wcqyrqaoGPmOcpujFUH1R0QzQiPbOY6LXpAqgzaRw3UIoglogEVUqMxtaQTE4vJL/iHeQBXGhBfvW51OGyxxdjFA5lwLVeqTrVFmOZxIaS/ua4/H3BIjcdDyyxU1EzP43IaWY4nzg9vMNPMzlnzvcPho4jfHp6wg8jj0+PPL48E1OuyKMp43nnUG+Us1ADOhHrBZUqN7xN2IbmpG3bz0+tx1er3erBkFrT4fk0czqdzMEdxoMAwe7ct5+qilRZcy1GbV2WhbUKcbSs4h6IS7dLUp2Gjswclv2R5noMFhu4fETB3/roXRIagi230ss3vfREcdHtYkD6ZTGzfDVgrF9kZTO2KOqtKRGjUqnsPo3WoDFbYJlTUwdTCCPepE5NvKIGizlncqxiK1FJzoyEqjmgFIdkhxRvzohKw8PJO+55iOLpG0cLFEvVTy19YbexrMF8X9H7o2U/4dsFigAfP360az8U0+ecGcfRnHfvievaM6JtUy5Vvh4B3azurYEhuc51X6lera6x0VOORwNSwBQLT7XeV2jCQ9KDxSZA5Wr9lgWAvt5r7TWxRhusNUOVTglmZ0KlaU5VqdiJw4cB79qmaUi61E2y1UE1gSzVYv3/qnR5787Uhq6BUKUgpXQqbs7WriOVUtWY3/YYvxIsbiRKWckpsq0XXl4eWa8X6/UWV1Qz0zxz93BvdS4NXlVTkS2ns2USxxEnM+IDg/fc390ZXTuZgmVOmcvzCylGQjD6/jxPvZ6zrfXn52eenp5QVR4eHnjXALaSKWoZxcvjZz79+gtx23h8fOZl2dhS4nlNPG+ZpMpVhM3ZKkyaK2VS8GXDRQeqSCqQzbEMW8KlzBgC2/WBh9n2k5frhS1upvg3TAy1b+a7uzvmaTJnJkitUwz46WSU1zASpgEX3j5Y3A7BIpi9z8WE0NrasoxC7vYFBCcmViKiTAH8oOAgrZDiQPIZl721OKmZv0bTB6vDxHnCCPPcZOSLqT8BMs3INFMUhqUCnKVYzadzeByTE86T0ZJ0KVwuC6lAzqmvx4ZGF1VTLo+254YwWKsZ8fgpMISh2gW7pi6iEQJSndhGD29HDxZrFmQcBqbJlEhbv9VtXXj89CvL9Wpg2LZ2ka+3PFI9r5ItQDfWBISagR1DoJSJ4L0Fi0W7IxqcYxonco7c39/bZ4kwi0NcQCajsqHKLLY2y7YS8//F9pc/oeVC2RKFqwWL5w+cH76zOqNVWK+evC6kxz/y9LjiSsSJEiQRfMu8FLy3+ecE65159oxDMJtfAM0oar2mZaUUz+XquS7Csib+8M+P/PkvT6xr5s+/vvDpcWFTIcpgLBQHQaNRl52gwYO3HXOQQkDIKkRN1g5MS0eFO2vDIsVvlpE6zrD2vM+79ouvfbWyMypK6cB5rqInbR9tbbfW2g4u58zj4yO//vpr3/NaANeCwmMdPux7dwPhW63/+XTiNNeSqNa7uwJOraawgbE7a4cbP6DRTlsv4o8fP/Ldd98dhG8qmJVNVZqaxR/qems1jHZLDj7S0TM9+DY3Pu0bHsslGaDslaAWLPogiMsGthVFDYsAtf1IsOyjRw1EddVv9NZ2R2p2z+5bY2i1b1SKE5JgwZ1iFNcinKilO+PAh4cT//jDA8E7tjWyrZGUMr+4QskbMWdyFJZkiRILFJvvGPEaQQuOFacroDi1YNHOp+0j/lAiYslDku0BGjdKTIgksr+S3YI6CNUd6Ncllo10xYE6RB2qI6Ie0VDv2QBa8LrVusW/fvz1YLFly/QoFMI+d2R3jo/FuA2FKFon7zzXhpkb4zQd8B7XP8hXB9Z7b2ilE6QUq0HTVjNZfzbnrw/+l456Exw4LqAwWDNu15tKf5kNOqpQNcngnHMVTjhudmY8WvDwZVZJ+mTUOnm/Zqjs/ces4tsHGsfMUAuUWjDRqQb9zfvr1gD7kI/rlvgVVic3wPH+UZ0GKZTcvlSsAKm/Vztl9ZjFksPcOv7X0/t5D1ykuWJiYjjBD6gUxOU9cK3/pyLjNzbuSE3oUcRxvG5FUHYI6DbE/5YUVLilofYzq85Y+30L2tqmV1QR70yUVGpdWi3FK2VXJO5CKYeg7/X1qKrVqtRNpm9CYvTRr51b39iOYEMPsI+CQtbKwjsPaGUz1HNxTczlUMOn0KAAOS60m5/HuWwUSdq35tyRGslWcN4y7KVSPL+VU1NyA7qkqsUKWmLNcFrvPFOUtrYkqbaFcSGYsyxSacamrOidI6UIdS7kKt3e7Fbx5QYYSNnhs2W2mlBDGy/YQYSGgPfG6kJX3Sw5d1XqVsdi7PBGpsHEe+rYGZaULSnPgebcsgxKpzCK0yoSs5sMC6ztb1vYtNcVFXNgiwO31xG3wDfnVNv0vPFxMHqtsrmdT6edHu5tqWCditbetfUaDkq8vd9kXWeC9PeYHWrOd0X6Xc1GFCyTSt37LHqwfbTftWN9j9TadNedi8ZbNPETdjG0KpZ0u9dXJoHzlulWxYeAVmEYqfOo7aE71bnZ39tHK39QlZvX+97a9oJvaGP1+FBQSqW81fUjgsuZ7CzTn7PVkDmRqri+sobAFAIxmTqi1Q03leeAG0ZQxQ8TfhqNNSAOpdQ1kE3Zl+oLjbPNgXGmeBPLyES2bEJfMUFd+qQI2fxRXLQ6xtexUqkIdS5C3DLbltjWxLomttX+nbZCTuY0i1O8s7EYoOcf1HzQSmdWRGqTKqWvBfq8qxb+cB63G/AbHbd4xK0nVfegG5t+WJu3VORGHc99D23GSHXfN5ud7DYwmcBWm/O3/kzzS3dWWwvQfAg7o66e1/HvjoFlCxbb3772v4/U06Pa6R4sFpwaq+fYBeB36w9FajbSFLaPVNjX5QlvdRjQYCCwia8126DsChN6WKha12plAhWlqDtOhRaS9D+tt/nwnU2ttCbDlG532v0JrdwlNNYbBO+YpsAwekgwUFsOiVA8OGf7ppRK9ZSCaELINXDMSG8vU+09oJqtXEPpNt9poZSE00ijsormg//cI6F946z3Q1CjvdfPkpJqu7xSP+N/MlgcajCX7dPJKN4dZFpFep2M88F6Fc7zvsGriQysObMsVz4/PnK6v+sFv8vLUotnMylawfAwjkzzhFTqUttErW2F8b6jE2INApoqoAi7NL5znE/nmk0MfPz4kY8fP+KCoSjDMFRlsPGmMLgpQzUKljVZtd45sSq32kLZJ6AhxTu9rfXjOcSwNl6tToXdKTPnm45Y9Z3qjY+eHTks7uaQ9HNpAb409UFD+os2p4X+0xaR74uv3Ye20lS11jMVo1gnIW82cYMfGcOAiOtUj9Izg0CxWpohVDqFHwjemoBbLeGeXTbEDeZpZBoHlGIo3TxTyGx6Jeli2cKykdTmjB6CVD0sNK3S4V8di7pfCEercwAq2LMy3yrIaAXwx42kfWfbQFrwtqXE8/MzKSXGeeb0cNcpJlLXVXfCsCxd1NQ32EZ5OTpopY6rivS142ow4FsG8TC/brLR3uHUHNu20QG9BY3Uzxzr92oNnESkb5J9U2zIGaa1ZcNp7W3aeZqNrAqLJUOyHq4KpjyarVDcoQQ1DT9TmLRNR5yAD7ZJvvHx/LP15xPn8cFsUUqZstW+W+uFbbmwLldjNqyWWYnZwA/LLBZKsuBvHEfituGd2bdpmvv9tZYiIyWnWoSvnE4zcGYYgtGs0Bub1GhOT09PKEaXSvf3eFVK3CjRMjyXy5WXlysxRWJW1A1WV+kHxCe8CHenE8wTirLlRCxWgmBCLhXkyIortimGVHCl4MUxj1ZjI1o4zQNjRdhHqdQt5/HjhASjnTeasQuBEEb8MLLFwudPj2zp7SlToc3VOm/2e4jRMhFCGOz+NhEvrRk1r3UeF7Lmil9Y79IUBcgILVjXTg01QRGpvq/DjZO5F8UoGwK4ccJNVcnWX0w0QQveqSlKe5hGz3yeKeqZN8e0CT6b+FJpWQcX8M7KQ/xywW+LjV0YLbPoHOMwdkXHcZ4rfbaQ88rLy4WUYlVIXrrTaQGMsG2m+LhuC9flymVZ7PyvF7NROZtSqbM+fuM0Ws3QWx9uh2mlOsccgvuYM6yLCWY5TwnRhNaKcvIDJU588p4/DoHTNPP88J68RqbRyl/uz3cmwicjfn7ADSfkxwVXVnRdSJdH0tNvaN7Q/IS+FMssDgH+9b829ffZG507LVyuf2F5WvEk1lTIWQje8K+yWZvT8QrDbHbMDSDBapW3GEnJerE9PWdeLgvLmvn064XHTwtbLGyXTFnsfpyDMnole2US2AKoF/IkaDDH1gQyMrHWdao2aKL0YHEPWNum+7/y2CPmBuD01hZtPdadL3WKqfml25bYhc7sEbfYaxPTtrFeF/NNuzaAgS693VAFzY57mXPW7/D+7h7nHUNtDwUHEEx3VpdzjtPpxDzPN8Fi+11L1JzP5ve2kpL2eSIGHDkJxtyrYNHcWDttD7+5Z7Yegg84V/20WivZfLxv4evEVMViUNxgwKhTQYgdirQASqutiV3Rm0L3vcNYWyzVKKqt6wbMFAXNNh9jNNBEtTB6hwQHorWN18gwTcznOx7efzDhvRLRbLWqbiyIt/aA8zUxLdHK9UKmhMXWSGoaKormlVIiVLp2aYGauNoyw+FLJrOZWY8Fl6oybdkomvAUJt0YSIiCz1aziLQVV7UMioNS12SO9hxvdD8NSC5ITrj8t8fxrwaLoadrtRYOa9OwoZZoVMTMJuowTozT3JUskSpq4YR127h/98h4OrFuK8+PT/z2y2/EbSPHRFwtZT9OI9PJ6nJMec/O4bosvFwt9e8EREtfTCYUKB1V8d7z4cN7Pnz8yDAMfPf9d3z33XeImEJdLruKlK/B4hFdKaX0ouS1BrYpJYqWjqpAjeSloaxGqW04bp+c0lBlGzCzlQ11EqTK3R5ff+vjhkr3yilsR8v0qOx1lNKQmjbOLahW1yV+OypN/eO6+MqmxKVQCuQo5M2BCm4G50ZzGmqgYCvCdVRdnKkhDiFYbVKXTzZTUdSacW9rwjnhNASmcAKByQ2onMiauGyOJdXsCTVz1JdSfdbRKbE2CXVcdgTU3k3NNoo7oAAHg3q8j9+Ky/97wWILtrzz1RmzmoSXlxfWdeVOC9P5hA/1nHuQf6ivLUqqmadW83DTt0mkZrtMdCVU2qerYxV86BnNlq08Ct34XHrA7au9UBSXhZwLzlnT677BlYQe6Kk9q8q+oTnfgUUToao1ue1RitVaNVGqbduMVlSKNUXPJpU9OUd4hdc47xlc2MW23vC4/Panev6BYZxw3mTAWyIqbxfidmVbr6zbxuV6sSxeKYiv9d21/lBVmYaRHBPe+VpLulZnwlmtyliDxRTr0CvjWKm8Od+AIm3c1m3j+eUFVeXh/t76a6LEuJGW1YKA65XL1VRzYy6WylALssVbjdd0PjM+3FNQ1hSJ2RyBwXu8qzWLRfBqmYegiq8L09UchVPFc7L5AlZLotTG1bYZ9Wy4c7gw1Pk5sG4LT0/PPL1c33wcmzJn6196DLj3vWFfozllSlFThHdabWfN4NT6qJxKBdnsgSoxF9Zk5Q/ee2PHiOCDI4y1b2bZaxb9OOHHkVLpkpa3UpOFd4XghXEM5niKZ1o8w+RwxbK/WqUPQhjxwSjPEgKyWI9MH0Z8BfCsftSAw1qlQ4obT59XLteFnCLLurBtK422aRlLIcYN5z3btrJsK9d1MftbM9mthZOTymQIgvzfbA39dx1He1iz4KKll0ukkinZ0nfZefCpNqIXlnFCc+IJm7fTOLJeVwKeeT7x7v4dUzghg0dkwM8BtODJlAE0rfi//DOy/oZuEc0FtpUiHs4/4j78QMbx4rC5sV5Y1oXryy+mQaDWFmbwmF5ADRbzopRZrdbrJITZsNjlmrluhZSEz4+Rp2fPumYeP114elxJSS1YXO2+zJhARhGYBVIQihfSKJRRjGqeM1upBRzSq6/Y/aGdvdRKYf5Xh4vQgOLSy15Sra1vgZKIkGJkW1ar0Y2JtbZ0MzC4Jk9ypqRcVfEj66v6QbD2C2EI3ZcJg5VWNYqo957z6bwreNfAB6A4Z6w62f2LFgje3d3dZC2b39tKSO7v7zmdTv3v+iGNMeQ6y67Rv5sdc0c/hroPijF5HHtdZGlBmve7Qv4bHp1qLuCz7z6y1J6CDaIAY9fkZMCvOhPCEzEq9pBLBS8q16UBy639UFZKqh0TYmaN9jmMnuBrjs95/DASxpH5dObu/p214nIR74z5oy5S1BJK4WVheCm2n7tMdqajUiSSsaA2lY2ExTtJ93ikNB9XHVkTToPZoGSlGZbt3lBNOJSRQmi+YBYa9bPLnSloe71gtIAigAO1YJGsuJxxf4c4w1+1vD1L0DZtMUkPJ1VVz+0UEfp721/YP8SZGIYC8+nMw7uNKRq1Im3G8Y5rZPMrWgpDFVNo0v4SbqX9s2vqKDZ5va9UGCdWID+N+BC4u3/g7v6eYRg4n++Y51NVgtwd3tcNTHsNVS4HakG+KfT/Mpg7ZE9oC1RufyeHt9Us3D6s+3uP/3rL4+acXxmQ6tXcZMs6Atj+b+us9iO0oMlQV6OedCOjDa4xxbWctTb49dULr0W3YpRR+6zSs3vd879xusx5ddKQ+XZSdp9b70hrowB4Q5ikWPBkLRYsSunfA9yqYsnhO9vv92tv96UCUze3sJ3n1yibb30cKdJdja3RJl89mhE/Zs2991Whz841Hz6vkCl5v/dHcKAHlc51SvoxQw27MuvxFh/vjTSK7IG6qojR8SpA0ACLPSN/pHLb6mi1sDtSbdSabdvYYrRN0Zni8U5vM2pRq0Ghdcitfy/NntU4WsV6uply3NtnMtbFat0sSCw4Z9LWsZ7Wtm2kQ93Krj/I4Zqw66wTUtvSaNd7QKf3Gs5bOyBi6zildBMU5wNifDurq70/sEnCMIBzDOIoLuBK4VSUFQFnLRTGabYa1OTZsvVoDDfBIrgqchNUu3BPy5Q1A6TY+zyC08pAEMtQ9oDCOWjgnYjdzxhZDzXub3U0J8tACqlqtoKLVvMqVOZNB9Wqql9V87G5rYa8Vki8ZXkbnVW10YJ34aU2dohYLU+916LNUTI1UasfHAjjWANXo260aWDn1gSfWhNr7ft9Y2HcZJ7r/1tAvNPE7Pra3t8oeo3CbIj+4f2H/fQ4L/c5bMGHK6aPYM5eIzh/w6MCWu25tgxG3ZcMcCxkUUqliDsRYojEuCFgdNRtQ8QRJ8s+FOfpOKMIeI+Oo4Hw44QbJwqK2xRJ2Wo9NWONtxXvhWEcEc24YULCaC0vgK2qvscEMZnD7L2Y+E2G4tXUhBVSUkp2aLHM8TgGirrK5DFqundq9DgRxhrslOCR4IneUbyVDGRn2YyECd6UbK9LOeThVPucObpBfItxrGtu/8bubtEMSCk7TTzl3OvZTYlUdmp97S1oZQnVM6vFlzd7rJoa8k7NNKClAaKNvhiCATxHILazZVo2qAU2bX1zu3+/3ssb+6d9Zvu+IwjM4fPsd18qoR5H5JXnurta7Zd9j95/vvXRPvIYWsjx3+yZxR4L9ESA2cCSG1gttd67Xs2Nc7ILGZWq8tzWud7egX0+m6W3umFvgObolTkoTpWTLyRfKA6yZEod0+wsdlEpxJKJririaiGL7RtW42g/s9reVVBEMsE1AcpiQj4CY1BCawdmWn8GNlNd8XriWRt8o+y3zPaoJuik+W8H/X89s9gmLFK58jA4xxgGdAjEYaQMIxJGxHlS0doYGFQMHSgF5tMd46w8fPyOf/ef/hMgPH3+zC8//8K2rlxeXnj6ZIpSzrsqHUx3TFC4XC88v7wYHStFtpqqvru74/7+viMv5/MJ7wMP94fX7yqCgxBz7L3cjk1O13Ujxo113Xh+fua3335jWVZeLhfWbbOMZLIN267Lar9azaF5b/RF2Zy00vsH1kwoh4xO24jaZpy/TZP3pvbWDJMhWVKzs7Lf67oq93K9hnbtZkQwHnY+ZLNMkU0gZcqWoSjbUlgvlln0OLwMOPGM/sQp3OGcY8lXE4PIhZJ2WkhOZrBR2NaV5bLUe7qfnMMzODOQY5iZhhPOC27ISMimLqkbsWwkEsTVvqM5LVq3rya2o9SiaTMo5RC07h6zmJRyM17uNrCCW4f9rY/L5QLsjtixZqKUwsvlhZfrhfW6EHM2sRPvOZ3PnO/OBsIETxgr9fEg6b1cr7ysm2XuD9nzY/3iTc2QCCXbHHCDdAGaVr+oKHGzmh4E5mliPs11Drpew5u1FuxjGUet9Qo3jqTuUIoFlFI3K/u5LCt/+tOf+OXX3/Ah8PDuHfPJxHect3qQlDLLsrGsK9455nG07LVzzNPAVClD/Tq96/XNb3388Q//Um+hiWAgjqywFtsgYspcl7UL7YRhxAfFh4GijlzM6ZiqWJcTU20UxGrV3GEdt13WCS7UOu5xYJyMjp9S4tOnT/jgO7XpKJwkUMWDKk1KR0N8x5EHIMwnc7xUScV6HH6/rbxsG4gQ5gk/TYDZoaK3IIZgWcUmER6wgJAWSNW5Js7G2kENFs1ZCTQAc88sblvi8/OVZYtsqfDb5yd+/uW3Nx/Hh/ffARW8qbWfy7qBeyZucbfrFj3hpNYHWzxbhyXjZcOj4D25WPDeN3FVti1zXRM56+6wiXC+O/Hgra+hZfctkznMM+PphCq8i0osg9GsLk+sl0frwSXe5p46Uk4sS6pUVwNTRASfMt4bAh43yyYDld1jQnKpzYvmd4qpli7XK+uyVPpzMmdExIIWa/pY7XwmW4EQLgQouWbYLWuwxr2fXDfUb3wcA+GqXWhOdkdg6CBm0Wz9O4HrVQhVyT3HDa/KOIxIUQYxdVdS4WE8wXyy/ouD0eijD6yne8o041MklJpR/O1X3PIzmiOyfcZdAXGcB2X64QMl3jOwQNnQuLLF3/jl+gkvmZSFHCE42FbH6WrraHPmnOIcYToZeOAGvvvuA8P4wLJmXPhEGJ/Z1sRv8oIrC8E73j+cuTtNlOC53E9s00hyymVUVq9kESZxbGLCHptTymbtD2JpAmEHFdS+lx6fv+0h3FS20SD4rMoWLQEQt43r5UJOqYu7iQjrsvD88lLX4LFUp05uYQ8o1Gp/T6cTwzDsdeFQywEmqyMcxyo8ZgG/iSwaRb1RPwWst24N7vrrrwLE9u95nnuiYzj0WTwK4LgKdjbRqKGKmDlxBz2JQqp3qAFb0ECjdkO165X0/d+Z+GH5ButxmmoQPHimMfQsbajXoq4qcqvRcUr1IcG6NFjsJNYWKnij3DrX95SeFKpZyaJaxd9SBZblsO4LlIhmh6YrZXtGJTC4zNklIFOGC2G6klzkki5cy9U+R5wpcytEn4nBgIctJGLKda+3Prm2RQilAsYR6fXBMigMBi4GV0sBHUweBk9tQmA9cpPCNRnwHIvyvBXWZCJeWYvZrhJJcSNWVte2JfLfUabxN2ioDd0wIougDOIYfUDDAGEghQGC0QRzsYCnHNBsH4LJvTvPw/t3fP/jjwzjyOPnz/zy08+s68rjp0/88tNPtsHWvz0eqsp8eWEcJ8sOFKtlEOf4+N13fP/D9wzDwP39PQ81QDzNM/M89aLfYbBLtQDR6AeXywvX67UrV6WqyHm5XHh8fGJZV67XK9sWew8mrY6sBYuVU16MpmuLmlpIbLUmnXLKjrq65th9gSR/myCj0VCPvfGqddpTZb23JZSK4Da6gTb0pn6e04KvRi34utEjFoytZmS3JbNejMozhpFhNDrp4CamcMI5RySh6UJJRgc4cuFzMspB3CLLstbssQnY2LUYVcB7z+gnxmG2LPNY8COksnHdXgjbWINMR041MG8wkR4etaZI86tAxRbAnuECWnMpoz/vc7TTSdr73vhYakaq0aQbwtmCxeW62GNZAO2CTtM8M88z0zwTxoFpnnHesW2m9Pu66e6x8fVrVPOYsTu2xxhq/WLwZtQBVrfWDzF61jxOX9A6faXwte/qG3HLRuhOZ4Um4rML+og4tm3lp5/+wj/9//6ZcZr4V//6X/P+w0e8D8ynM4OYUVy3yPW6Mg4D8zQThokQPNNpZh4OdPR6nX7YmQdvefz0578A5kK1R1JYiikK9lpGaYX1o9Wb1N55WWH0A/P5jsEbJVVrk+jWwHiHYu3+tx6NTsAPVrcSQiDlxNPTk43hOOzy7Dn3MW2otdGgRxOTUeU+DMx3D7fXoso1RdZKJZL6GYh0h+OI2baN3WkFJsQyh5YI2GtrJfhOEfQ1QLSi/1r8Xx0lJ47nlwtL/jPL9kRMhc+Pz/z866c3H8f7h3f9Okq18f5yZUsKbq11UY16qjhnYhnOCeKrcqUk+0lBXKWrFqlor7V02WJiXTZStmA8l1pH7jyn852xd4LHDwPeO8Z5ZjqfAeEhe7LOxBj59LNyubyQFQrOxHHUkfPKti7E3A0hjTruq0p5TFsPFtFkYGMNFo/grkir+6qtV4pR9mpTNGNBiWC9kCtAWLSWrljQaR0KlKyZuK29hqkFkW9+1I9UNVYK0FksPcip2TIDRkxUwrJ/VidPTozOEYcBKUrAMw4Tkx9Y3n1n83sMjLWuN3vPGs4UCrMqk/PItpLWhPATkiKyPSFuwznPOLzHn99XDYArcduI68LyW+bp6QVXBMkgCQbBKK7B7uNTzlxKxAXHw8cz9++NvfX+/Uc+fvcDy5pYYyCVgfW6Ea+ZdImMg+f7+5mPD2eyd7ycJpYxEKXw2UeuLpOdMARPdI4hKs8ls1GQpPjtiMTqfq/d7X3/JuP5lXlSimlfpJhYa5Ii1WBxCEYTXZaFl+eXOtf34Ol4ukew3zlhnidyHqoYmQWL0zQxn8zPaa2HukhK/a7XbKSWqXPUwJGd/XYMFmFvmQXsLS/Ys54i0gG+loUcxxFLAByycUV7xrT5M93/aedVhW30cI72utFl3/oYR/MffBWUMdFLX7URhCyyZxdLQQ+JhmYfnDjiYDojIXjcWEEDVVRrq6ySSCXWWlOjlNp9cZ0ubdGbNTbVtKLxgjpPGAonKYjPSFgYx4UiiTUtbPlqfn/1tVVhlcLmTDBriYXN2/PoCzFpjxdyTVisuRDVVFyHYAwS74R59AzB4R1MXmqw6NiKkNQRM3yOcE3KmrGazGKKyUuVkC1JSZuSUmVbrZH0Pxss3qBAh9c62iFm4H2t/esKTdW4qhqdK/gB5z0hjAzDWEVsZk53d4TaI25bt4MDfNvUVGtAI+IqEmKIlTjHh4/f8eHjd5VueuLufK7GtaX7pdMAlN3xbLak0UtbX8Yv6HxHI3eTj+9L6SbgswBS9/R2q6OqBRAtuKRl7w6ZxW9mOxtyKk0TdDdSDQ3uz+tldiJSQ9Lk8DnaE6k0hewCt9TT0gyt9AbNIm6P0XrmtXSRky4X3RE6MeQ5ZdQpwQvOG83DHN8WOFRqiahl/nKVky+YW6k1OEf6d9u9r9fS9rQWMHII3Ns9UelGlfa33wgZ/b2j3f9jzcIttRATkqltKaRntS1b4WqWz3uPK67WUDXVRnaK6Fcex0AO6JvEkc7SnMW64/Tgq59/R5j367kJrfU4x/ZA0ZQGYw9KG4oKgnP7Otyzn4fzdg4RbzLcIdgmGwa8H7pIh6pYU14KUhFKH3xtUfDWowgp7xqwRfdgMWYLFq382ddsmuU6XKWltIyHNnvU2AD987TTIptYT1bb9FSz9citSqZ9vDCAS9w+Xse2OkavrGNlEDSNUul64nVXQR0ArZw7m1O+ZjpvHa+2pKrmpmUZK/DU3q9UxNvvwWJ/v9Zekx3vcn1elFJ7Zqq1T/Lh7WvdWm1Nodn52pog1VqWQ2Zi3wsqI6UGwk6K0TLFRGzWzaDlm2Bx2zNwuZQ+f2ItlbCMgpCypyj4VAjJhKhy0V7rnVWs3Z7UJtQ7FoZzijswFrCpttvkbP29tA0cts5s7tWsv7MAuBSrfW6qp2hzSqEXOXSAtAq/dTtWKVPNzzjMydfO9VsdR1CwgX2NUN/YQMfnWjePorZ3gRJzYksboGxDJKZoDmuMrFsFO0UZR4dHKVIovRebAz/awhkmGMYqxwikzdIIbsMFy0Z47xhqz7w4zkiYoSQymS1nilPGDElqqVKCLVvG3sRtFFcFk0Qs0z2MntNpQIDTPHKdB8bgrfdftQ3mpxSUStkrGWv87Q3kcSa0MwaPasa5Ys2o6n39Ijp84+HsFNTq0+zbt/Tv2sF+o6HGmCjesj9OhBhjTxw42feU1/6ZzcVd92EHS+Tw+xqgtOQAr8PPwy34ytzu4OVhDz4eDaDWUm4zqa+ykc33am8oB1E5xQA3xNgajRJ79Lv33Oftd+/791sfO6rYEjGmVG4MJPPtdkXa1hqonTd6CJqL0bIbRdpoyEfWkhnC1xB/Bza1ti8pubZGWXHi2XwhBlMzNf0D01gQzTgy3YpoYxA2UQJLtrhqFz12fUoFcp0la4wFZw3fnMrhAR7FI8bydKa+IU4I2D6wiSABXIKTFopXXCos0YifpbXckX6TzYn/G8df3UHbFDR3Zd9dbCJ6wjgx3z9Q3n9gvHvg9P6D9VkstrkVLYRxZJhmnA+c7h8Y5zuGceSdH5nv3xkFdLlyrRTTlBKxUuNyTDXbWLqaEChuHPFVGOLd+/e8+/ihFvJX1qoq27oSNysuHYKJpdgEo6I/hRgzy7LWSRCJMRGjoUOp1ioagmp1b9rQhmoYXOOw13qShsa2IuAmrmGTrhySeMdejPsm2Tahtz52FVZQdahUSNuETgAAkNNJREFU0+Ls+1qy0Qb38KgBUYsRGkUTbAKrOkoW4lIQhbxl0jWjWRGMHio4pmGqRcEB5zBFJ4R1vfJyeSalyOV6YVlXWi1MzqVKSVfxCucZx4lpmHpj7nEy7n8pievyYnv9NYEzhaktRmh9FzUgDLZoOfTLTNV4FKVEUzhTuFE3bIFQG/fmoytSUTdznltcZHUBbz+O3Tkte19MoIM00zRxrgBMipFlXSk5s6wrv/zyS+9H2DKLNie0f/Y0jgwhcDqdOJ/PXbntmGlsV7UH9Ea52Tck6Z/Zvs/uidQapt2Q2y/4ErzQfTOKceNPf/ozv/zyC947Pn74yMPDAyEY7XyajI5zOs28e3hgnCbu7x+4O9/jfWCcT/gwoqqM49lqBMUxDCaEZVS3jXUzxsH1ciHGjfP5xD/8+D13d+c3H8fntVL1tekFCqnAkiEVCAGGnHEegldGFZxXXKmy164wDFXwpjriuWVdSkKjIZLzsnBZljpWiVz75IlYJsoCb88wBFqj9nk2qnDLDDlnGehcKccFaBNdQg3WzUPpYIwbAq1BUm+/IDttuMcb9XCHGeCO7pTb+2JK495oDUu7HWqgVVW+zYUlJp6vVx6fX9hS5vzwju95ezrxTz/9BJjzZWqIZnMul2sN4iqYJZYxTCX14KnJoY8DyGhOwue4sT1d8VUlT1u/X6mKckCKe1NvcbuQxjgMDNNkFOs1cdoMDLishetqe93jkvnlxcbx/aY1kLSam7vJkO/Hp4WXl8Vs442DmPd9hNo3QaRStQMiVofqvFSVxFydM8vqp9oU3vlan1wpYNknSqrX2oJM58xei2MGSq3xGoYR576BwE0tLWmsk/YvStkD3pYZVaovBKUYxVZESCSyJsuylcQwDGx5YnwcmX+amacT7+7O5PyeEALZF3IFCTKefPqIKwU+bPjLCusVef4JHv+EaoZpg5hxEjiPgfAP/5qUMj4EcpgocWO5fGK7fMZT2AYlZrumlzjwEgXnBUYlucg0Cw8fL9znZ4oI7z8MhOED65qYvHB/Z9TxII4ssFG4xpWXpEQpXF1kkWzGynsGP6De8eFuYjoFLktkjU/kDLnWg+1Ce98WZdXDoyEPbb+22nVl2yLPLxe2xYSXDOMUK3upfT17GzeRDgwcwcyGOLfLcmJZVgPI9yBOa+0j6lC3lyPZrZCb1APQA0Oz07sS+FHgrmlq7Bdt4jPTPPe+iU091T7TvjGXwsvlwrIsiOylFlKzns0v6HdSbN50v6fdyw7sfgN/tcYtRZVIJjvFeYsBnHOkmFmvtiflmElrqq3tDv6Mg20x4DwHR06e1meyjVvOTUHa/HpXgzbptdeFmDZerhdS2vjl18LkNqbBcTllrqeMl4IuT+j1yWx2XNG8VnDEgsVSlHTNrEuue7UlVAAGEQYxW+6CgQIpFz7nDd02ixmiUJKBpqoB1MQ/xzBw8h5xHjc5JASyeD66iU0G1ix8WB0vyfFy3Qg/PfH5eWHbMqVsCAlX77GU9OVAvDr+quVtgUzDldv2YTVHRntx5zv0/oHp7oG7hwfCNFvwVWltYRwZ5jPOe+bTHcN0siaX5zvej3UhFuspplqsXcV1sY13sYWrpUmGW6Zgvrtnun8wIZuHe+7evbN2AetCXBdSznz+7Tc+f/rNRHOCZ/C+buoREZP6SqmwbbEHi7YAzeFoggLmnFQkvRXYKzixxpvAjREprjpVauqSR6GJ6lP12q7jPX6NTL3l0b6jBf36uimpaDeqFbq3978KFHM71x5F2iTWrUCBtBa2q6HhYxiYp8mCvMFaIphqrG2yqsoWV5b1SoymmLdWRbFSlTm983gXutFWVRytd+bA2OaPWp8opSLgas/VpUq1KtaMFCtiN7niilrlYpnIcls3WXSnR94Ei25/vtOJm0ruEVV8+3FsAdYxC3usKRzGkfk0E4bAsqxstf/dtm28XF4opViwOE2VEWD0lE4lrYHdNE1dfvs1/aVNmlzVR1G15tvS0OfdYDsRcyba2si5jlHuG91RZOrmqLd+2yI///wz//Q//olhGMhpb7MxDCPTZOtpnibu7+8ZxrG2zTlXtdG5Uzrv7oLRNKnzGojbxsuysi4b67rw6bdfuV5e+PDhHQ/v7jmdT28+jtftmFk0amkssKQaLObCpAXvhRIsOPSK9R/E5mDMVn/gipKV2u6m1WFYi4zrurJsGyp02hqq+GDrZxgGhmAsDOd2FV8R6RRl7z0xJnLJOHUW5PVMj+uAWcPMRaiUQpsnppzc5o4Fjj1YbC9zAAxqLWJDsHr2qlJZYadRHZH6nDNbupJKYUuJy7LyfLkSU2E+30GY3nwcP/32K0BtD3HtdHBjyGilf4045w1ArXuciX7VQHD0DAQ0CNu28Lh8RnOCQ7A4TkMvqUjbxrZaQ2cfPGG01hVhGAlrxnnHKRW2bGjzlhxbEmIsvKyFz1dzipaoPXkVvHIaTFDlMa8sL5euGt4c/OAUX4XCSsO2RYz6Wmthh8HoYlrbZzhn2dNSTG1QRPDY9lJypejmbBnLYsGi1Hlle5CrTq4J9ZzmMyEMbz6OzT5pdfy1viatHEb3rOKut4zRZJMB2LlEcolVVdNxd7ojl0TwA4OfmMaJlN4zDoO1B/JalZ2EMt1R5neAwMOK+7ig6wVZfoPrJ8suZkA94kbm0wdO7z6SC0QVLhpI28I1Fa6fX3Bq9f5Sg+CXVbnEyh6YoPhELHBdF2K54CRw/zBzdz+xrdYLdZ5GUspcXlbWNZJKYcmRS04kKSwSWSXjhpFxPlnJkh94GO+Y3ETwK5+eN65rQoqQJNNLbmkck29/mEjaLrzWmBcxZq7Xhevl2p2cFoRtFWQdKhPFWqolYlu/Zc8oNopnC/Cca63TpAuntLmOKlrbXfTtdM999r31uKc38Zr2ejuanWlZ0pyzvbe2tArB1I6bMqrZJssoXq8Lz8/P9vnj0IXBhnHsDIzmwkgLFpuo2TfyUW+OuuyaAIuIIi6To7VKs5pTCxBzKgbyl8PaBbIT4mqlGyU7SmkBOB0cMEZVqXvJQUwNhdoBIubEdVnIyfP4mBhZGYOwzZlUg8WQr4SyIFpwJeJKOtQ72zxIa2K9pM4yqXG41ZsHV30aGAarY9yukVVXS5xUH1ydA5dBAqKOAWF2gh8c01kYZo/6gTidKWFmLZ7zNnLJns9PC5fN2CmLTyxrIicLzB1vkVmUhqLcojUdefviNTvaxJKj+lJ1MBrlsr6xvldNHVMdoWV5Sul/q8VQE+sv5ZhOp9peI3QUpRX0ivO1uXNdsJVC0FUjc+lZkaNiW0qJdd1MnTXGTtX6soD3VRaEvVYN2bMqLTjsP2lOtFTMoh0HtO0brcH9nHbF1933P16PcviFNe2sVqMtsn6urRVIUUqiUj/VpHmVW8PS0kUYpS3X+irjiVuK/6jY2Os3xWgvpRSK1JYHatSCY5uRhnhDo7S2XkeVHtUVU10//y+G9Xi8hvrqP+Urz7/+np3e95bHUapfarbiSFOx7NlYs62lbzKIVLqUHUUrap6FLKkrkbbgszVkb5/fvq8HzfUz2oaZS8HV9WSqopXKeFD0LLqP8U4XbZ/39Tva0Mv9p83bmxpKsQ1hHKfaV3Xc+6e6FuTWGuJioEZRy3TkUojbyvPLhXVZSLG21qjfvee73nYwm00xBU3t39cfjSojpQMQbRz7uqKtqIagi4kOoNAFR9x+LeLw1jvF6LcHICCEXbWvgQftcN7VzKPb1/LRZvgKHFHvlzQAoAWL1Y5Q4dN2V2+CxT2bKP2XNWjo39e28n1xNqdeodIzs1Ezj3bbVXXQb5CQakh/KZmWVbfztj1tBwCrkrgTijpzUIrR52t0bdeQlW1NlGSd1Vuj5DCE2txdUG8/0Ybw75Q6TQkpDue32nNSSMUTsyOluufVPSgXo6I6Z+c2DubEhhBwwaNZqp2oVCisF6k1p3VdefBoKA1ztOsevdmBpI61zxft8xu/94z0lb7qqNfTFFTRSnW00oOc0zepIT6ef4dWdWf6yDGb1LOPWpvM22sZ01JQlC1Hls3qtcdh4bpeKaos62xsD1XC4KyNiLou1mRAkGUIXA64MODC2J3OkqL5NUbPsHMOgTDN1vN6nGEcoTiSZDYrwLd6pmxrLGZrxeKr9kMuiSJqGYviqt+T6joqZDClU5wxiVqzc+eqE7/vrR7rfapuYAjFAuNxtAAsR+sp3e41epw6b3Logc2j9d8VXqLTQXtAR00K1CCu7VP137elFYcSC27Ljm4b1Nvv//beX23m77zva3RTuAWLG132dQ3vsZSkXWsrgWogc/N3xQmaBFevQ7y1bjjaLROic31ts0N/3zDcb0mJ5tftRUR1m6vtPExzo3iHYDWApQcrB5p7E6w5gJPtp1JNMHIYvzY20sGFlGGNwnU1KvegmbFkgigjiampFrds62Evz1lZUzGxLtUmGl3p3ab+3dr/OW/9W9v8a76PlZY2xeoKgniPayWAFTAsfoBhMrZBcQw6MjjPMKRKha+21jUVX2rt/N8elb+6hca2KYvVvSgGcGWxLJPVl2U0J0LJZDWVIhUrrnVqAjfNMVGszqJQ98oSbMARqDLq4ykwnc82kIVO/+gBC4IfRnyTA/e+3tByy0WmotIY5aCkSCmZy+XCcq3ZrGVhXVe2beO3337jt99+q89/5enpsQvetGOnK+xTrjm/pQl/1GDU7o12ZLahliYcUxfeYYCcM+GGb5JZvAlgteN6x5ql7o8JNI1vcbYgFVPPErFr8Nmb7FQR0prZniKaigVlNZPgZSAEyyaKQMrJ+kDVujkthcv1hWW91kbUOzW0CSRRpIoPbZRidMiQDJVNKRLTigi1xjVXx8nQanHC6OwcxDvGMJHJpGKNwbVs9IhR9jq3FtRbCVvTAD/cpPZw9Bsmh5vXDPS3GMf379/3cTxmFtvml1LifD6Tc+ZyvRKGgW0zxdNr7VHaaHCaCzFntq0aZleb8opREC+XS//sdj3+GEwcg7X2t1SnWFxHaVMFXh6fPvP49BkR4bvvvuPjxw8mQDNPhDDV2+r6ms2pdMfWVcGXEAamaWY+ny0rNk34EJic48d/+Afevf+AeM80nwmDZZKKWsY31XuybdZG4bffPvFyuRoF+vmZbVsZg+fuPDGNo/WSqwjtWx857zbBnK9KIzV2PEoiR0Gz1QKJ2jr0zlck2OGCJ6sV34s43DjaWPQxgPF0RnHkglG470yF+OHuzMP9PSEETvPI6TThvatq0ueb+euc4+7+nmmaDPCTJlSzg0g3ANprYElby5om5b4HVPTltLdNaU5d+7R2dHBNtaLIDeE3QGKLkc/PTyzLwtPLhVQKBGMSDLOg4e2FGL77aOtxWTbAgjQT5lopJRO8YxxsbRR1RPUW4GdTfNai+MEZB1VgWQu//vxMXBZ8EIbBAqnTPPDufmAeA+vmuF4N2AljsHuRCiVt5NVoxs8vnvC5BfceJJAzXK8vtjc5x5aFl1UIwTFOEz9+59hiYU2OaxqIKbFenliXiEM5+8LJm8zdoo5Vd0BCxNfADwZX8A7uzwNzGLguG3ldWK4VZMqmkB285zR43p0GHubAHIRBys06LSWT8kYpmXEYyNva+4O+5VGrMWy2HYLEYy1lk+kvzfcRg2pU7D1FlZIyXgReDOAewsDTy4XrEpmGicuyEDPM48SHhwd+/PDB6MMlMKjJ4TM49H6mjDC9fEd5+rfkbSVvkfj8ZICLOkQCxQX8PHL3r/61ZY5cIbmCxo3ry2fWl89oLmyLsq1WC52HzOYKJy08L1deVmsvFdcLKTrWJfOXn1/45eergX7jjI4TESVmY2cpheAGIOPDwOgngowUPxGGM2W4Y3AT14/CON9xWa6kXw3I0RYkfoNIYw8NqUDzqy+qbdza8y1uXJcrmveyDu9MWdiLgWTDOOKdI2WHJKOjJpqiftO2qH/rjTm1B1tf+nPt+lW0gvF/5Xp0b5FlJRmxJzJeXkycUZzj7nw2MR3vGaeJ8/l8k/HM2ZhaW4ys68ZlWXi+XKAGJyae5pmiUVjFCUOo+4wTPB5fEwfOtcC7+cNvP5BeWpP69j/zKYYQrK/u4DjPRveNW2a9xtoWq1SKZdUNSQmtAZFI3UsrOAb0XGLDV7WqW/ngcMGiqKSFl3XDOyHF9f/f3n9sSZJc6brgJ0SJEScRkQRIoE7VPXUnPelRD3qtfv9nuOuuQ4oCSBbhzIgSIT3YW0TVPCIjEwWPOqdXuwCRbm6upqYqKrLpv//N6SD9avcusHeBxmZuerjts5LOZDovzukcU2U7ff8w8eFhFHZzDZA5Z9lvG3ZOWJU75/FtQzYR4wLZRBKZkCIhJpyDJgk+zjmH327Z3ErZUXd1RdP3ZNeQ2muS39BEwzRabLDM0dM2dzhn8M7SNIY2yty2neG3ZPo/awkFVkaNniuZpXoxaUPJnJLg0ktUDomiZtDFqH3PkObZCcBZoYsuRoMaKL5p6DQ74uyq2XcxclmMSonGSn1hVoFdIulyGXLRc5iZhrPWb4mDOGvbgGmaGMeRw+HAhw8fmKaJx8cnjsdjxRevh9HzXmbkjDbIzQpfXYglVmV+MpclWqmLtF5mXsdsXnasM3CyIZbnVL9fIUaXzpHV5yiatDq8SRRWThCnxHSaiHOi8Q2t7zTaKBBSq8XjMZZ6O+1bmRPDeGaaJ+1rJJs8Q50/cilC12amjTJWkQlxJkSN7EeBAJGXbJZ1lqbzOOsx2dC4lkiUyPt0pmDXV/Jo1bcOCtvfGi5X56Z8aG3UrhzKLwUn3u/3+hxX2XkWxVQygjEl2q6r5DDjMIjDrkxw0kA41jY0SSOL1i2ZuHWUrTQWb7WhsHVLm4Vyn+Vuaw/WnGV/jVIT/P0Pf+GHH7+vkJ6+7yqdd7mHJUOqqAY13MSRF4exaeUahOG4qQRbXb+pMqFAO1PKTHOusPLT8cTxNHA8nvj3P/+F+4cHqVM8nwjTxH6/4+/+8C39psd6qcWy9uVr3WoAKVN780nhPWJIRIhEKex3WqdnpG630boSa61CTxPeSyN6q4ZOq03b265FoqPSfmO/3+OdY7ft2W62WvfZs99vag3odrcYGiUwYK1balyNKJbFGPo401McP9Ca/pJRqJmFFax7FVz5pHFVZKQSGJSIcSEkCwqRHUZpc3Q8nzgPk7QL0nYhLlsa98JpDODmSphgvRsYxpmUCy291OZ6b2m9MvgpLU9CW87YqFBVRd0YIbd5uD8znI60naPfNPhGAi/7jWe7aRlGMdhSklpG4U1ITEnJTWpkuxA1NXjfkjKMgwTkMJYpwhAMDVILuO09U0jcnwybs8fPMzkMxEkYPzc2sXfS+zAnT0iSYRPEkAQEnUkSaXeG223DdW85NIb3H1zV4TmVzB103rLrPdvW0VnwRhhQp3HkdBqIKTLPAyHOdG2DJRLnl3cWqxTXqL1R3VPmMK80eEaC5VkdRq1Kk1KdKHo96rp0xjGOMzEaWt8REljbsek2NLbl2ytP41qaLLaQtZnsDWnTkjw0u2vi/iviODLO7xnPDyL3XQ/Nluwa7PaGzeaaGCPjfOYcBnHOp5ExPJBDJkyQJlk3eUhEn0k2c5pGhlmC9cMpMw0wnCMfHo68vx/AN7S3Lc22Yc6Z6Gwlu7Im0JgovVZdg8eDbTDNBtotzgZuo8F1Pf7guX96hPOlb/TyO3I57/IvK/BdZah39fWsrL1JM205Zbq2UwI00SuFEdqowZazQkprdrGwj2ZFU5T2Fp+5OP1ZMpTPbUlYJSFWRGPn85lhkDKrw9MTh+NxgZxuNhecBOt2IMaIzJnnwKRcBudhWNoqGal9jmSaJLWaCfB4aWNk0SAFZOWQILOal5cdxqwhkepHGEfjpU1buTdrLdMYcQaiOopSu677M0XZxt5WpldBeFw+j4xk2bzqOFdgt84QUuI8BYzJjCnyFCV4tiGwY5Y2Ndcee+1pnCF1FjrRf+c5M8ziMH44BH58lDKrtnG03kqro8bTdEYI4dTGidmC9WTjySYRcmJWEsk5C4K9NRbf93RXO3zT0u2vaTZbsC2pvSb7HhsMGwd5NpwHsc+dsdKz1RtCAzlLUDKlX3+Qv6lmcT2xGvvVCPIChyKvjFgjCtCyGBq11ouSJVZoaHlHyC8xmBrNt1aZuIytRoKBBZaGOouzGLyFia44DFSjbMWCumJQWv8s7TPWvRdLe4zixIhxhxpvuSrAyqhaUt/FwnnuKNbl//HrJd38ZRzG5dsWQVSgE+IfGdWWejHqwa5uhfLsxSlLEBfHrsAFy6isjHqD5e9JyTaS1sSsP/+xEwZFKK+ZU4HaPFeylKsG5usG5NU4WWUQnznkYhws02O07Ykp2dUybcVJ1OjUBTTlIj37xQKnv+iAXkBlrAjGAiuMMVam4jIvPjppdG0UEp2zsg4WWJ1k9jJl38icb2KSDOQ6q7l2nilmkwQkSi1yCHPdX9ZaJX2qaaXV/LH81OtzztH3PfurK6lT7TvJWDvpTyjtGoxuTFlLcwiS1Y+ZYZiZ5sg0zdzdP3I8nTmdzjw9HTg8HSV7EeYKP2qbhk3fS3bxC2WIc4ETASlpPU1ay7VMTkYCcwqrTtEQkyFFByZjktPsWoGyrv6ne6nIJFP2WRJmwrL3hCkusZZd8gwv19XyXMwnMn8fx5ZLdjGrk7tmlDWqQ4qjeDEvz4Igawjy+jqFbVQIV+Y51GcohGJRsx8FIJg/Ou9LjdbL9U9eosTWSnNyayAbcMbgNZJrsxFDqzCoGCEhstYKFbqBrnG0jfQGa5zTc1qpTVQyIp8STdCMovVqVBhBekSzzJU65sZQmQKNld5lzhXDy2m7kVVtXkrSG7HWESaknifV+lSLsFxKYC+StUYu20CBjBIcBIuJM84IyVxKSfqLqW62RqPsRYaHiRylLkkCUZmUvRD5KMt6Tr9eW/NXj+fR3Gdr0KwPMgo/LUG1rMFUzZwXpmJxIGCOgVGJ9oZRIKkZxJmbZ4WdedoSKjZWWJgB125w/R5jGub2iPFee28m0jyJzIszNomsdt7jNWhmNjvyZq/1XIGQItZkgovMNjEZx5AMpyB3N86ZWY3bKcg/Q4IQiXMgIMbymISoyLiEmmV1XmT9BITIQDPrqZGMkJUgYsKASR/bli/xGIsi/8SpFyS8leyYXXQmmGpjZHLVoxelF2aRabCSjZ+6jpKN/gXVsfz90h4rr6MyVa8RYSXwWzKLGOEYKAzfpZVGZT8tZV+5wNTFUZyDfD6WYLl6UUW2CkxysWfNyq4Xe0Hvv9zLb3kwf+W43nercyvDtnd0fbvIRC0xsUAKjiAYdkKwVf4WLEnjhaXXeoVgOtFZKRnphZjFVggazSx2UUGYxaQ5yCS9b03OeBIjiWSlFcYwS8sj5yRIaCi8WcXGudR3WRE3KUFMGaev06X4AZYSBikbEX3gvMc2Hte0WN9ifAO2IVsnHAYKNx+nxDAmRu2TG5PWruaVrc8v25br8eutMzQCUvwIi8FbB84TrBid5d4Skk3zXpgrrXUYLzeEZi6wQpIwh0hIS8ZjmoWUYbvbcR2vtUBXIqPOLLU5xUGM2pdvOJ85n89KUDITw0xOiakya0okaJ4DKZZ+isp8GiaF6Y2cTkeenp4qZG8cR3EUVw5iwqyEBR85ixdGDZcbaWFZ+/SIGgmpRfUvOIoTYNTTzqnUTZlq0Em2Vq9Tek4sTb31Boxiv1PIhHEiBwhTuHD4tKUxIUTOw7A4Mbrpwzwrc6AUWo/6OukFiqBehHVMxfhPWDNQ6gRiEidEnsMl+VDRGcJqKwZMzgvTotEbKwEHkCh5Ljh/MjYZyGmhUNZARukTWK+zCAGtrxIDKqsp9bKjZvFKlP4TUcni4DTq9Hg1CHMh3oiJ0HbkXGp3w+KgqPA4aeF/CIHHpyfu7u6IKfLVu6/49nff0nYtm76vxm5pim4MUstiZQ7CPHE6H5n15+l8wjlxYEt2skIebWG+lPtxXuqPjbN898c/cPvuHc45rq6vpbecsRjnCFmcz2EYmZTy/Ol4kt+nwN39geNxYBwn3r+/53A4M00TDw8PnM9nGu/Yb1u61tNYy1dv3vCH736/gme+vLMYFNqeMwv6IBdGUzFECwOmtYFxhJg8PnkSs2bNe7CmEhKEAhfOiUAmGVOpuEt/Kq+R9ayU3FKrKLT5Pnl809DMAZeyZHOdsM9VIidZZJT6PHnnWZi2pOnVYSw9FhencjGKsk5CKtTneVVbrk5hIZwK5f0kpGRSf5dqf9A5SH/ccZ4YZ3UmNdgRQmT6DX2k/trxZi9y1eJ4eHKMs8fkiHEiX/sGbnpxAKdsOUVPzIZxDswhkUh0jePtvqV1hmbYkt7uGHtDdpbspY5ot92w3+/YbRvaOdB0EqE2vsc2GzCWkFJtFRKmmWmUmuNxToxTJGfouwbferxvuL3ecXO1xTvHNM7M08w8Zc6nUUow5ol4PsB0wpgsWVJnSdnQpiCZpmQ4TZExOZxJNG6gcSPRG0KwhM6Qo2HjLG+uN0xz5OHxxDgFUhtpnWHfeTqXicMj50chz+majqbZynrIkoG1OWDjSJqmF3+Ohdwh55KFqmEGTA07lGNVzmY0UOXICKW9zXp8gpAjicRpOJIieOeZwkxIURm9I7tdz3becmu2+M013lpM29E0DlLCRo9zO9I0kZxnnM4wTYwpMj2+JxtHk8EbhzGObb8lf/NHsafaPcftW+l5effA+HTAEAndzNAGzo2hnzvCk/SFjIeZdI5MQ+TDU+LxmMg+kO2RHCIhZ57izBADzls224628wKJy0E5J0bSfCDHmWw8W9/TtB2kwKbrheQnR0KcV8yoX2BUwj59ZCUWaYX9M1lH07Xyr23JeSQOGsRuBZVUWEjF8VLbR8ea9G2NiihrqCyUi/KffNmarXzm+THARcKisFKXesqoPAL9ZiOs4E3D27dvubm+xjdNZUMHDdgrgu7h8ZGHx0emeeZ4PjGFWe0FL2gIo/V5pfwnRTUApRa1ABWlbln+kxd1/aLj//n/+IPOYPknwbhSW5+i1mgnCQY/9ZZ5joxjoD8JcWX5LIBvHV0vpGtW4Z/GQMqOpN7ZOCXGUYhysFIqkGIsOSzZ9ylgY8TkzJQDQw54mzEmkXOgdYbr2TEnX2GmvvFgM13b0LdyfkNhSTXMITNOucrqKSTmqI46ElBrvBP93Ti22w3bXcd2u2FzdUN//QbjG2x3Bc2GkOAwZoYwcBpmvv/wxMNx5Olw5O7hnuPpwBwS8zRLTXJaFRL/yvirC3IMBmcc2TopYMdU+GQxOoWSt8F5j3Ee2zRQDEJbDOqodYRZHbRzzea12ovReU9fHC8j5a5iOMjNphg5n88cnp40mirMauQsTqOG61MSo6I0Hw+xZDyCOo5Sv3g8HvX1yDTN4vmjUQCKE742zpfofc0K5Lxa5DKeO4rrzNP6/Zgyv/nJ/TXPrDoZ5R5U/aVCNiJ9tmqETYlu6u0ao0W56izGJE7inLVX3+IolnsKMZJGOY81S11dgUXGlBinSWoVs4a4nsPRVJiGGLEpMenv1gpJRIpRN7/8kySGOi7JKFuWwPkkmbF0dCsPqARYgFqrCZJZNEo8UJVNcYjq61LD+nHW/EuMX4v+1BpCpCao67pKwhE0q5dSoknNEkhJsSqyAqEexolZGxff3z/wpz/9uTI87vY7NrEXmGPbKJnK8ryWLGMixJlxHIRZcxwYxhHvReEJNN3VOrj6vOVOtIZSyD367Y6vrFKSWyGuyZlaEzynzHGQ9ivjOPPh7p6nw5FhGPnxhw88PB4Yhomff37gcDgSQ2Q4D4R5Zrtp8V/f0toNzhhurq74+t07vLd0rfsiyjBpy5GUpRdgzbrXzJ5E4I0xBJeYJkPKnpg92QrjZTbgu7ZGLF10kB1RFUw22lPNSj31ZA1na/BBajcabYnStJ5+bklk2hBqXZFLTvs1UqPUSybR1tcXVtnqGCgQZlcDP+t9smb0zVHgfClLBLwYSoWhOqUlmygG1KQ1Q1kjpULWMYwjc/m8Bt1kjoWs7KXH9UbuJcyaHXRWIPpWeL46Z9h2jr51DMmRgmdOEgAr673xjqtNw6axmH3HdL1hbDIzRohhrKHf9PSbns2mxTUB10g/Rd/2+G4L1socKapiOE8Mp4EYE/k4MkzSH7FpHX2zoWka9rue/VYCuilkhhAJs2EaZs7HIyFM2PGMnUcRzXi88SRj8AR8TlqGEBhngzeR4A4keyY5iMkQJsi0dO6G/XbDMM48PkkQL6dE4wyb1tLaTJrOjEewTY/f9bi2r3sBIE5n5uMgGbWXHkVe58ySj0ir13nR2VnbRhkkq6gZY2nhUnpLSruIBKRpZJ4D1tja/7RrOrbbnnend4w54DeW67wDY2lsg3Od7qAW76+I88hwesLe/SDzezwyHY9kY3FNj+224BrabgNXt0wx4W1HavakaWI2LaOxkAPRjUxuZvTQBU88eWnZcZzhlAhj5vEszLlxhtkJHDjkxGGeGOOMbz14g/GGbK3sXamuIs4nkpnB93Ttlq7pmaaJrmm0fZmBHH4L+eJ//HGuf1mLJ2ukvMAKu67XtjNSiqEOiNoXzpUeheZC7wPVSQT+Kmfx+etKHFc+scogDsNAjJHD4cDpdKqBYauB4P3VFdfX17Rty831Ndc3N9I+q+9xXpjjwzwTQ1A29BOPT4+EEBgmkZPWWoxCyCUTV/qhppplRFnhiwYoZZbZ/Lo98h8d//Xvv9IZXJzFmu1F4cPDSIiR89nijCBMhtHgXBZnsSR5ANdYms4utqLXxEg2FACic4V0MRGzUSdKUTtql5sYhVwK0SlTijiTcSZhsTQOsmkku+gs297StB5vkraqsopURJFEhhhhmkUuTCEzR+m3W2wBY8A7I+1pGk/ft2w2Pf22p9vtaXdX4Bqy34HrSXPkNA8czjPH08DPH+65ezxwPA88HZ44D2fJooaMEFBfIgI/Nz7vLJYsGstPi/aISpKOtWpwF+ib1D5JFtE6yQxUtsWl+lcpszUSOgemcZLsx6QNUW2JKuulPMvehRgq1rzCkpL8o0SoV4ynBU4XisOosLhpmut3rg2Y9RwssFJTo4xrSMI6nbt6+elRMlW//mxeflTHqEQ3liupwsyogpaUY71Q0aNSlJ0rPDdRKIvLMTFlhAbB1AVvrZUmpJSWCwUqtcB7a8EIzwTqqoVFYd0sDqSLUWG7S84iF2iiFQPTBUcmE20gmqjrJFdHcZkB6jmWhX8ZVy4mgybcqwEhU7OUCH+poOlzhfQpGF95r+xFt8rgFQW3KK5yXi6MeWuWz3qtXwM02nrJtlbh6GuHkQVC2rYNGNhutlxfX+OcF4Wm10T9zOU96m8smSiArM6MPMNRe6LOs2RAj6cT8xw4nc+M48Q4TpyHgdNpWDEdh8qu3Chb32azYbfdSibWSxuJkik11fl9ubH0PZVFWIJsqyMAJcxSxkJCBpMJweCyqyzOxliSRlvR4FYyUSj5k61Nw2uWPSVm75mUSW+eZ6Z5JpFrRDsDzkWaZnG4LqFVK+jpAj1AIzKr+8wX5QDrEbW9Qs5Z2xVJpnCeZw1Apdoc+7mzWCPveYG0hxjl+WrbJikpiHKuWHr0vuwIyngZ5pEUBd5T9I814rQ7Z6X2tc5ZiVDlyvi5hhc1TUMKjcKHFydFt1Xdq7buWRXT1uCy9Pd11uCM1WbWiXmciRka02DcUn4hFoup668GPhVulWNaWKmr/kWf5yL9KvzfJNmbBlK00lPVJLAF+XEZXliWSiKnQIoz2ThMCGQXqKRIsGrE/fLCta5tLn/K01reK6/IeucaQDX1M8vf1ucWjZiIKTDP0vbkPJ55Oj6RUmTTew77DV1s6JsW07WyWowF77FkfN/TbvcY5/AhYce5BpjmaQQXCdYTXav60mJ8I0Herid3W8iBYC3JWJKDY7bY2WATmGAxUciwJtsQfSI5Q3YNOC9EWrb017TVlY4ajLExaM9Ir4GuIDZibXOjxv4n6kBf7Dk+l6GFzX95chQZ5RsvZHBBnKYYpJyp6zpMybLFyJTFoRN7UUhtiixZI30+dpxWa0jlYAnWCnvygg4CVjbqUptYbNcScG9baUHWNA07JSPzTUPbSWLFWYU/Vrkqtu00T1XOl++pU1GcMPvxT8zHTrAkE6jw1C8RTW38yoHWAHIhIDTG4kzG5EiMBpMzcY7Ms1O4syOES2ZU6w2+QUtthNQHg9Z7i1OZUmZuEtEaQpTJKbGjrI6ltRIoNTkLh0LWdkK2qmfmBGNE6z+hzZCywViV7aWsLQm81GuQ0em8VylpFEpco1QG4xxGg+XGahmOEQK/OURimBjnyOk8cDxNHM+DoMTOA+MwCkIvJrW/F5uq+AO/Nj7rLF7Gk2WklLEhYOYZFyI+C962tY6u7USodS1tL0yFxlrkSQm0Sv5pXyyFEx2fDjzc3Yvxk2HT9cSuo/UteZcAq9HjAj0dOR2PEnl5euLp8bE2AqbUrGmmMSchtRmmgRgCp9OJ01Hgpvd393x4/55hGDg8CZNe1D6La0VY9tbapFtXv72U4PtSDmRtFwUYkzUqtDg3Urucq0GSTF2hVAKLBDmI4A9jZB4CMSSYy6KT5stTniiqtXxvwVvDmpBI2DhjMUJKbaFaPzUbEdX5MULgMpm5vo61vqUSCkoWE21uGjQIYcRZTDYRswj9FGQekhH9J/OzKJc1kVNe/a12F1GjKdeowccu55can3ISy/vlb04zi0VxTNOEtba2xCiOZbl8yS5LOKhpvLSh8A3XN7M0rI+RN2/esN3t6dqWtu3wrqG0SRBBWnoyiWm83e1o2oaUEtc3t3z3xz9irePtu3d0m61CZBs0BCVrraw3hToWJEFUYqTzMDGOAiO/f3jkcDgxzYH7xweOp1Oxw8nA6TTw/Q8/8eHDg8CiTxPTJP2zrnZ7+q7l5mrHP/4f3/H122vevLnharfBGaqx/yWCp8XYWJzEy3CE/E1rc0PkfBaDxjWeNrVY50g5CaTKt+QYqgLLzgrLtDFSO5SiEKwoRF9Y3WZCmKSHYpqkmXjjtQ5QDKlU6lOdwuyMZAgdYNza7F+b/rnOf5GdMel6U6hoiOKsl2BfhZhqLVYIUUnTVmRhaWlxFGNiGAbZwzkJXFKDgKdxYAqBEDPnMQgbXcycJ4nWvvS4+/nPADyeIqfDxHhO2BzwOWAVutm0PW3fEaaImSate5mJkzKn5oa28fR9w7zbsL+9ou0bzDgyHs9CHKcyO2umUVibswB1LGDBY8hIXXLykegFYTOeR97/dEeIme11ZHflSF1iHgbSNIBzQhCWIzFHNTAnQphxc8DOARMzcTLERkoxUvLypapnBXYfSXkmMhMcjNZqQ/dAdBFchCx1c9IuQzNxOZFjJEwnJmbwM2NuYFxa2OQMJs24ecZ8kZrFi6gvxaFfu4wXP3MWJzEvYZOCWYHiOC7/Uo6YbDiPJ3XmHZhEiBN91/Hh4RsO5yc2fceb61ve3b6j8Q2ddXTbLaTE9uvvsDYTxwH34w9k94O0+5ojh/c/ko0j7UfSLhCNJWLw2yuICYOD/kqQWOHIHE6YnLibR/zjhImJZgA/OkgZ23WY2wTOYHuLa6U3sRtO+HnEeUsyjimBDYk8TIwxkrEICN5hm4i3O2z2hFm4BZxz2FXvyi/wIPXnWnOv31f2zwzXV1f8l7//e6Zx5Hw+8/jwIAEm7fMdQmAIs/Rc1OBKqZctLYbWbavgMphbUGfy+5KwKK+N4aJ86bwqpyqvjTFslem0aRq++fpr3r17R9M0XN/ccHV9hbWOpm1q/1EJAAry4vD0JOz/48iHuw/c399LbM9ZcAbjLFazq9Y57dcqr13jpcVSyTqWYHiStVzq+r5EdvFKWxuX8p6CUHFKapOiJwRfyWzGd2JHhpCY5kRU0q+gySbhL9be25n6s9T15QTH88ymtYSQGabEaRDW5hilnjEj3QqskeBN61o6l7VXQGDIM1MGMxvCKeGdJZhMdjJXvu25vu1ErmjrG2MMbWtolOzGNw3Gag9WH6FZbF9jLbZxuH6L7TfYbgO+I9mGOWY+HA4ch8h5nPn+50fun86ch5Hvf77n8enEHAJP54FxEiK2mAwpC/pOdsavj886i9UMyIbi8zoyNkk61saIT2JUe6W29U1D07T4Vopt0fpGcRa1oBTZvoWdcTwPHJ8OhDnQdz3TacAkCNtZoptWlVIovdEkTR9C4Hw+czqdSCmyZjArr9eFwdJLceR8krql4+HI4+OTvHceBNqqxkkZORej7jPOXF4f/Btm/TOn+BJjkctLpLoU7huDRk+WbFMtBl9fWIQckKxikGhODAliibYYJaGRbxBDT4zP4iwWdq8iJAvMrcB4C4y1kKBIBF3qq6TEOKqzphenJEPOZpzVzyI1dMYoNCtEgYW5RHaJlKWvo9xnriD8XP+nziKLulmX45sahdHvKxG258rvC0E0ltMv9Q4LWdGlswhQ6sC8QlNKNulyLOexVpjR2rbDGGHIvL65IcbIbictFNq2FWYtu9R02FX9ZvknTYEFToZ1VfA36mxKVFPgpau0yZJG0X8SkZcgw9PhyPEomcMffvyZu7t7Ia95fORwPGKto99saNuO0+nM3d0DHz7caQ2lRBKtsfR9z83VFW9vr/jdN9/w+2/esNtv2fQdUitgFlTtC48iX+qKqxvtY6cxpEgcg8BRoicTKxtqN200ai+U79k6SNJzShx/QX9Ea8UxCxLRFsdMWO+MRdo0aIujpmnxsxgKbdeSs1DCx5S0LQcsxSprZxF5vcqULllAkavnUeSusJgW+vmspDRJFbjK33xpTBVoaozSTFuCHpJNDFFKC06DOIsxwRgSIUkvwSkKLPKlx/HhPQCnAaZzZh7Bm0RjhdnSW4tvWnzb4eIEjJAiRC3BmEVniVPpafuOfrfFescEmPMgxG9ohF0FtkDk0SxAia9IC4ucwduAc5YYDPMYeHo8MocEtsW3OwyGOM/kMJGz0xpRkY0pSTY2zgGCrBlrpRF2DBrwzStZWVpWSadB+ZcNIWQmC8kmyS5qiwkDS+Ze1zo5kuaJiDbaNhtSKD3G5J8j0uaA/yKa8rmz+Px93ZEaBFnsovJXs+jSZ58t+sSQmYOsVWFtTsQw0zatQH6dZdNvSNnQb67ossF2nr7rsEB3+5bGQZwG5pAZTgN2Gjne3XN4fFD9aDGmITlPara4bkPKYI2HdkdKkfH8yGnoSTEQzk+EMWNTopsSzWzwwK6xbFrRBU2XcQ24GHA54TThmYwlJNGHaZZG5GI6J8Bhk6VrZ7wNGhxbZa6eze3LjSXYW5+XWZ6plGiIbtpstzS+EYb885n9fs88TTzcP/DT+IOWTowcnp6kJyFUgqeNOm/rXob1Cmo8QbLpIHLMmLTS02JdlMB5Somnpyeenp5UvomzWBhZ91dX9H3P23fv+OMf/0jTNGz3OzbbLSWgWv6N00iYBVlxOp14enpiGAcOxwPH01EYUzc93jXKI2IXdnPt2bcgAxe206z3tJQuaTLhglr0ZcamRc+92I3rViCSXPCQc3V8MoUshqpHZkWlxCRt1gpJYiiIxpCYJsm0eSW9CSFhbdQe4JlgCtuG+Nhe7Zy+sfSt/C1OA9MkgS8TIGbwLtO00AWj9YaeXedkJmMUp9tkvCY6Sp0s1kNOGNeAVw2rhEW28ZimxzY9xncCP7USjHk6Dtw9njkOEz/89IG7xyPnYebnDw88HaXP66hZRYHOOwp66bcGbj7rLLoKq1h34RDzGZJmdSSN2nhH07Y0XYdvBQ9unS8dNEWQqCGYkYxVzgItnEOQNOk8M5xOnE8nUkpst5sa2QlJHn5U52+aJqIS1kSFAKFECZA1qygOyzRPTLNEctcp+XKeSWGohayGlRJYoonLj0/5AZ+a7/LpJQPJr8vIL2CdVhjtZ4zfGgUDSlm/qB+5g5yktkhau6nDV+aqRtCoN5nz4hSCUMObAnOq/559rzo8xeAs11WP0HVtkZrXEqEr11AzZUjD4ArzSJCNVFUk8uo69cOa5i9QrKLgL+LDdQ7Nxf1WR7KGwDUz+gUip5+CoX7u9Rom45yrxnYRuKkKfqvwM/kea50yEhu6rhe4Tkp0fa9MpA7jXM3+rYlOFiiqzJWpBm6pT7R174Oy45brjLH4GwqV0MLvaWaaBHJ6OJw4nSWzVIhinLNs+75CZzfbLW3b0zYtT7cHhSFmxjESQmK32XB7c8XtzQ23Nzuu9ju2uw2bvquU3JUN9ws4/YuzqAGLj9ZciYCqrVOS+zofKDIjTJPuiaxZXYEN5yy1vDklTFaSmfraMM0GY7JCHw2+MSqvF9ixGEEG53yFggrDbsJ7gZnL3CzQ5qwbS4jBJHs9h0lJaCLTNDLNU80slobYpf3Sss/W81BkichyCUApI2TNzC5z9/z1lxxVRqVEmBPznDE2k7w41Ze5qVzh+zHFmiktBD4XSvuTF7+8Kf562Vv6nvn4mE8hEHIpz9BMMymRQ1LZLogaaTfisUFQA4X9uVxGgao7hHShyeCywUYn7LxoPbG2SEpOAr6XSnIJz62N3XILKpJFpMrFiz7/AsVu67KTtRZcv7M4imbRcfBZdZ1zyTKiaO0yBwKfnuaJTOY0nHg8PDLNE5uuZ7/d07U9Zp/oGo9XAhKaDoPBb3Z0V9fYcaSbA+0khDHRWmKU+ruE0xZCqq9RTlvjiNaTMszWE4zHmAjGE03GI4F/6dWaazAgZg30G22DYhxJSfHKnGSt8Uo5SZB3nolWGTxT6Rf4ZdxEme/n+ydT6djL7yvUlFXYpve+sl+P/ShtKBS9tOyhXLNrF+sVqh1SEwtZdGjRr9YuCYi6jTKLDEipfpe1lq7rakuMq6srrtRZbLWXLgjiZBxHxFlMVeaWxMg8Sz/hAuX/JHxbr3U9amlJ1esqifPKGtYpzCZTYXcvOErP5jWBkJC02cV2UZ1pkevIUOVUzlS7RoKRDuc8hdRvDqqbbAIilcgyQYgZYyI5O81WLjWQVhKyGGPoGlOdxWAbopHAbOPA2yxOpRN20myNJMyck+CKMcJcTSYY5Y/PliEZYoAQDacAZ+k2h5hNcmwXMj5kbCyEeCJvCzlRJVGKRV8WXcnFmiUv8lff+NXn8llnsUca72aSkp5krM1kAjkbvE30XYvtN/T7PVdv3tBcXWG9x7WtYHBrNlEyi7G4H+eJOSamOfB0OPDjTz8wDgPzdCbHia7vCNOAs5a2bZljZtKIwPF04Hg8EGJkHE4Mw0kdw0BWSnVp2j4pCY44oDEEDg9PHB+fmMaRD3cPfHh/zzRPnE5n5rmQtVCWIRcOY5nWZ/P60YbTn0udysrpeHZ8Ns9Pxuc10H9gFDlxGf1cXVumFvEWMh4p4Bf2O4MhTZk4iFExnyNxTqQgkl/qVwszrNxDIUyBrO0WbJ3Kat5VI5kqAIwaj7ZmFkXYyo2ASYqZn4StyliUnl6Lv31Lo70dc5SodjbKbGW0rqawpVmdlZUAL85fLfDWuahbarXZYixMUmXN5EXAfYGIWxm/5CSufy/XkXOmaRp6rccr9ReS5dUCbzImAUaEYttZjBN8fb/bcXV7Q86Ztmsl0m2Futo6L6uotMUpjqE6jLU+AKqDKbUrWs+qz5opVEU3TRMxJY7HE6fzmRgSp9OJ83nUTJVEY0EcmdY7XNfwzTdfqTPr2e+v6PoN59OZ3339NR/ef2CcZh7uD5zOA9f7K/7xv/4DX797x37X88ffveX2euk72DReIX5fJjs8BdECNZuv71+K7uLoIzXiRjLrs8KJdZFKnzPvaVp9Lt7p9VvapqXven3d0LUd1hqOKoSMMfSblu2mw3vHfr/n+voK7xuulEChGCz7qyshTWo3dF2v12Oqcl4UU65G0FJzWZzCKMZ+VlO7yILq9JUofdmQS/uWECatWxTZHmOoVPclKV0dJ1YiVI3ZL5HozwrhmceZ0+HM4TjTtQ63bcE7dZYUNRFTrZEfh5HTSRrPn88d8xyIwdesam3/w6XeEPlCzc5YNaCMtZXhusihIt+tFbiZSSID53HA5sh0PDA9PuCcY5oM82wIU8RZS7/ZEZsZmDB5xGsPOZMTxkpgoXM9HkvsGnzyECf8YSSdz8SUmeYIMZAtTCYQiZWhFosSakSpd7OZnOVNQ8YZ4TcQY1DXRszEMBHDyxPcLD6GzPRHtYslulidxI8rfMozMuU8zxxj+X+Sc2bDMA3klHDWMk8Th8dHmqbl/c8/8eHDezZdzx+/+wOZ/0LXtvTW0e3f4XNi7zraq1vCPOF//B539T3TPPN4Gng8PRIzzByZTEMwltltmX1PyI7JdIweogkMPjJ4IEVsbDBpwgFHCxsDjsQ2TXSz1Jok05AbkffRl4ChMqBnIcuYZqkfZjLY8IDxE6cw1ax/iAIvruUGLzhMCSyXYrT6VDSghfaZ1iyfcw60dr5tW1JK0sPXe8Zx5OeffuJ4eKo9GCUot8g3WOoDYWHFlyFBUaocN5+QjYsT6ZRwzDlXHcSmaXj37h1v3r4VsseuA2PE7n16JN5L67mFQVpJwWYpGzmdToyjIPBCStpHWRzknJL2aZXg0XOyvvI76mSUgOYqDkzOX6a1VOu097K1tZTNac2fdU7IKUvrO6C2YlkFqo2xUt+HkX6FtOKcKcdBSpl5Toxq84doCFF6Ep/PgcMpaHZS+jcWdlK0U0DjDI1m/sLcS+A6Z6ljRIKFbeuh1dZGXYvRntJxngjKGRCToClIYAaLmcVh/XCAx6PMeymJaRsYXeA6z+yy580M19kSkiHEVHkJpI3UTNT+4zGGSg4q+0Nb2GRE12ga5dfGZ53FpgAGjCFYySdKal2NNZvpvNAQb/qe3W5Hc3WldYoCPU0YoordbATZn3MG64hat3Yezjw+3HM+nbAkWofA3RoxWtquV2dRNuRpOHI8H7TH4sA8j+pNB1KQhzBOA9MkjFLD+cT5fCaGyPF05Hg8MY0jx8ORp6eDwFOHifARvbpZ/cyX7z8PWnHpWpbITPlzObPJBVFfFJGB5w7jC48L5zRzaTiVKJEelPT6KEaqOoJxllrFFBJhjsQgmcYarMsaOY9L1C0WPLT+/lywLCyyq6icvl+YwpK1C15+FX2eQ9YsGWQvRb5iPPklE5OzbEQDEXUcSWSXZTevBR9L1LNGrnJeHu8zpyyXLM8zBtvqKD2PILzw+KVM4vq9MtYQjhhjzTKKga1zarIKkIxvPc7L2t3AwmECdc4kr6CRZXUUa1axOIx2IbcqhFewRLgKFLkozePxxElJau7u73l8fGKeZw5PB47HkxpcsveapuH29pb9/oq+b/nm63e8fftWmeKu2Wy2nM8Dfdvy4c0N5/PITz+95/HxwO3NDf/H3/+B3337DX3X8NWbPbtNi1zyQhpin2VrXmoErX1Z1talo1hmeImAq9w1AnPJVtvzRCVH8Z6mGYUa3kvtibWGruuIMeCsI7ZdXSMxBOZJWhW1x4a+E+dyvz9wOByqg3g4SNPnm9szt+OEd1LLuum3KyjS2ggSWKkoLM0koGQqlHvQu7PFmNIpqOfzCxGTGnsSEY4VzhpTIOVYjbS1lK6e4tpx/Dje9yKjROtjCIzDmfNpgtQQWou35gJGm3KuvWEL03BpWVHq5CvpV5U9S4a1rhB1FkGdRg3UZEOh7oYyzcXosxZjZR7DPOHIhHEgnE5k54jREYMlBQnstV1PcA7mhjxJWwy70lHOWWg81ng2doOzHXkeiGNLPjtijgJ7JZCdJTZJ4KiF7GQld1KOKkIXB6sYrQDJFrmcSTGQw3MI/Qs8x4vX+eJd8+ygJbyzCMXL5bU+YjmbqWeXv0jGfcZgGMeRw9MjzjqGs9gmm76n7Rrevn1HJOE2V/T9Hmssm6aj318R54nZWmYS4zhwCj8Q789iNCZPTJJFDBtHtBsihmAaaYGJY3ATZxclgOoMOVkcmWgyExlHJKaZoPrXGYEmYo30c7OFBz9Jy56UGObIPEeyncnhTHaRMQZFgmk98oqU7kXHKpBbHfzVM5FXwoFRkBgGaLzH9L3co3OQhbV9OJ9rayKg8ipUhAcLwmlx/tZPfKm7X5eATNN08Z4xht1ux3a7pW1b3rx5w+9//3t5/fYtt2/eYIzRWmJBZJxOZ87DmcIEXZhcp8IwX8qvwlJaZa0rxo7cS9EjKVV7ZZ1TvJjXXGTxakbzpZ3xUsPbJcAspRIWp0FRyQarLNCLKLDegoYBg/fQNI5S6lL89nmOTNrubZoT7RRICYzxGNuQs+E8zBzPMzFmpjkwjqEGPpMGIbyTnoqAkiOpfk0S2DJA47So3FpohbgqA8k6gnF6DZZJ7yUFK5nFAB+GzOMg8y64TOiaiO8j2UWyT4wBZW41Wlu5RqyEhXQtp7V4rTauPM+s+vnXFeSvw1CBaIymUzO5bbDbHbZvcfsrmv2eZrfDb7a4tsU1DdpFdwWb0x57KVeBMY0jp8OR8/HI6enA+fDEcDpxdIbHxko0retkA3U9WE/WBsTzPC1w01x6G6baGiNpXeM0jhW2Kko5ME8LDDVo/z5h4lMhv3YIyubIiwLIyy658PFKpBwulYfRz6wzjOvX8qLAJ5//4WXG+p7IRoIjZuU41ku/9CSrvFXhkqKkt3MUjzKnNSynHrp8lsVx/ui2VvMqvz5T2TppNeOoJzVcnFgVD/I8yjcV52WdMtR5yM/gqdRNtPZaWRxTijl6uT6K0/opnzBnVkrj5cZfC0Mtr9dZxjULW4yRWfdLRli75LZEoWflyc5wETeR2SgVpgJpLIZ6De6ZdQ2jRAmt03rltNSzFkjemgUuhFjrh8HQth3FA3DO4RQme3tzy36/p+06rnZbhZE2whjnHbHx7LYbwjzRtg0xBA1A7dntNvR9S9e42nalXOva4fgSynCJfq4mjctA0wLxzdrRRX+WvWgKE6hdnrW1pGRJKdbso8GqAbRkm+dprn1o53kizL4y9cWU8E6yYjEmvPc1cOK9F2jTFCrkd2HYLYbSwm4qI38UDFumtOwldG3qu1mJWtLiKBZG07SC2iwK/LKHWZFbi5P4ZTKLC0JNGL3naaKxEOZIsLYS99TrSpJpFMc3MIXSJFvIfqLO2+I8rgNWq3ViSinHerEuyv/C0TGF2XcJjhXop5RtmFrqXwKuIQRiCFpbkyTQlorMUzbsLHWvMQdCsmQlLlpLy7WpXgwUkTN5lQkt8FLN+qxlPNoj2EBKQaBUXwD2Vme4zvWK2fqZXrrEClF154X+5rkNkNdPhPUcgTB+F9biKUwM4xnIHI4HHp4epCdedjR+g7cOm8E5Lwbppqe/2mPbht3pxPl0lh7W58A4REwMmDDBNIABlyMNCWuSJAC8JcdMcELmIaUiSdqwEJliwKSgzmLSLIchZKmTLuUlBgn8TXMS2J5NQnaTDHOKUidW9sEzZ/ulRoVaqh4XI9hQ6ysqe2TCKiJCAv6yR8pVOe/xKdG0LV3XEuZeatiCkEaVHovrfyBr1VRZp8xTsNgb62tdzYC1ls1mw3a7pVG20/K5UntIzgzDwDiOQgp5OnEeziIDWWxVkSUyz3NY6sLL96yRT2UtF9tq7cAWFmQxZvIyh/oBo4HlLzHs6qcr9otZZjRR4KelvdsiD5es6KfXlwSBJRLsrME7R7JZM5GCbkit0yC21BQ2TltoZFcdKzmF6rtZWlzJA0DqOgFvDN4KpNs3Tnock3HRSvuOBDZqyYvqu6gB9JhXLfm0hMQYwzAF2jHg25nTMHE8Sxld0v3onKVpHG3jSSlJiyxniMUmLeYtqnOf2bWfG591Flud78k5Yt8we0N6c4P/L3+Hvbpi8/f/J7t/+K90X/+e9vYNm9u3+O129QANLmVCkhufzyOn45l5nnn/w0/86Z//mePjI9//27/wwz//T4bTkcdNz91+i/ee7//9K/707/9C23bsb99y9e4rnBfGJtdq49GkxagpMo5nxvOZmCLn05HhdCSmyDQMTMNIDJHHhycOD4fae6ZsvhIduojqqmFW/AdYO3S/JvIWVfHxMV9mk/3apWSoBl0hGSjvX2Q2VjSQOcpCCnNkGmaSwk9TEBaphR60yJVVhs6UDIFWveaVk0WWuhaNNpdrgAIBTZhkiCZiAmL05JXPoi9EaFAj7MZarFnBI3K5b1HI2ajSsgmkNZ0EQSgbZvXcq+mwLIBad1HXyeUcG7LUh32JyGm998/DUJ+PNcymRDVjjJyHkcPxoK1qPNY3FCqr0pLkuaNYnEUhNVJIi8wwUGA5pZG6KCuKk67/C/NcachnbWNTrqn0w7NGIDPONbz76lpgtM6z3+1qi4ur/Z7tZrOqUyxQTIGrtN7iv/uar9/dSE+m08A0zbRtw5vbG7bbDd4aukaa0182c14b4i87rMJRhB7bLXAlNf6NsZK5VW/HFHMgzcQkATBiZEYgecZYJSMwF6QAbdtJmxLr6LqezWaHtZbhPCgpWJK+U1rr0XUtXS+996SdyA7nHbe3t9zc3tJ4z+3NDTfX1zLnmw2bvseY0jDZ1UBBcdCWNiRLFgyWoMJlxHZZbOs9FmNiGIXUJqfMrBHTlHINDoZqHEWVN+pslznJL/8cvbP6XCLn45HHhwNx7mm9JcaOpm0ZxxHvXQ1Slp6+h8MT52HkeOwZzifGBsbzifPxxDyOjKO0ARGUhcpSo8ZoqRVbQXaLgbd4yvLPOoNrHB5qf84MQrQTAthECoYQDGFODOcTx+OJEAL2dMYMAkMdrWG2BhwEOxGNJ2A5x8Q5jxBmfJhwGRZPXUpPZKgxm4SZtsKm5oDNVr7fJIzxuBgxKUoNbdthvSdkrcn5An0Wk8p3WTUiowylXp8LBzarw7jYA3LsutRjpfG41PWLfKkGL5mQZ3IQ4pun4wPGSOmAbSwhR/p+w3ff/hfm5Gjbjl3fsNtsMGR29luaq544T2yurri+vmUcRv79379nPP4EMePiPWY44axh2zV0rSda2HSZwTtigjOGQaKchGmUvrwpMk4nfBjFIcxJIfHaEkYZsF3dyxCDBjlMIjrIxhFIDDky50QUI+CLaEdTIK45krR2U76uyByHtYquWOXPKvGNPq2+72mbhuvra969+4rNZiPJB21nUdpHLbq2OIsLkgZdQWu74flq8N4LsZi1bLUVhnOOvheYfwiBD+/f8/PPPxNj5P7+nqfHJ0KU9lDDOGCspdMOBMURLAG8EowRZ6XRtiAI4qfYSiUanLVUJwSytbI2NXiD8oHUwK/qKmPcF3mOreoCawxNmVdMRbqRWa6RTFoFwgtizNbozco7YmlXkbIwfDtX6hGdoNKMYdMbdlu7svXKlen+zbnCPUU/SW0jGan91jipLWLYGGGXbYRk0PmMm4SvJZtMMlF8pFHbPoXMnAKz1guHWRB9fhbb7DgEnsbI7vqBqLOQcqbrBaZ8c7XFWTgPnnEaIAsM+RwKuQ8Qs8YAPrL+f3H8SmZRb9pacuOJjSXv9vh3X5Pe3NJ+8zv6r7+l++obyTBud7iuK9NalUMOUXpG5ZFpUJapxyfufvqJp/t7Pvz4Aw8//cBwOnJqPYeuwVrH4+MdD4/3NF3HV7//A9+aTNv1bHd7tn6PsaZGnmOMoojHkRgD5/OJ0/GodRoj8yhEC0OFus2M41hbCaydxeckLKulcvHaPHvv0xvn0qX8GJrCxe9f1I3MskCMUSpkzWiufKFnV6ZZqIjAT6dImpNshqifU5lY7qOgMhcnQzbv2tn+aJ7r/8plLtnElIRnr9ZIsUTWJVPI2s7+OLpUhLUSOGQjPa/q90qNs9aPLcaBapllXkypyVwiMXl9U8sUK6zhr388f834HKHN89frBsILuY3UUB1PYoR739K0QlGdSlZx7SyaOg0yzzmJwwiaFSj1aqHCEcdxZBwH2aM5VujgOI6VFbP29stL0MFay267Z7PZYq3l6uqaN2/e0DYNb25vub7a451jv93Sd11VfBW6hvZI8o6+9YihmldELcL+6Zxcv80aFSz3KDPHL+3ov3nU5+GwrqGQ/mCEGdYaizNezZmyQDMhQoiTZmYls1gUWM2K1ocEbdsxzxPWOiUCk7VwOp04HKT1kKHAeATa67Xese96eu2H+fDwyO3jI03TcDg8cTq9kfYj+z37/V77abaVgKFQnBs1KCr5EUsGlzrHkgFIaSEYe66khTVwvmBErcx2K2ex9Gcspn6ZC2MMfAFn0Rb5lhPTODCcTjhg2Gwwxipx2lyvPShUdw4zwyj9r4ZxEEdy8vJznJhGJQWJq+bYGEqdlzEFymkvZavuQXKqzor0ehSo0lJXjMi2FAAnBK3BEIPUxI7KNG6nCTsF6VnbSm2M0ecRbSBmwxwSQ7DYNEOI9XtzWYcXSq5A+JTAKioayGTpy+jApij16ilhFHrmmha8F9KwL9Avs4p9FudvAYwuf/ulFbTMP6zZN9eK4flnM1rrh1FiCjnmNIrxV9ozGGvp+w2+2bG//po+JXzn2batQM0b6PctKQS8cXTOMxzP3H94xCuzrQ0zhpMEDd0W022Ewd5D6x0hZvIEMcgzmXIghAm0d6mdJjXmosp91SUqc7wRx5G6Zw2JTLQj2VgimdlmolFOgC8Tg6sCo/YJzcp6rnU1xmRpGWEXgrViUxSWVIPIQZqGzXbL/mqP845pGBisuWx7pLq1yLPCKCrnWTKL5fjqoGlmsmtbIdZxrjqLa70upRlHTmdJsPz00098eP+BEAPnYWCYRqyzXF1fs93tKr9H4SYoOtE5JZ/U0rAiM+q1q7DNKZGUdCzZYhsmdRbz6jOr+f4Cho7T+3dIds5SvmaxupM+r6w6pdoPi9hfxmqDlrVrsiB1So18QcrU8GzW9kRlbaNBBWvUhpkYR0XjRMnK54zYylqeRaSi74x3GK+2l3Fk47UmcsZGi42JRGKO0voppCjZxZSYQmKeIs4mDJP8nuDDw5G2a2i8ZbuRIBA5s910lDZFm65hnBwuChoga8ufwhq7zOuvj886i7FQ/3oL2y22b7A3N/DVV/D2He2bt9jtTvDebVuKa+p3GzI5JsI0E1NiOJ04PD5KZPXhgdPTE6fDE9PpRJolupZMJpCwzhLGkXkcZH3nRNc09F3LZtOx3WwkYmxA2MWiFusGQnRM47lCC2IITNpDUQxYiZzFsCieNZxAdWmNkhflZyj5k+INfTzJ1UkxqMCQT8dUHCKzYsq8/HxVSC/sMV6mmItmLHDEtfta7kH+k/U4OQcVeiqJjpUjpsZMzcwtZ6o/F+dldQ2rS8qXh6/+pOdTx7CeR2erOI0pJWmRoYa0wQjLpgqS0tB56VmWFX6lEXmzOIxFl13Im9UcluzoasZW92Tq9b70+I/CUNfOY1EeUreYpWHrOGLMhLEjJSKaSvPJlZ1tVpOiVR/VsFoM/7zKLAp0J+cMVlpWZJNp21bgZZReevEiK2ydZbvZsdkILOf6+pr9bif9H/uOtpW2HRLhvVw2dQ9dOH7yVJ0qQCFNUqNbDbyaK6j3egkxesnhtCeWZAQ9pb+kWTmL1jhscXpT0msswyyKC3XCliZvlABNMQqyRh5TivW1+B5lPuQ5OqXvtlZ6bbbKat11YtQ0baMGjvT1apoGr7WorhqPanytXpch+1CeRtkvOS81jsWZWAfqMkIOE1YZ6BCFFVUgnQKXjQrxTNrKSbiPLUkhlOkLtM5olIihGPZNq6gX7zQwI1lja4SIpvGOkGRe+15qXLqmuUBFFKILnxNtdCQyvsDeygr/yBAqVvoS4CriR2BJ0su0sD8aDZSljOois5AoeNh2lugsNjcY0+JtpussbWfAOmzjid5hs6E3jqTGV2c62iZiTaI3gcZEsm0IXUfyLWZObDeZhGXbtzTay825kpFReZITOQVSNEJoYyDFAGYhzHrR8Ww+i8MIK1nLpx3GKuvNWgMsf1trq099cfkuQxYywJwIKZAjDNPA4fTEHGYeH++5v/9A329wNtK2Rp6tmfFK8GGahnazJeO4vn3DV19/wzDNpHEkTiPRwJQC83CqzmpC6/rnERNmTBToqvTTU8eh3oca52Weio1kwdaSjhIANsp/oD2LM9LTWI9fa8yXGpVlWsschFjLVAdW9FdcnMqScUQCjGL2GJwRh90YQ9O0lbU5FSbhJDDxYncUAq9SW2dKc8K8wFArFH+lT4o8s9rma56lRdICsU+SQRwG5iBw1HEaa/lI1ExqqXc2LJ/NIAEX1RULEU9xemyVz8aY5dmlVElzqkxJglMv0NNsTNUZX4L1vTLHFue1OLQJimQvRJSLJtGdVtGyssJBUXT50r43NSAuw4LUberiNqt9eWGWqnCtfzdmCd7pQSVwIg9EZbuz1Vn0STkjrJGWSSnhYpKej8AcMyE5jE2kmBldYPYRa6BvPI2zeCeZ52EYiY2jbQyNl7XeOCdkSBmur3ZYY5hjopsCU4iECMOUmWOW+uJssPOvB+E+6ywOVlj74u4K98fvMLc3+L/7e7r/1/8b/+3vcTfvaL77O+zuSpixvK9zVPZGnCZOj4/M08TP3//Av/6Pf+JwOPCXf/kn/vQ//junpwdOd+8Jh0fyNDKPMJusvaQEJhU2Wxr+jq/fXLO7umJ/c8vVzRuMtZyGM8fziRgDh8MTh8MT8zxBDIyHA4TAdDzz8ON75nnm4enAw5NE1YdBGMmKMe2c1MqQFlxy6XECi9FcIHOl1isr3EGEi8dZUe5WMwaCH5fNLQudSv1bBPGFInphu2Ypn1uMCtk8K8VbPSSNilWnTP+TDClm0pwpDYmrI6mLPCVJycMShQGFn+kcmhyXHoZ6Oc/FzdrlTFlJdtRYqs8AlIUtEyPMSB2CSw6ifL/H44w801j6K5qsPcUy2WbSHEWoGIN2YweQbo2CxbhgSDVZncu1S2nyMhfFYHt5GVrH5xzD52Ndp2iMMhlq9n+e3/PD9z/y+HRgHAOn0yywYCzC6bU4HfIF6goXh8sUqKFg5Y0phrOX7F3T1Ndd39L2Eg1v2rYS7rRts3rd0jTSdH7Tb+n7XiCRfUfXtThr6JpGCAmMFMLX/vC6kwwo9O1yLrJRlsViFNhUlrvO3cdz/KVGv9npdyhjW2mWZyQaLfUZmleMEtQSyHdhC3VkDNaJ5FgrquWZGa0RVehvnBnmAWMsMQest9gsRfpO+2R2bUffdzjn2G137PZ7Gu958+YNb9+8pW0baTdyfYP3opAE2mQ1ALHUxFh9MEaFWypBBA0orGsM19nlGvhhkQ/SPmVS0pxU659yzrW2JGYhQItKgx6zRJ9TNoRkFVb9smPXy3O82gZubq45B0PfdWw2G9q2qf1IvRNq/v1uS9sGTIYwz4zjxJs315KRdcJiu9n0NN5hg8e2UuOy7VvRKVgNaKlFlLM2CjcSCCiG4qrncNe23F7tmZWYLISIQzKzU04SkDBC2NABb3eOHFtScjADocFZ2LeWXWvAWqJtic6TsOySY0wWS2ZjeloClkxjI85EsvHMZku0HXNIbPcj5zGw6Ty31zv6vqVxWtPTKHFKmIgZTPCkNIttESash2bTvfhzrBsoi+wotYtZZd1aP1fjdOWki8Tko+T1pxyiTwVuLeJXGDJTlv6bJljCXeDp+IT3DeeToLE23Ybf/+F3HIfvaNuG/a5nt+1wxuB3V1x1V+xCpO1v+P3v/4FhHPiXP/8rf/7xzwzzyPcPd/z04YGQhcRmRPZKjgkbozAsTwEbAqRilBc45SoCpWRKBlNzBOJQpQptSyVYZSE5S7ZG/ilJzkvvyKgs0yEGpmlW5IWpUU5jLCYkkbPqBC9xTrHhnLYPKvbL1fWVwlBHhs2GpNnWcRiJSdBsaRzJZJxv6FRnSWuxRX4VYpQShJdArbCVLqRWAokMQfg1Us5VNqYkJEaljCToOZ33zPPEPLckDdyZSjwk/00pEVoJtllnpUeyF7KbatuSNbArtlYMCmdVm8fkovc1KGjFXrZfQE+O+hxdljYTNopDI4gheZ65ohYMFWGRy51kTRwpQ6l3CvfVgLQVVnaFuehMCcwaDaTZ1c41abGFi1wwOUl/RDEMa/sOfIkdCUqrOuUaOMyAbQy+FYfRt45+0xJTZjv2THMkpswwZsZJ9t94npkmRT5GqX13zjCeT/z000TfNliusWwxBnabLde7HSFG3tzcSJuxFDmNsyBBpsD908B5mBnGmfd3T5zOvw7v/6yzOJc8Wuuwb24xX31F+9137P7hH2m++yNsdnD9Ftpu2fhqN9sSlAiB6XxmHEYO9/e8/+F7nh4fef/999z/+AOnwxPh+EQczmTFmUck0zC2LeNJsPmOzNVuw/XVjv31Fde3N8LcNrT4riFG2QjGGuZp5HB3h7dOGMDGidPTgXmaOB6OHA/HSuZQo4EaCV/q0OS/TpuTsuiTmkGTBZqFJEAjGBKdd5q+dho1KoyA4vhkzWiUOVsidy8fbVuPvAo5pwwXra9MMbVXF1NvmJpiz6kEAnQDFWeqZAIuHJcVJHRlla+dxOeRofU8L9etT6T0SKpOu/xMKQkq1hiCkRqYmoUz8kUxR4XAqEJD4W9R2mmIf7zUXNWsiDHLs7u4sLV7XywKee+3FAv/reO3ZBLX75XfJWvUVDjfw8MTd3f3HA4Dd/dH5jmCcRRI5IVHxQJZLA5GcRC9ZlP6fnE4trsNu53UYbRdWzOa2+2W3W4nTsluy6bUHW6kLYPUbWxo2172lP4zVH45vZz4LNpwCR2Tm5e/WwOVIUaPVd1dDlw+k8sc/40P6ReGbzo9v8XaAg0qzuIlgMmQSHFFaGIs0uC5rPGVICk3VNavLTBFqfcycQZloy7OnHNSw2GNoe2a+uw22579TjK7V/s911d7IQfa79mXZ6pkDM/JHiq8qTjtReZUIpNcWf1KHe3aWfwos5iUEj6WJsulxVFBbKBso8rmnIVxNml2IyR3EUV+qdF66R7dtZ0SVASF42rW1Uvg0BpL4z29Qs5ijNxc75mmmd22x3k1Tp2jaRtZpg6yEznVNR4rTcTUATHVZr/IKFYYaqaE2Bvn2PY9c4iMjFIbh8jUgFC9Z2OwNuNzZt9bctQefRFy8lhg2xp6L880Gk8yjoShxROyBDg2vqNTwkVvJMOYsUy5I2RPjBnftELS0EgQqPFemAW9BueMrWQ2KOutdQ6Tosic5rMmy982nnl3awfxE2G4Sx31iVdVTK0UR35+DEv9IhhC1v7BGeZ54nA8yhpKFhOytMJpMv1O6ouzvcF1jsZ5mq6n320wCbbdFfnNxDicCPHMPNxxPGXuPoykpzvJyAOBwvMmwW1SxoSELU5fKqZzcYmNGuOpese2EPQlgeBlJbGp1CvWQNbu4/nSSH/JURlKV2RRMq1FVipCw5Reffp8FLYKyoZaZZql73tSk5i1rUWKEXcepJxB5ZGxMzlJawrftEIWpnBEySrGld2o35mTlGM9Cav/dFGaITD00hdwCZ4tBlupBc4srTPKHNT679UyE2LJuAQSi4e/CpQs5EOXEFWbl+zaAj82cs/25TP9odwLQAjiNCaISfN5xkgbrpKAKIDGTHW8U0wkdX6JGZ8t2VqMA6tQ5JJ1lZvTPu0VwVMQbVQHcvlV5GtJIFqLsKCq81pMJu9Nle2G0pcacbqdZJOtM3gvwYW2aSqx2TwL439KmUGdxRQT4yhstzkXEs+B0Ldc7XvmrqXxjr7v6JTThSu56hAT53FiCpHzMNM1TxxOI8fTyDjM64zSL47PSt5UF7d4xtZ5jPVUXiLJV4PCOUvGKM2BOE2kmHi4u+P9jz9wPp358OOPPLz/mcPjE6enB+ZxIM6T9gFZwGxix629FIUAzIFY/oWI1aJKpxy2BTpFjY4EwhwI08w8Tsr8N8u51CD5JCGIsQhVkTxsYb+C0k8u54z3Tmmg9dpSqgZv24qwcVaUfAzStHVSOG6eZ8hCxGDI4rSt7v3Fx9qeXsyN+re1oyiFxGLkFdKErAxPK8+uHp3rs1qc6JVMW32n+ax+uLztZx7js3539TtVkxe23QzKFClzmpSprZxqPb/VGI3CLEkWgwllpjLWCEV4+fzq3lFnuTjE9doNNaP+S8Cjv2V8iszmr4GkAtVZzDmz2+54++aNFHe7A8OYsVZq20LUCN3q+VpbHE+0Tk0gi13XipNhHdvthu1ui3/mLG53PdttX/dIv1GncNOLAeRKZrGh9nHUbPKzp69TvZrfVVTxo4BHpj4U8/yZrBo0m/JavLIv5iiCMjwChYGtrqOLjGheKamaixelqMQSxip8dhWzqM4iYFwhvpHMr9U+l7AYLo13tI2tz1EaQosh3/cdjW/oOskQ+8ZrY2RzGVFeG0GIIUQSpsQC8BXHTlgRpQ9ucRZzhZjCAqOS17nW7IW40MMX2GnO1L+nLHUYUWVPzIXBrkCwvoCzuNkAsNkF3txcEbE1O+i942rfs920bPoWG4zWpFgMHSlumeeZ633PpvO0rcUER+48yYGNYIJoxdZr9F9wo5/zYOpTKIZl03i2214YKmNkOp+x2ZBzXGpeUQIgA53LxK7An8XJtgZ6b+U6jCEZL+zoGAKOqNnw3htaV6DNwpyZsTS5JeKJSaL8fYh4a+k7R9M44aSwVF1siEoOYcVQTQ5LwlmB7L30yBp0MSpDLqREXrH0rub3s+dS4zp/QhTl+s7lOVRzrvSH/McihBTTPHIeDqQ08/D4gZ9+FlKTcTpzHk7S4qa74txd4Y2lS5bWWmgatlfXvP3qGzbnM4/zxJAzYwh8OA/EcSSmzBwF8laIL3MqQd2CpFmGEWuXSoBQ5JbN+t5iK2TyUr5S5PDq9UuOtVNVOQVKgCWXDbMEVaoNkCQTlbOswaROUFaCkaRM+7OWLg3jyOl8VhjgwPEoyYdpDkxzwFkrRMJax1YdtbzI6pwzp5P0Ek5au1Z674XaYmQFy5cPLc+gyPmV/qjJjmKzqM1mjKm8HiDOdPJO7Dw9jzynirvRa110b+ExXJIpamv9hv58f+0oiEhX5FIWJ1HYTyWrWXthXAQmswYGsiDh1D4V3aD2jBJ/GSTg6nSj1hrPSyNv2ZcaJFl8QqucKZJBTuYSFlst0urcC6Op7CkpmSuEZMJ4nmmcQKBzViZYK8/fZgn6pZgEfjp7Si/5GANt4/HOrtBepTxPs/5YZf9tNJFlGMYeZ6XF0/nUyzz8yvh8zWJl9bFY32G7LdZ3QAPRYWYw5xFmiZwE/dzpcOD+/XumYeTHv/yFf/pv/43j4xM///gD//ZP/8z5eOL49MDT3XvCNJHCJMxVULNUIIvRqBUQx5nxcKKxnqbpmfozthF8eNd1WoeTMc4wDgPWWIbTmfPhyPHhkcPdPdM8MygjXQbMJ3q/AUiTYCfn7juaVgqGnXe4orgpayFJU+UYaRrP9bWwLBpj8dbhjGMcR+7u7jkeT8xh5ul4ZMxJF9XamPoSLoaMooZL9KP+vPirOIqmpDpDJo5R2E9nhdpSatWK0l4iiSmvhclasLFk6sp3r5XiepQ9Vq6hZvlEiKUsr6qeAuJKX4WcMVm4zrJdYKvFMcgGcjRVSQRVBFijwgnQ6JlFDd4MtVo1V89kdX8lC1kisPmjY77U+Jxj+CmIatM07Pd7Ukr84Y+RORpOpxN/+tOPGPOvHA8njqdBoNpKGBK1L6BvHK4t7G0brq8Fpnh7KwQ0TdNwc3PN7e0N3vvFWbSWthOnwyhddSEC8KWXklHYhtNqSOtqjECQd3n1y+XaEifqubT71PH62jw/bjHnjLGXfzfPDn+B4VzJLC7KPkONFldSAZWqKQcSwuQrzJ4C+S2ZXYruBA1ylD5its6tc34hX1ClgoGubehbqRvbbXfsdzu8c1ztr7i+usJ7aTVytd/gnafvGqEDL/Xi62CMGskxGYzwHi4BxJyZVPYWeJWQiqVVq41CICV7LqwyiLOSE6VcoKZLZrFmE7MRhEFGSJrUWIjJfgGTBq6+/kpebPfkbsPxPOKcEQfIGrquZ7e9wjcNc5gZp1bJejaMX8se7Lxh00rSJbQdY7vV2qiZEIScabtrxWmIUZHKRmXf86BGgfEqlDfD1W7L9VVPjIkfiIxP9+ScSGFgmhqck3rKVtEz/cbwZqPBDNtQjNCyTzFWHIUSqdWwvtWaTO9Vn5qSDbdgWzBemGxLY/aUhbEyCSmOLfmtnGiY0Lai2GAoJSK+bXHuy2UWF0lRUCS5OnBlnj8KXq1UaF6p1UUO53rApeTSv+kb8bmMQg1G1cmH8z0mjDjneDx94E/f/zPON2z3V2z31/im4evbb3h38w190/GHr77lu7ffYBvPt//wj3z93e8Zp5G3f/l7vvvpR47nM//3P/8r//yX7xnnmeF4ErbPDCFbsUVKhiYqZN/aKh8NFuPKDdvqZCk1OaREDlIvLB9O4oxoe4IvsSELk3ZUxseFgb0cIdDs4gTX+r60oI1IsRKfBG1tk2LiPA48Ph2Yp5nHp0c+fPjAPM08HZ64v38ghkjbSrDNqLMYlegkau1dQZ8VwpTamxae1f6JQwtiXxaLqsQCMSLbSx/CkpQwyr6aoqyh0kIjpogbPCA2rPW2ypDi9ABL7TSoo6h7z1glAJKlmU3JJKfncfwXGU/aSrXJhuQd3pZ+iV4DFaaynhpjMU7ezzmTFC6XUyYwL2zSUVB9LoFT59BZgViLfAGPrzZlderLs8gLS79Mj6z/DIx5gjSRkzI2l7K0lDBW2VuVzirnXJNYWaKaWK0HbVqvpXBIv0Wty4zJyD1k6RMZlBjsfB6YppHWezZdQ+sM3hkaoxVV1tB4KQ8Bw5Xav/McudpsmObA8TSwbxsOp+FXn8uvZBbLK4u3Dda3GNtgsoVspfnkPItgYDEMhuORh/fvOZ9O/PjnP/Hv//Q/eby/5/7nn/nx3/6N4XxW1rWTsuAVtqUiqjXCUcICKZNCYB4m5nYijJIhdBlMJ2QLUovWIZUqUlMVtJ/YOAhT3TwHpiQ9hFAFuDYyn5OBLEQPpdbKC1xGIQpFQBZcuRjLV+z30jzXW48zVgqUJ2ExHCfDeRiYS1RC5yx9Itr4ZYZGUVWQFi1YU/JF62UEhhSStMuIa2eRC5VZIvzPzfKVdFuixjUbly+PhaptVwG4j66tBghZjiuZTJlHyTyI0EsrZ3P5HBllQJVy6ZiS7C6XBJJVY0OXV7FkF81ynhrQKkyFQlLwxZz+Zw7h8/d+CYZaXntfBFLm9vYNf5hhGCfCbPnxhwfAEULGcBIlqiyTGZaaNGNpm5bddkvXNbx584Zvv/2Gtm15+/YtX331lqZp2G7FWbTW4hvp/7OavXpt6/GRj13WQonOrJzAJQponv28VLzLz+eO4vqYS8P7C+jAOqwpxrhZrZtFfsobWSKQSteSszqPVfYonKYEVEpmxhgpplcDvjDjFeKUUotTYEZ917DpW7xz7LYb9jtpW7Tfb9nvd+L0b3r6TurmGu+Wdhh1sy4BFHlMuTqPcvUS9Z+niVHZp9eENbX+exWwK9nEpMQ1MS5ZxjX0NMaVs8gqmlyDS5Kh/BJk/d1+L4+q7TDeMU0zVn0pyb43NM0GY6Xx/TRBShHo6r2aHCBPkBPRNnjTCqlDsuQgM+qU5S6r5W20Fvxy5GXvrLJBXduw3V0RY+Lp7j3OJFIK5DQL42W2OO/wuh6axtM0quOc01obI46jLSyLvgY5StDAWItvGqwXozRilbHQ4pwSWtVnLVni4+ksNVhJGbZzwpCwxYHMGZu0VYNtaF2D9V9yZ7KsYxX2VSuXZV5DvDpMPWL1JPRPH4VN12ORVfni1XOXUpzVcTrBNGAxHE6PmA/CGN/trui2VzRNy+PXA4evAtvNjt3umq+co2s811dbdo1lnmdsv6O7uuXx6cBPjwPfv38i5xHyRFQ0WoGl5kRFFVVToehTo4vcGCqI1hgps6HoY7NMXpTDpCbO/uKs/C1jDcX8WI+ssoiIo7NmwBdCF7EbKyPoytmSljcCFT0cjjw8PDJNEw8PD7x//4EQQiX9Ep4K6Uyz1GeLI+uc1b6+CwRS5LMEbcqeWnTRWuetbDVb2mQUeWyrTVd6ka7laggBO1t9HXE+6F7OmmFE2fEXXVqC9BKgsgpqyGgpI5etpl5ujJqkShZ8LugiSbwYI0kAUyhSS3/EYpemAv2VOvVU1mASAq9EJqt9WDLJ1iCIGVYB6mpjFnSMktrooxA0ltSUJxsJxpLMEogADQDUrIfqrJRJMQhhlxqtBjE/W2/pFGYf/KK3pAhPrNIQS6uOiHcwDAbvLG3jpFzHLD0pnYHGWyGhU/Ilay0xJrrGM8+RbduQ5sC2/fUg3GePqHUz80x6eiR/aKHb4P70r8RhgKaBvgfnCBmGLEQD93d3fP+nP3E+nfjpL3/h/v1PHJ+eOB0emaeBGCZSnJWhciE9KFKmbPSg7KUZuP9wx1/+/Ce2D/c8Ho48HU+4psF1DbZvyQbG4cwwnBmHgfc//MDh4Z7T4SRU4CkRV1GaZRhdFEtT6fLAjc3YScIcxooT4KNCtvqethGq+P3+ShzLtuX29pbtdqfOVtIUmKXtetpxIpNpu4agDJCFRjnExDjNygr40mPlXbEYclkNqY+Mj+rB5soWWiANBc6xhp5W5+Uj+f9pSfKRs7M6H7qB1wDEXB0Fs7ZLLx3A6twtDJFiUeu9qVDOz0KaBYpR4RdIEbW0WFg5op+8N7NycNdQhfzRPb7kqPWYv+E7ngdA1p/xTvDt1lpubq749tuv2e127LZb2q5n0iDIFKRQvOuFidh5x+3NFe/e3tC0DW/fvOHNm1tteL9j03c4Jbq5hC0uMNFFF66ujU/YXmZhpy2fu3DqfrOy+oQjaZ6/WKKq8tuXeYbPHeSSWVxf3zozcTEd1T9bZqVAg5fXS1TYrN+rWcUl4+idwysjpauRarcyQtSA0D1Y2naUNZ/SJT38ehSHrjqLK7KGAkP9lLOYq1OYquG3QFIX6GkJUgkDqikiS68F1SumIh5eehTorDTrTnW9LMEtiEnqz0pLmWI0FpmWwkyaz5XJO4agTZhLG4rFgSiy93NL/gImtrwr35WkYXqMQsU+jTPRWeIcmdWA9T5oBtGsyN2MOo1e5Kh16iyIkSVBD+nlVj6bTanRsdW5lKh61OuItc+xEDdE0ExFY7LE7qyh8VbqlQNM6Yx184s9vzo7z2VOXrGhrsIMEpxcZNV6rKXL+nj5W3Ea1wHIvPpkgRmuXq++wQARydUnpNWPSVEguvME40CMicPhia69Z5xGfr57z83VFV3TEHYb0qYXp8V5uu2eDZbrN+949/WB0zBwjoYhSKB1KtlfsxBNiTORhfzPKGKnFIsZMAqfq3e1XqQre6I0IDe/oUbqrx1xBWW/qN2r17HYMVVHr94T23P53DxPnM9nYggcD0eenp4Yx4nj8cj5fGaaZmmIXr4vRqK1UBiYYyGzKdD6rNMnUMl12w1B0yhuSx3GImNLVLxkJY3WQHvf4Jyv8ltq4BdiGmuMZgEvQvuSrUwSGDclAFmf20rTGmXKzpmcFjRJLg7cR/rzZcYwlbI2Q+MlUG2N2GMLuY7UOFstdajoHA0GxCyfr6Q4SQiXHFk+B0ruJf8ShgCYVJd0ma66ZzOQlQWW8n0lIFYytGYp0bDO1xI5ynfljMPSWH/h8xhjaL3HOycoyVAYd6WGM+nWC1oiFGNkmiLznCqzqxDLSfDPFdvLOWxh53YSXMgGXLCUPsveWxr/6/D+zzqLWiJJOh4J//Q/ST99z/SXvzD+/DP26prY9sTdnuQbDjHx8xwZUuL93R3/9uc/cTydeHx85Oeff2LUflLj+Syb6llkpzBBFclkMpzPAyHe4ZwnxP+Ln99/oGlbrq5vub59g2s8zaan2fZgYDidOJ+PzNPMD//+7/zwpz9r9OeRIQg2P1wIbFONael5EpZIkD7AKUxqPAm8yHmp7dlutux3e/rNht/9/jtu37zFNwIL6boNYZ54enjgfJJ+j8M0YRxSoEqS+h/n2Ww2eN8wjhMPj0+Mw/irD+2vHxpxAha8fjE6hfnTuRKZMlr4Y0hzIk5RmoLOubbNyGR1vJGfSeiMqwNlLg3iGkXTUR3MvDiKa3FmdAOW60kaXTYXjoMpepZcKUHk2aayuUuWRc8uuG2jMIFyLicxmyzRK5A6nZikwfCiyIsiXEdFi8O4Nk41IvkFncXfOp47ihUqpKPvO9699cSU6PsNb27fMk0zj09H7u4epQZjGjmPAzlnaVmz3eC94/pqz+3tlWSetlt2+4X0pOuaJVrqFKZW60eLQV2vslpVi5BeFGh5vwyVx8tnf9WhM89e54/evvjOj7zPl3+Oa4Pyl9RsMRjXpAblE0b3ly2wIcMKSmQreUFx+ow1OLtEriV71GCNlVZEXYdzVthN2w6vz9GrsiuOfs4C8QpzWK5TL62QeBUnqDgtceXgzZpNTM8cxFSdQn2/yKcS2skqkvT7Ykz6e9Z+USJBIlbhp5DS4jymSp//suN4OMm9x0AKEzZHDBZjBM4kFPujXFuYmOahOoslFDudDpyf3hPnSaK/SojgTaK1SdFWC7TJ1ca2lyuoBDiLDr10FIW8YQqR01maSXsGTBRY3AVfQD23BvBKnZlZ0S4VJ1Dlq1WH0XuHV5I55wQyqt9O1FZN4qzKWjgeDgzjWIOS5EzjLPuuoW2sEipt6NpGM80PlD63/5+Xfpir2frUe2Ylt2x9dekkln19uWefu+zrwFAxQlM9omQxoBDfLZ+QzrZgIrUtgg0Zexqx1jGcRj7c3dF1HcN44u5wx6bv+cPXv+N3X30ljkXXc7O7ph8n/jG3bN98y+FwxP+3/062/840C7TydDqTU0BokEJ16HPOYlwbq4yUFusbheRdytYL2VaWUlYN/QU6oIyj2E7rvtny3Xn5UR/LyllcHxMTcZ5JBo6HA+/fv2ccJz58uOP7v/zIMI6cTyeenp6EdXWcNDueSVHg8gajMmdVqqPnlybwhTm8MK+i5Igia61mGfWTCKugHO9cqS/vaZtOmcM3dNrj1mgJTbE/TAiKAgByIidDCoGwLlJbR+DX7yHOYtSMlLMW0zbSM9AYpFDnZR1FgLuDQCK71hOScJFYIzrMIGRYTVsC0Rbn1TEuOyULhHPGaWYxY4I8fO+hc7qHVUdiDbORz4Du8Rp8XYJ/YitLoEQIUuXc1npaXyzFXIMr1f5BkTwaeKtymuLcZrUvxS4NUQjd5mkUYpohMEyRlGCcEkGJb2IUWZo6uN4bnG/wjaPpO7q+kXZNzYKGLG2xbDDEHDE2EaJj0ztS+hszixU0Nk1MH94TD49wODKPI2a7JXQbpv0NsWm5nyN/GWeOMfLz/R3//Oc/cTifGIaBp+ORoI26K2acSwWXPpG+CXMgBHH1pxC4f3jCOcf+6prr6xuc93TbDe1eiAbOpxPn44EYAg8f7ni8uyPEyHkcmWPQ9tauRiKqsQ/VgMl5oSWGUjMhmzkExf9mMFi6rmO32/HNt7/j9999J9TJmz1N20ndpHXSd8cYNrst4zSAtfRDT85Z6sd2V7RtK/jjca6sXF9k5GVxLhDFZ9GkTC1IlwajiRSSUkGXRZ5ZHM586RiZ+p+Lc38MN/y09WbW/7vIhq0NfVPv5/I5rmLxxpQLqGct12c0MiYNSo3AqjGQrUShiuyshfiXysZcmA7LZQEK3fyymcX/yPgYnmqUxbQwOvbsd9cCV3s6cf/wxDwHhnGQIvyUhCFzL+Q1+6sdN1dXeO+kTUDXamT0WVSZzGKKPgcDLs/0uUtn9G+XQYf87NyX5/jN76/ChhdBit+epvybxuLrmueTtRqLwyWyctmvJci1/OPZ77a+XhzK8rtEF70aAN4LcY232t9P4apVEZsCN4USea9ECYV8IUsPx+dQ0pwFaRJVTswXxA2XDmLNJq5bElH24hLFrRnHKntUZOXaVesCevolYaiTok6U+hBIFapVjALJJmZiFNhn0lYXRrXrNA7CCD6N+Eap953DulwTN7IWpB6sGOSfWqsXxu/yLmUPxpiYZgn+DW6m1bUz58Rc9HCpj0GMFzFg5EyXck93qRogxkqfr7Ju2rbFu4YMTCkTssjFOQiMap5nDocD4yCZxfIgW++43fVsuoaua8FYYjKVTKRkj77EyJ94vXYGTZ1J89H7y4fy6v3ldfm5aJPiKK7PzLPjF5lptBOgwUjWOSUlosuQZzCWeY4cz2chCutasjNs+g2+aWk3W9q24/Z2x+7qBr+JfDWDbTc8Ph74/ucHfvrwhB8HxmFmNJP2JC6cChoY1vWVtF8x1kF2qkPRjONzvZtXa6hkFV9eP64zi0XOXNiUz5zF50Mc/QUyOk0jx8ORYRh4fHjk7u6u9iU+n09VVi39uhPEkoxYAtj1/IaKXhM9vHjMVgN6Rh0Yp/1Ec4UxqnPpJQDYti1d29VSKb+qRwcwWdpO5FU/xZIhEBb4SwRb/khulGsWY8hZYbPNyZGTrb0yv4TGPE+K2MjgfJA2OixMrD5ZyY55h80Zr3qt7CtZqygUHnWS1a5OGZfBGeGoSEvfl0XHQq1TlhLxkvGlzqWayTpHFu886zVdguVF/zqngdv6jBbbVvSXom1SAASiKqUaiWEYOZ1nbamRmOeyn2R9Oav9mTWT6BuHb9TBb5xmFDXLaAXW6rwhJ4v3gt74mzOLhcTE5IwLQrubx4F8eCKHmdgMnMdA8J5DSDxNgWNMnJ4emc9n4jiRFKJTLO0qPnN9qy7iRdhWlVgjmzFGwjyRomM8nzlbi/WOOYz4WSIRk0JQY4jM4yBFxRqprrUzqgJRKAfR1PqYWAyf1cZJRTWoQ2uzQLGIATPP2DngY8SnjAc672i6BmMy++triby2nuvDEyknmtNZMqZzwFuvDlzp8VMaKL/sWGCeoupSSlVwiSP8fKGslOGlhqNETgq74BqOeglnKHj6FTSCTxs5z4FVa+P2wlEzq8itDoG4CQOq6KhEKbBPCikxVXGhwrJ+kRjWVq9dlVxGneWKyc+sLqVMg9z70nxzMeq/jC78zeN5vSJ6XZfvQzVCMRiTEQSZoes927kjRk/TWprWkXOi6zo2W2mt0Hct3ttFIMqXPNMeVXw/+91c/F6vWx/w4vavAwSs1pa+8cykuzDcVu9/ZqbqISuVvvLfLo29lxpVuuXluay/ZQ3HvAyH/7ZhPvFT4Kem/iyRYqtN402pezEr6Orzr81lX1zStC9Q0lgzgmWfrZ3FqEbc+rPlfj/KMgJptXJKdlDOs8joUq8o+Ypc64Xr8cjfvkTs5v79HQAxhdos2zqL07qlZeUbQpgYx7OSRYnCBkMYDkxH0ZNtgIRG8DtHr+y1q5WhZ1s7Eaau+4v9Ut4tBo4yezfK1N11Hd2mk8+HQFACoTEmhqkEBQIpzRjUuDLl2w1JrcVkItlYrC1sqKLHcgjkxhMznELpgQnTLDCq0teuazwG6ZlqNfrdK6N413f0+1v6rfS5izGvmm6/7MgXwsVUg7GMdX30hVRY+yKrD3wknS4OXzuHRTcv+rQENlYx0QUmhzBE2tJQPgtiwyC1qClOhJA5nR65f+gYhp5d32HJtG3HMA6Mw5mUkYA2Ce8yu03D7X7D4A1hOJKmhhQNITtiFvlfNptB1lMS46HCkDUBtjKiyyo0yzxUh/e3PpnfPvJKntSeo8WmzCubUw6qOtvoxRa5V641hqjtCSR7OE8zQckMF+jqKoiS9Tx5vSzyhe4S/WLKMlOdaeo1Y41k/+oH5D4qtHElx5eSg3KP1P1OZiXLgapTtF2YS+VT9T/roH/WObLWEjFgEyZ7UhPl+rDkJM//pTVkCcLllHAGZs1kOs2QNo0nk3FRyiZSZnEWNbA4z4FxFIiwzEGuu85aQyw9iI3WqSbtw52zsIRqxldey/c6Y0iFibzKX+qiMkUK6x8KKkbuRYhsoDi9dhESRve1Eaiqc5a28Wz6lhAkMOqsJSZom8Qcylo2kIV3oG8drbfKqKp1iyskXkmjVJQd5Tj5535Dqv/zzqIynrkE3TiSJ4jTyHQ+Eb1lNJ73tuWE40NM/PucOOTMKcycxqGSyeScPmphkNXwqMZ7SceyWnq1p0RmnqS/CMYwDydOD3eyGbwD9YqT0oNLbcQCeQopMaNwKBQymSHMCRO0yWmU48omuRxaXhpls7VzwJxH3OGEdw3dNLENgabx7Lct3e2emDKb271Afw4Hmr7n/v17nh4eCbNEoEAKZsMUIEkDZfeR4/ZyQyLHqwaxZM3WrI0pc/GBQnIidNqlgJcqiEuWsgBoSk8jaa3QVly+1ZqV8vOi1pFLJ7J8Xi5hqSUlF+IKKAEIY4SQxmRx6LKxWJMWZzOXCNE6u5jVOaRGzLCQNcqUEJr/mOMqI1NmZ+XqlAxiXpzEAin4z3QWP5XFfA77XWcWF6dRzBAA5zJ9L8+mbXv2+04yIilVxjbnVjA56ytLmbWGyje5aB+9EPl9HYWsbSpWx5hnr8VYy6tzrA0O/apnTpb5xKuL33/hmayPfu4ofupsf/OohqOsn9IEvMIBU5Tmu3lpEVENz2LMrKKTF0Ga1T+r694iUVRnrEZBpUmxs1r7UmsVl8DOxZyUzI9NysomayeEWElqQgiEGC72QIGJRn2OiXVNYa4/L4kYitIudScyX7HIm1zqjRYjWs5piNnWlZars2ZqZvKlx//8v/5vAA7jzI+PR06T0Oa3XtgJvXe0nczzNE9Ktx9JWAKObAy9SexcxNlE3zi2mwnvDLfXPbtuRyESWTRjCXvq086LKW6NGPDL0tDspBNWza5v2e33xBC5vtry9mpLxnB/HBmOIzEk7sczPz+MhBiZzyfm8Ywls2sMG+2zGLBCJpQN52QYE3gDN21i7zOtM9zsPLveMyX4cM4cRggJTjNMATad47u3W97sNjSNY7/t6LsGbINpdmA7Nrsdb7/9Hbura4bDAzn/C3D/BZ7kSsRoAJFcUAxG7YHC6sGShcnq6uVFbhTD3X5ixanG1ddLgAssWcnY5CQFgJqrA5qyYVYH0WGE3A/wKeOysoASyXkkBMOPPw3cH37EO88P3/8rV7tburbj99/8nm/efUvTNNxevWG/u2LbZn73docNXzOcB7ZmZmsCYZ45HwPjIHJomGfmGMnGEK0jW0s2luxEhyaTSKl4iMWotnqHi9NckD0vPVJp4ZalnVmBxa9LnCrqpziUXAbSiq0CMJzOHJ4OnPTn8XhiHEbViUvQ3CgYs7gMZTzP1YlMvsxQyYGZnKKwSCdDtgkbF6VoTFaGa+3bqjBVp066LNHFKS1BV2sQMhgjtlsKGbIluiUEtXYPn9tl4qRakgsiW7zHW4RV1FmSabA4Xno8PZ0B8UMPB3V8VjDdrmvY7Tc1o9p3HdbZi5zTMEw8Hc/EEPHe0bVeaqAbzxyjnE8dM4BpmhjHkZQTfdcJ74IVp61tvB6vc25WYP0SeK3lNgvbbXUWU9b2gtLj1ml5h0H6HFvdI6J/RV9c7bf0XUNMiespMgfRiXMoay8LoCVlGu+42Xdseofzjs6D1+SJVVmkHUNK7EJrLC2Ndfrvb3QWFwMt44L2ZAozZhzAQkiGU3I8YXmMmYeQeMowkZkMBINGn0wVhNVZRAyQdZHnR19dDXA0aq3p6QkmPSxBjcIYxL8skSIx/BViWo6lwDBZRaIgqHGy3PVq6DW4XGjJI8wBM83YacaHSJsTDRIp7fuWZAze7IgY2k3P6XjSLJZjs93RtQdSjIQw18zic3bWlx9LdKnM3tr4uoxiU59LgZ+Wx3ThMJKfCUURV7KBXHX6nsNRn2e+6qcvsooaPVms6+W7VheSNIojmcEk0SJrJVpUnKMl7oNyM8hr7bUjQZpVDiyVSFsWwZieC/jlX9Y5Wt/X/w7jY+jpp0aJdqFF9ZZGSdthtVfrSfU/areuVeP6OS0e9RLVk2taDKqVZ7Z+uTg8F0sjrz986V1+tP5+4fXqmp6/Jdfw/Dxf+FkWA6b6sitYZyEheBZUkesse+lyTX7sMK6yhOusorEXjqHTrE5tuFz/xwqFnSkwyFyM07gwms5ByGvWclxgqKt6w5Vzuz5mgbIWYgqFpKqPWrKJ1Vmsn12yjzmbFZvsQrxxWSP2suPDTz8DcH8a+ZcPB56GGWcsvVNHvHVstx3eW8Zp5ng8CxQXy6wMd1ed5audp/OW0Aq1v3eGbe+r0a13C9XELnf1cXjEmEtDvD57C8572q4l+ki/2bDZ7sjAcTaYAXIKnMPEw5CZ58R4nJlOA45M6AyxFZ06Y8VhTIanGU5RSGlyF8k+0XpDi8MnyxgNhwPcD2IvHWYYg+F62/KHN1s2rafrGm6vtmw3Lcm2zHZPMh39/ortzVdsr28wxnHofmQ6Hb7Q0yzzhYqasilV7jyXn9WgLr/r2jNL1aG5PJTVofXnctYib0qwY/UalLnbLN8jX4XNAqsD0UExZKKBOY1wBmMdx6cn+vZnurYnTCPzOLDtt3TOcbPf0rjM1aYl3uwYGsf5sWc+tcwOmD0ET6iZl1S5ALKRRueptKgqervIaX0tmc+1TPoyNk51cpQ4sdT5ruHxEvhWuyGVNgim9uszq2c9zzPjKE7ENEpmsWa9VnJZwtVLicRH8uZyq7JM0bICambRmFpvXTKQwsGnLP/WXGQXbZH/F9mtXKdfavmKcywIrBQd0cSPAsoliXDhMJIEpaXooRgD0RqMcQJJtS9ftTgWeH+lqEFRB6Kv5thinKGNDU0TQQnbBDUn93IaRg7HEyFEutaTkVr8pAE0p9dd5OkwLOU280aYcZ1ztUZa9GTCr9qLWH1Gzhtwuq7Lmme1HvOyJgGashOMEWZ0Vxx8vSYHfdvQeEvKmb6NFU0TY64lYVHLw5y1bHsv/ZKdwVtxEo2uzJJUobzW+aTo/RIg+RXb9VdgqLrwVuewRQ6oBCvkBQVulNT4qY4Fi5K/uJRPwEnW5ll+tsE+N1a2X/29RFeNMTTOsXGObA2+6XCN9I+S/jciSKZQvPdMClEw3VXgiencGWgN7KxjG2Y2pzO99zT3d9ift9j9DnezpekcyTlM2xNdwxgCaRiYjiem05nxdOZ8PAuFeJBeUzKH8YsQo1wam2WhQiFrqY7Z2iApxtZzH/5ChxZIiRpk5pfVwDpa9Ytj9eEFnnfpaBpd1EWUrVyP+n6mCPPnp7/0DhbnV45NUR3PEhTQ6LI06TUrXb5ohbzW+MV55Pli/88bn8soro+R9xMfE/aA3IHWSuTFXRR5U2SCYT2Z1dEyqx/1tYGVw3ixTtZKFC7m9qP3yjvrZ/g8S7l848dfkD/+vBxSgV8X7/2nOIzluj4n6y4u45cOLHdw+fcKRSqv1QApv1ejY8XMJzapwtXRVjApk0xpRbMYF4XYZo1YKBn3zBomSm2qfHHr+RnZTTlX0SuFUEtbZ6DOYg1eqVosK1bOr2u3yrVPPPMXGPtdD8AQxRCYxlmMEJ8lCu2lJrTrGjKGcQpkY7VmT9AL+9bRtS2b1tG6jDMlEqzzmJJkcEAz0M8l3zKqnWuevy/PWK6lJcXEZiOQ8oxhM2e2AewU6DeBppvBGuLoiFaqKxtv6ZoSPW+krirBQMTmpLCn0paldOKV6H3jLV1nMSFjghrxhgqN9Y2j61o2m55kWrzbEG1H13dLD1YndZCp71/+QVIM7UVHGH17XeO9HPkJmWDWZ5FjNNmz+pZLQH6++Fv5bK4nK86nrPXLvVNgs8mycnpEDpvVtZicmVPAxpk8Gx6PjzRNw7E70nSN9G9NmfMwkoiYBm7e3uBaR5gD1097zucT0zTz4eGew+kkWcaYmIRdqupbUoIYMcpsW5AhBdK+mFN/hXH3V4wasE2LU1gdRFYoqZKEUL1fWioUxEtBMklP1KB9YAtpnQbMyiJ5puo/iimgNnPpjVoSJ2rLXNaZ25Wqu8z9SXIqMs1BWS5nJTMT1uFSp44pDiLVhlErXK4lmtqPsijpRb08azlSlqJG6FKKxBAJ+jyTS2QTeXbLf/M4nSUVVKGUBmk6r9k4sFjjKKRbiy4ScpicMvM0M8+BMEsWsUuJZKR3fJgtyaZi/JEzTFMkhIJuScyzEMrIPAiLrzOmZhaFRVxbeRjtp2jAJs32qoNYCQX1Oaj1RMzynGJOuFQcbkWN5DUTuDjAKa1sW/H2tBYxa9AXaYOCJoPK95uMUeI3cpIkSkzS2z4KA3dKgRx/vRb8t7XOgJpoz9ngNIpLNoQIc5LMXNCf0UC0cuvVgWQxHnKZl488yGfjuUR99qfV9C4Lv2y2YhFZw2a/Zbvf4pqG6zfvuHrzBjBC5a4Y9NPxxPksBfSn44nxLHWQVqn/HXCVEpuU2QBfn868O43sTic2bYN/eqC9vqK3M5v5SO460u078m5PGI7M9/c8/fQzjx/uuPvxZz789DMxJeYwEWKU63Z8CRm6GiVFbpfolmFh3solMLBOSVcPaCVUlnku2blqjD5rw7F2Dj8FP/3EJbLOsKxhIRcZx7QINllXBaBaapUyCb/y7xReVGA96umllMgarYllY+ZMJBKz1HZma8hW79W6paWGpjKqw7halM8hKF9yfMohLO8///tlptHUzO0CSy3EJbEqwiKmcoG8GZA15Fbftfq5ts3ra3NxfZfO4keu2uW9PH994WD+2oZ57o1+6ohLk+6zB7/IEGPDLBYpvyTo1jNT9qu8Xu+zy+yirSp1iUJLbeL6tVXlZxcYqlkyiyRpc5BtxjtHdLEaIWLAZm1/EUg5EfV1df6iktSYAg1Vx67s35UcuIChRlWUIM2H1agLcQXJzSXWaMBYhZxCVvIyyYAmCtGE1CS/PLz/j79/A0AA4j//wNPjEeccY+OF3Kz19Jteelc2EyFZ7ByYThOn4cQ4R253HdfXe252HYSRPJ8wwiwmc+rkHk1xGjMsTsNigGAKxHwxykHXiTaQ3mx6bm6uIGfevLnm7ZsrWTttj+sGzlPkYXZ8mAzTOMN0Jg8OZzLbzrHfSt/F2PRE3zHHzPQ4MOSRxmSaxtD4ROPBWyPGhbXsthtMbjlPkaf5RByFbM61jm7TyHXdXnN7tSfZhtlfE22PbzslzhJm1OurPRv78q2lFmqMy5BLYRheBz/Mc8lulidRnLTMpUy5/EQ5y+VJ8oXcWWTyEhRZnMVUnA9EZ5WvsjZXGZHN8qkcRqYYsdYyhoGf7n6kaRp++PBnbq9vaHzLzfUb9rtrml3D33/7X9hudqQYOR2PjOeBw+HIf/8f/4O/fP8Dwzjx/u6eYRQ24BxdjVTYkFaOYr7QC2vT7EsE4VIQqRDVqSms9jWzuHYWWfZINsJbYTAsNkriPAwMw8h5GJnmoLZBeUb63OpjLs9q6bFcD9W2BcYgP0ufRSUdkWCItDgQnbywqYu5kslJMm4hisEfUmaOCWcd/copt9mtnMVVO7iyivReg9pphYCl6GezsqNLeVItW0qZkYEwO2LTSJYtvzzHxvu7IyCtc7xyIvSd9nl3DozDOemvbo0hBglkSp3iREyJ03nkeBDYf86JtnVkHFEJ2gyGFBNxVodMG91nwOSAYVLoq9EetEugwxjDpu/YbHqRTWo7luxd2bdhDpU53DqrfZEN3kltu8HUTLHs1cLtcqn3lzVW5LlIl8ZT6xO9A2sTGA3eRr3gpMcbIxwiet/zKM7iNE6EaSDME782fpUv1Vz8U+pmNJtUgklpgRtJD1fzcYYxL68/wmWwdkSejZyrgfFL5luZ3iqozbKJjTE0bUO73eC7ljfv3vDmm28xxkjh8jgRQ6RtH2nagzzcnKXvE2hDS0MD7EJklzKbmNhNE9s5sEmR5u4DjoidB/z9W/xVD2FL3u6g7/FhJp3PTMcT4/HEcDxxPgrZwRgm6cVlwHqDdb90l3/bWCATC6ba2rUDlqtzcHkFi8KinKEI2axroXgE1Tm5tO/L9/+qo7h8ZXVqnv9bLkNXpSrL6qdlVal5uedcL0quv9SB1Kyiktkko73cTKlsLdFhqXe1xgpDXEJ28NpJXGmI/xVQ1F+DL3/Oocy56no9hosa4vXNiTDV9WKeZyz1J5fP/5NOIpcHXTiKPH/Oq9ef8P1+ebZ/fS89P2K51lzlyssbNuZyfzxPQcDFmjLPLvQjGGqd90VOVhgpyzFrgGlBBawdyYoUoOwLdfgKrMsWSBMa8SykNpmUl9cxxqp4S5sFySouhvLzmkU5x0Jes87uS8Q4ahBjFXAEjWtldUq11iuXIEiZy0LV/7Ky9UpZuDf9gZSE7txauU7nEjFlvBdWz5jANzMxWzCRKWSGKZIx9F3HdtMTx8QcxDlZZxYLGcx6vRuer1MZi1GzfkOCed57+r7DZNhserZbuf4hGKZosD7Sb0baTtp9eO3V5Uyi8Y6uEWcxdS2p7bEh4c8BZ2ftg5b1+FIvK8ZM6z3JtESCEKMgzoz0BBM2x74T4yvZFt9sSLbH+hbvlWjCOdquxaXNYj+80FicxGW/wHoOxaFY0rYfPYxnL4st8onAU/74VznELH/My/a/0L1Vf6kBWYL2Vr/RLM+/XlPOpByAhImGaR55ArzzTPPA4fRI3/W4xrPZbWmbltt3t3z91TeScTydmIZRms/f3/F4eBIn58GQSxuYvFy3iQmrBp9RuXZBFFQdxZe3c6qNkZbWApcIiAV6KtdiVnpRrkscB2XFnwVtJkGxEpxernv9XEqAegEhX96zKU7Z2p6xq+yitZopYyW79Ex67qBs0oXZ0lhLcgkfG3wh8jOm2stCAra2u3K9x3V95sevkWspZro6nIlICNJ+ywIxtsQ1IuWFxnkQGKq1IjucZtCStg0yWm9n63wpA24UhzGEqJBhed20TtF7hhxz7TgQ50SYYoWaFrkSnJzHWksIMBswZpk/0ZUW51shBbQJWwiD0rIGpxVs2Teu8j3ElLFpNdfoqsoLNqaSza0EujGl3lWyks4ZYYI1yjNUgjM5CpH/yhDPxkASfZNiIoZZMothJsWw7OXPjF+BofIf2NdrofcJI+ijU5bfPmOU1UPMJw75MoLnf9X4lEH/Amf9xHsvZAT/Ry91pXf/psd38dnfcLIXXyqfmcP/fJ8RuHTO/ibHdf2M4D8gBz719vLQPzri1xze9aWtPCg5Y/7UGX/9ei6OeKbkf/UT/8Fhnq3Ul5jX/4zxfD38Lx2f2Ouf2f6/oIr+tlEdiNfxnzVk27/sk7ywc15c967GL63P/x3Nl5e8pk/q+S9h57yO/38aZmUDvI5Pj5f0jsz/ToQcr+N1vI7X8Tpex+t4Ha/jdbyO1/E6/vcYX65Pw+t4Ha/jdbyO1/E6XsfreB2v43W8jv+fHa/O4ut4Ha/jdbyO1/E6XsfreB2v43W8jo/Gq7P4Ol7H63gdr+N1vI7X8Tpex+t4Ha/jo/HqLL6O1/E6XsfreB2v43W8jtfxOl7H6/hovDqLr+N1vI7X8Tpex+t4Ha/jdbyO1/E6PhqvzuLreB2v43W8jtfxOl7H63gdr+N1vI6Pxv8XiN98H5ZhxwkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "train_set, val_set, calib_set, test_set, label_names = load_data()\n",
+ "(X_train, y_train, y_train_cat) = train_set \n",
+ "(X_val, y_val, y_val_cat) = val_set \n",
+ "(X_calib, y_calib, y_calib_cat) = calib_set \n",
+ "(X_test, y_test, y_test_cat) = test_set \n",
+ "inspect_images(X=X_train, y=y_train, num_images=8, label_names=label_names)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 2. Definition and training of the the neural network"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We define a simple convolutional neural network with the following architecture : \n",
+ "\n",
+ "> - 2 blocks of Convolution/Maxpooling\n",
+ "> - Flatten the images\n",
+ "> - 3 Dense layers\n",
+ "> - The output layer with 10 neurons, corresponding to our 10 classes\n",
+ "\n",
+ "This simple architecture, based on the VGG16 architecture with its succession of convolutions and maxpooling aims at achieve a reasonable accuracy score and a fast training. The objective here is not to obtain a perfect classifier.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_model(\n",
+ " input_shape: Tuple, loss: tfk.losses,\n",
+ " optimizer: tfk.optimizers, metrics: List[str]\n",
+ ") -> Sequential:\n",
+ " \"\"\"\n",
+ " Compile CNN model.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " input_shape: Tuple\n",
+ " Size of th input images.\n",
+ " \n",
+ " loss: tfk.losses\n",
+ " Loss to use to train the model.\n",
+ " \n",
+ " optimizer: tfk.optimizer\n",
+ " Optimizer to use to train the model.\n",
+ " \n",
+ " metrics: List[str]\n",
+ " Metrics to use evaluate model training.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " Sequential\n",
+ " \"\"\"\n",
+ " model = Sequential([\n",
+ " Conv2D(input_shape=input_shape, filters=16, kernel_size=(3, 3), activation='relu', padding='same'),\n",
+ " MaxPooling2D(pool_size=(2, 2)),\n",
+ " Conv2D(input_shape=input_shape, filters=32, kernel_size=(3, 3), activation='relu', padding='same'),\n",
+ " MaxPooling2D(pool_size=(2, 2)),\n",
+ " Conv2D(input_shape=input_shape, filters=64, kernel_size=(3, 3), activation='relu', padding='same'),\n",
+ " MaxPooling2D(pool_size=(2, 2)),\n",
+ " Flatten(),\n",
+ " Dense(128, activation='relu'),\n",
+ " Dense(64, activation='relu'),\n",
+ " Dense(32, activation='relu'),\n",
+ " Dense(10, activation='softmax'),\n",
+ " ])\n",
+ " model.compile(loss=loss, optimizer=optimizer, metrics=metrics)\n",
+ " return model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 3. Training the algorithm with a custom class called `TensorflowToMapie`\n",
+ "\n",
+ "As MAPIE asked that the model has a `fit`, `predict_proba`, `predict` class attributes and that the information about if whether or not the model is fitted."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class TensorflowToMapie():\n",
+ " \"\"\"\n",
+ " Class that aimes to make compatible a tensorflow model\n",
+ " with MAPIE. To do so, this class create fit, predict,\n",
+ " predict_proba and _sklearn_is_fitted_ attributes to the model.\n",
+ " \n",
+ " \"\"\"\n",
+ "\n",
+ " def __init__(self) -> None:\n",
+ " self.pred_proba = None\n",
+ " self.trained_ = False\n",
+ " \n",
+ "\n",
+ " def fit(\n",
+ " self, model: Sequential,\n",
+ " X_train: np.ndarray, y_train: np.ndarray,\n",
+ " X_val: np.ndarray, y_val: np.ndarray\n",
+ " ) -> None:\n",
+ " \"\"\"\n",
+ " Train the keras model.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " model: Sequential\n",
+ " Model to train.\n",
+ " \n",
+ " X_train: np.ndarray of shape (n_sample_train, width, height, n_channels)\n",
+ " Training images.\n",
+ " \n",
+ " y_train: np.ndarray of shape (n_samples_train, n_labels)\n",
+ " Training labels.\n",
+ " \n",
+ " X_val: np.ndarray of shape (n_sample_val, width, height, n_channels)\n",
+ " Validation images.\n",
+ " \n",
+ " y_val: np.ndarray of shape (n_samples_val, n_labels)\n",
+ " Validation labels.\n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " early_stopping_monitor = EarlyStopping(\n",
+ " monitor='val_loss',\n",
+ " min_delta=0,\n",
+ " patience=10,\n",
+ " verbose=0,\n",
+ " mode='auto',\n",
+ " baseline=None,\n",
+ " restore_best_weights=True\n",
+ " )\n",
+ " model.fit(\n",
+ " X_train, y_train, \n",
+ " batch_size=64, \n",
+ " validation_data=(X_val, y_val), \n",
+ " epochs=20, callbacks=[early_stopping_monitor]\n",
+ " )\n",
+ " \n",
+ " self.model = model\n",
+ " self.trained_ = True\n",
+ " self.classes_ = np.arange(model.layers[-1].units)\n",
+ "\n",
+ " def predict_proba(self, X: np.ndarray) -> np.ndarray:\n",
+ " \"\"\"\n",
+ " Returns the predicted probabilities of the images in X.\n",
+ " \n",
+ " Paramters:\n",
+ " X: np.ndarray of shape (n_sample, width, height, n_channels)\n",
+ " Images to predict.\n",
+ " \n",
+ " Returns:\n",
+ " np.ndarray of shape (n_samples, n_labels)\n",
+ " \"\"\"\n",
+ " preds = self.model.predict(X)\n",
+ " \n",
+ " return preds\n",
+ "\n",
+ " def predict(self, X: np.ndarray) -> np.ndarray:\n",
+ " \"\"\"\n",
+ " Give the label with the maximum softmax for each image.\n",
+ " \n",
+ " Parameters\n",
+ " ---------\n",
+ " X: np.ndarray of shape (n_sample, width, height, n_channels)\n",
+ " Images to predict\n",
+ " \n",
+ " Returns:\n",
+ " --------\n",
+ " np.ndarray of shape (n_samples, 1)\n",
+ " \"\"\"\n",
+ " pred_proba = self.predict_proba(X)\n",
+ " pred = (pred_proba == pred_proba.max(axis=1)[:, None]).astype(int)\n",
+ " return pred\n",
+ "\n",
+ " def __sklearn_is_fitted__(self):\n",
+ " if self.trained_:\n",
+ " return True\n",
+ " else:\n",
+ " return False"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "model = get_model(\n",
+ " input_shape=(32, 32, 3), \n",
+ " loss=CategoricalCrossentropy(), \n",
+ " optimizer=Adam(), \n",
+ " metrics=['accuracy']\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/20\n",
+ "472/472 [==============================] - 8s 16ms/step - loss: 1.7729 - accuracy: 0.3378 - val_loss: 1.4636 - val_accuracy: 0.4679\n",
+ "Epoch 2/20\n",
+ "472/472 [==============================] - 8s 18ms/step - loss: 1.3754 - accuracy: 0.4993 - val_loss: 1.3896 - val_accuracy: 0.4878\n",
+ "Epoch 3/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 1.2145 - accuracy: 0.5613 - val_loss: 1.1549 - val_accuracy: 0.5871\n",
+ "Epoch 4/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 1.0864 - accuracy: 0.6109 - val_loss: 1.1769 - val_accuracy: 0.5817\n",
+ "Epoch 5/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 0.9877 - accuracy: 0.6503 - val_loss: 0.9957 - val_accuracy: 0.6426\n",
+ "Epoch 6/20\n",
+ "472/472 [==============================] - 8s 17ms/step - loss: 0.9053 - accuracy: 0.6803 - val_loss: 1.0178 - val_accuracy: 0.6351\n",
+ "Epoch 7/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 0.8449 - accuracy: 0.7018 - val_loss: 0.9952 - val_accuracy: 0.6492\n",
+ "Epoch 8/20\n",
+ "472/472 [==============================] - 8s 18ms/step - loss: 0.7862 - accuracy: 0.7238 - val_loss: 0.9597 - val_accuracy: 0.6688\n",
+ "Epoch 9/20\n",
+ "472/472 [==============================] - 7s 16ms/step - loss: 0.7236 - accuracy: 0.7455 - val_loss: 0.9579 - val_accuracy: 0.6735\n",
+ "Epoch 10/20\n",
+ "472/472 [==============================] - 7s 16ms/step - loss: 0.6804 - accuracy: 0.7584 - val_loss: 0.9675 - val_accuracy: 0.6723\n",
+ "Epoch 11/20\n",
+ "472/472 [==============================] - 7s 16ms/step - loss: 0.6252 - accuracy: 0.7785 - val_loss: 0.8971 - val_accuracy: 0.6953\n",
+ "Epoch 12/20\n",
+ "472/472 [==============================] - 8s 16ms/step - loss: 0.5915 - accuracy: 0.7908 - val_loss: 0.9165 - val_accuracy: 0.6943\n",
+ "Epoch 13/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 0.5583 - accuracy: 0.8027 - val_loss: 0.9639 - val_accuracy: 0.6860\n",
+ "Epoch 14/20\n",
+ "472/472 [==============================] - 7s 15ms/step - loss: 0.5011 - accuracy: 0.8232 - val_loss: 1.0147 - val_accuracy: 0.6776\n",
+ "Epoch 15/20\n",
+ "472/472 [==============================] - 8s 16ms/step - loss: 0.4598 - accuracy: 0.8374 - val_loss: 1.0047 - val_accuracy: 0.6806\n",
+ "Epoch 16/20\n",
+ "472/472 [==============================] - 9s 18ms/step - loss: 0.4375 - accuracy: 0.8456 - val_loss: 1.0378 - val_accuracy: 0.6873\n",
+ "Epoch 17/20\n",
+ "472/472 [==============================] - 9s 19ms/step - loss: 0.3866 - accuracy: 0.8630 - val_loss: 1.1904 - val_accuracy: 0.6570\n",
+ "Epoch 18/20\n",
+ "472/472 [==============================] - 9s 20ms/step - loss: 0.3645 - accuracy: 0.8717 - val_loss: 1.1796 - val_accuracy: 0.6805\n",
+ "Epoch 19/20\n",
+ "472/472 [==============================] - 8s 17ms/step - loss: 0.3387 - accuracy: 0.8823 - val_loss: 1.2754 - val_accuracy: 0.6659\n",
+ "Epoch 20/20\n",
+ "472/472 [==============================] - 8s 16ms/step - loss: 0.2919 - accuracy: 0.8975 - val_loss: 1.2481 - val_accuracy: 0.6815\n"
+ ]
+ }
+ ],
+ "source": [
+ "cirfar10_model = TensorflowToMapie()\n",
+ "cirfar10_model.fit(model, X_train, y_train_cat, X_val, y_val_cat)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "y_true = label_binarize(y=y_test, classes=np.arange(max(y_test)+1))\n",
+ "y_pred_proba = cirfar10_model.predict_proba(X_test)\n",
+ "y_pred = cirfar10_model.predict(X_test)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 4. Prediction of the prediction sets"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will now estimate the prediction sets with the five conformal methods implemented in :class:`mapie.classification.MapieClassifier` for a range of confidence levels between 0 and 1. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "method_params = {\n",
+ " \"naive\": (\"naive\", False),\n",
+ " \"score\": (\"score\", False),\n",
+ " \"cumulated_score\": (\"cumulated_score\", True),\n",
+ " \"random_cumulated_score\": (\"cumulated_score\", \"randomized\"),\n",
+ " \"top_k\": (\"top_k\", False)\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "y_preds, y_pss = {}, {}\n",
+ "alphas = np.arange(0.01, 1, 0.01)\n",
+ "\n",
+ "for name, (method, include_last_label) in method_params.items():\n",
+ " mapie = MapieClassifier(estimator=cirfar10_model, method=method, cv=\"prefit\", random_state=42) \n",
+ " mapie.fit(X_calib, y_calib, image_input=True)\n",
+ " y_preds[name], y_pss[name] = mapie.predict(X_test, alpha=alphas, include_last_label=include_last_label)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's now estimate the number of null prediction sets, marginal coverages, and averaged prediction set sizes obtained with the different methods for all confidence levels and for a confidence level of 90 \\%."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def count_null_set(y: np.ndarray) -> int:\n",
+ " \"\"\"\n",
+ " Count the number of empty prediction sets.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " y: np.ndarray of shape (n_sample, )\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " int\n",
+ " \"\"\"\n",
+ " count = 0\n",
+ " for pred in y[:, :]:\n",
+ " if np.sum(pred) == 0:\n",
+ " count += 1\n",
+ " return count\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "nulls, coverages, accuracies, sizes = {}, {}, {}, {}\n",
+ "for name, (method, include_last_label) in method_params.items():\n",
+ " accuracies[name] = accuracy_score(y_true, y_preds[name])\n",
+ " nulls[name] = [\n",
+ " count_null_set(y_pss[name][:, :, i]) for i, _ in enumerate(alphas)\n",
+ " ]\n",
+ " coverages[name] = [\n",
+ " classification_coverage_score(\n",
+ " y_test, y_pss[name][:, :, i]\n",
+ " ) for i, _ in enumerate(alphas)\n",
+ " ]\n",
+ " sizes[name] = [\n",
+ " y_pss[name][:, :, i].sum(axis=1).mean() for i, _ in enumerate(alphas)\n",
+ " ]\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "coverage_90 = {method: coverage[9] for method, coverage in coverages.items()}\n",
+ "null_90 = {method: null[9] for method, null in nulls.items()}\n",
+ "width_90 = {method: width[9] for method, width in sizes.items()}\n",
+ "y_ps_90 = {method: y_ps[:, :, 9] for method, y_ps in y_pss.items()}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's now look at the marginal coverages, number of null prediction sets, and the averaged size of prediction sets for a confidence level of 90 \\%. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "summary_df = pd.concat(\n",
+ " [\n",
+ " pd.Series(coverage_90),\n",
+ " pd.Series(null_90),\n",
+ " pd.Series(width_90)\n",
+ " ],\n",
+ " axis=1,\n",
+ " keys=[\"Coverages\", \"Number of null sets\", \"Average prediction set sizes\"]\n",
+ ").round(3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Coverages | \n",
+ " Number of null sets | \n",
+ " Average prediction set sizes | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " naive | \n",
+ " 0.732 | \n",
+ " 0 | \n",
+ " 1.258 | \n",
+ "
\n",
+ " \n",
+ " score | \n",
+ " 0.912 | \n",
+ " 0 | \n",
+ " 2.356 | \n",
+ "
\n",
+ " \n",
+ " cumulated_score | \n",
+ " 0.928 | \n",
+ " 0 | \n",
+ " 2.701 | \n",
+ "
\n",
+ " \n",
+ " random_cumulated_score | \n",
+ " 0.908 | \n",
+ " 21 | \n",
+ " 2.463 | \n",
+ "
\n",
+ " \n",
+ " top_k | \n",
+ " 0.910 | \n",
+ " 0 | \n",
+ " 3.000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Coverages Number of null sets \\\n",
+ "naive 0.732 0 \n",
+ "score 0.912 0 \n",
+ "cumulated_score 0.928 0 \n",
+ "random_cumulated_score 0.908 21 \n",
+ "top_k 0.910 0 \n",
+ "\n",
+ " Average prediction set sizes \n",
+ "naive 1.258 \n",
+ "score 2.356 \n",
+ "cumulated_score 2.701 \n",
+ "random_cumulated_score 2.463 \n",
+ "top_k 3.000 "
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "summary_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As expected, the \"naive\" method, which directly uses the alpha value as a threshold for selecting the prediction sets, does not give guarantees on the marginal coverage since this method is not calibrated. Other methods give a marginal coverage close to the desired one, i.e. 90\\%. Notice that the \"cumulated_score\" method, which always includes the last label whose cumulated score is above the given quantile, tends to give slightly higher marginal coverages since the prediction sets are slightly too big."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 6. Visualization of the prediction sets"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def prepare_plot(y_methods: Dict[str, Tuple], n_images: int) -> np.ndarray:\n",
+ " \"\"\"\n",
+ " Prepare the number and the disposition of the plots according to\n",
+ " the number of images.\n",
+ " \n",
+ " Paramters:\n",
+ " y_methods: Dict[str, Tuple]\n",
+ " Methods we want to compare.\n",
+ " \n",
+ " n_images: int\n",
+ " Number of images to plot.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " np.ndarray\n",
+ " \"\"\"\n",
+ " plt.rcParams.update({'font.size': FONT_SIZE})\n",
+ " nrow = len(y_methods.keys())\n",
+ " ncol = n_images\n",
+ " s = 5\n",
+ " f, ax = plt.subplots(ncol, nrow, figsize=(s*nrow, s*ncol))\n",
+ " f.tight_layout(pad=SPACE_IN_SUBPLOTS)\n",
+ " rows = [i for i in y_methods.keys()]\n",
+ " \n",
+ " for x, row in zip(ax[:,0], rows):\n",
+ " x.set_ylabel(row, rotation=90, size='large')\n",
+ "\n",
+ " return ax\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_position(y_set: List, label: str, count: int, count_true: int) -> float:\n",
+ " \"\"\"\n",
+ " Return the position of each label according to the number of labels to plot.\n",
+ " \n",
+ " Paramters\n",
+ " ---------\n",
+ " y_set: List\n",
+ " Set of predicted labels for one image.\n",
+ " \n",
+ " label: str\n",
+ " Indice of the true label.\n",
+ " \n",
+ " count: int\n",
+ " Index of the label.\n",
+ " \n",
+ " count_true: int\n",
+ " Total number of labels in the prediction set.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " float\n",
+ " \"\"\"\n",
+ " if y_set[label] :\n",
+ " position = - (count_true - count)*SPACE_BETWEEN_LABELS\n",
+ "\n",
+ " else:\n",
+ " position = - (count_true + 2 - count)*SPACE_BETWEEN_LABELS\n",
+ "\n",
+ " return position\n",
+ "\n",
+ "\n",
+ "def add_text(\n",
+ " ax: np.ndarray, indices: Tuple, position: float,\n",
+ " label_name: str, proba: float, color: str, missing: bool = False\n",
+ ") -> None:\n",
+ " \"\"\"\n",
+ " Add the text to the corresponding image.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " ax: np.ndarray\n",
+ " Matrix of the images to plot.\n",
+ " \n",
+ " indices: Tuple\n",
+ " Tuple indicating the indices of the image to put\n",
+ " the text on.\n",
+ " \n",
+ " position: float\n",
+ " Position of the text on the image.\n",
+ " \n",
+ " label_name: str\n",
+ " Name of the label to plot.\n",
+ " \n",
+ " proba: float\n",
+ " Proba associated to this label.\n",
+ " \n",
+ " color: str\n",
+ " Color of the text.\n",
+ " \n",
+ " missing: bool\n",
+ " Whether or not the true label is missing in the\n",
+ " prediction set.\n",
+ " \n",
+ " By default False.\n",
+ " \n",
+ " \"\"\"\n",
+ " if not missing :\n",
+ " text = f\"{label_name} : {proba:.4f}\"\n",
+ " else:\n",
+ " text = f\"True label : {label_name} ({proba:.4f})\"\n",
+ " i, j = indices\n",
+ " ax[i, j].text(\n",
+ " 15,\n",
+ " position,\n",
+ " text, \n",
+ " ha=\"center\", va=\"top\", \n",
+ " color=color,\n",
+ " font=\"courier new\"\n",
+ " )\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_prediction_sets(\n",
+ " X: np.ndarray, y: np.ndarray,\n",
+ " y_pred_proba: np.ndarray,\n",
+ " y_methods: Dict[str, np.ndarray],\n",
+ " n_images: int, label_names: Dict,\n",
+ " random_state: Union[int, None] = None\n",
+ ") -> None:\n",
+ " \"\"\"\n",
+ " Plot random images with their associated prediction\n",
+ " set for all the required methods.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " X: np.ndarray of shape (n_sample, width, height, n_channels)\n",
+ " Array containing images.\n",
+ " \n",
+ " y: np.ndarray of shape (n_samples, )\n",
+ " Labels of the images.\n",
+ " \n",
+ " y_pred_proba: np.ndarray of shape (n_samples, n_labels)\n",
+ " Softmax output of the model.\n",
+ " \n",
+ " y_methods: Dict[str, np.ndarray]\n",
+ " Outputs of the MapieClassifier with the different\n",
+ " choosen methods.\n",
+ " \n",
+ " n_images: int\n",
+ " Number of images to plot\n",
+ " \n",
+ " random_state: Union[int, None]\n",
+ " Random state to use to choose the images.\n",
+ " \n",
+ " By default None.\n",
+ " \"\"\"\n",
+ " random.seed(random_state)\n",
+ " indices = random.sample(range(len(X)), n_images)\n",
+ "\n",
+ " y_true = y[indices]\n",
+ " y_pred_proba = y_pred_proba[indices]\n",
+ " ax = prepare_plot(y_methods, n_images)\n",
+ "\n",
+ " for i, method in enumerate(y_methods):\n",
+ " y_sets = y_methods[method][indices]\n",
+ "\n",
+ " for j in range(n_images):\n",
+ " y_set = y_sets[j]\n",
+ " img, label= X[indices[j]], y_true[j]\n",
+ "\n",
+ " ax[i, j].imshow(img)\n",
+ "\n",
+ " count_true = np.sum(y_set)\n",
+ " index_sorted_proba = np.argsort(-y_pred_proba[j])\n",
+ "\n",
+ " for count in range(count_true):\n",
+ " index_pred = index_sorted_proba[count]\n",
+ " proba = y_pred_proba[j][index_pred]\n",
+ " label_name = label_names[index_pred]\n",
+ " color = 'green' if index_pred == y_true[j] else 'red'\n",
+ " position = get_position(y_set, label, count, count_true)\n",
+ "\n",
+ " add_text(ax, (i, j), position, label_name, proba, color)\n",
+ "\n",
+ " if not y_set[label] :\n",
+ " label_name = label_names[label]\n",
+ " proba = y_pred_proba[j][label]\n",
+ " add_text(ax, (i, j), -3, label_name, proba, color= 'orange', missing=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABoYAAAaXCAYAAABbltzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5wdV3n/8c9z+1atumVbcjeYbqopAdMhJECAQLKEFgjJL5SQRg+XpYQSCKSQACkQyoZiCMQBQmgGTDOm2IAx7k22unZXW287vz/mrrS7Os+RtEXF9/t+vfSyd545M+fOnXnmzJw7ZyyEgIiIiIiIiIiIiIiIiNz55Y51BUREREREREREREREROToUMeQiIiIiIiIiIiIiIhIh1DHkIiIiIiIiIiIiIiISIdQx5CIiIiIiIiIiIiIiEiHUMeQiIiIiIiIiIiIiIhIh1DHkIiIiIiIiIiIiIiISIcoHOsKiIiIiCwbs/sSwo+PdTVEROYx6wPeB5wJTAP/C7ybEMIyLf/pwHuADxLCWyLxDwN3AWbmTN1JCL8dmfe+wBDQAzSAbwFvI4Tmgvl+CWyP1GYjIZy3mI8hIotgthH4KPAAQlh9rKtz3DG7K/APZPe/GmS593+XYbkvAV4I7ANuBf6UEHYm5j8feCVwElAGPkUI710wz2bg/cBasnz9fkL4z8QyK8BLgCeR/fA7DzyFEPYs8lOJiEgHUceQiIh0HrMtwHuBAbILRAO+TAjvOoa1Ov6sxIX04d6cjM9He9qDCeGmOfOeDzwPeDBwOrAxsf4y8DrgUUAdGANeQwhXHfFnEZFjy+xZQJ0QPnusq3IYPgR8nBD+CwCzdwEvJcuxS5PdGHw58IfA/RJz/jYh3HaIZW0C3g38LiFsa0/7TbK8+aYFc3+dEF4Sqcvnj6D2IrJUIWwHHofZV491VY47Zr1knWaDhHAtZj3AxZhtJ4SfLGG5jwMeAlxACDXM7g18DLNfP6gTPZv/D8nann9JCLcklvxvwOsJ4TLMisB7MZvef+6Yv8x1wCfIzi+PIYTWoj+PiIh0JHUMiYhIJ/pH4FWE8MtjXZHj1kpdSGcOfXPywC8v9y6o1xeBXQvmPQP4LPBnwP8dYrkfBL5BCG9oL28L8BHMnkMItx5e9UXkONEFFI91JQ7J7Dyge8GNvdcBl2L2vmW4mfdKsqeRppa4HIAHAP+9v1MIIISLMfvjg+Zc2CmUeRzwtWWoh4jIcngO8GlCuBaAECYw+wvgT4HnLmG5LwGeSwi19nKvwOwLwNOAT8+b0+xhwP0I4VnJJZo9ALiSEC5rL7OO2Z8CXwQO7hiCfwb+hBB+sYTPISIiHUzvGBIRkU7UrU6hQzr4QhpmL6RXXgh/FekUWk32dMD4gnk/SwjfOuTNVbMBYIIQPjyn7C3Am4HnL0OtRSTGzDD7U8y+j9m3MPsyZu/C7B2YnT1nvgJmf4XZ/2J2CWZfw+xTmJ26YHmbMPs/4NXA69rzzv5bnic/zS7GbAazv1yGpT0c+My8KSHMAL8ENi9pydmwQxcQwqcOY+63t7fRpZh9B7NHROa5FPgNzO7WXn4OsxcBZx1mjZ4KfO4w5xWRxTA7GbOPYHYZZt/FbLidC2LzPhCz/27P9912/n2kM++z5+SI72H2n5idGZnvXe35vtr++4Xt+b+H2TuX+NnWY3YdZiNOjjpSsfz7Y7InzJeilxBGF0z7DPDrkXlfSvbjpUM5E7hm3pSs4+kGzE6bN93swcBP1CkkIiJLoSeGRESkc5j9B3AacG/MLpkT+SYhVOfMd0/g78gu0H4PuBn4G7IbeA3g5YRwxZz5H0n26+8+srG9rwFeO2+4s2y+XuCdwAVkw5jtBV4LfATY0V7uzxf52dYD3wPWkY0t/s1FLeeAhwOvnzclhB9jdvoSlwvZzclTydohRratDqe+vwn8z6LXGsIIcPCv3mESqCx6uSJyKO8HriUbBjJ7p47Zo4GLgLnvTgjAJcDfEMJ0e76zgX8CnnxgrnAH2bBJzwcahPCxFajz6UAJ2LIMy1oPfD8y/UbgFLJzzGK9HXjNYcx3ETBCCJcCs+8k+TRmz573tGQIezD7I+AyzPYAa4BeYPCQazDLA2cSwjWHnFdEFsdsLdnx/OeE8L32tLsB/0727pq58z4aeDHw4jlDQ24C/gmzfkL4/Jx5X0/Whn3CnPx7PvBRzH6PEG7cP28If9GOfw+zT5LlskcSwjRmD13iJ+xqf45usty5VOuA2NBtC4cqPlLjmG1sD+M363nAufPmyoaDy9q7Zn8PnA/sJhsubmGb/zrgBQvKryZr/36G+eeKJwKfwewJwJ+31/EV4B3RoexEREQi1DEkIiKdI4TnAWD2VUJ4TGK+nwGPwuyNwOOBxwIvJYTL2zfT+vbPm73w+/eB57RvVma/zoRPYDZICDe0p+XJhoH4F0L44/a0ewLDQCCERy3x050oF9KHd3My7inEO3YWL7tgfwPZkCAistzM7kv2lOb8J3lC+Bpmbya7QTY7rQl8e8F812HWtfIVPcj9yTptbjzUjIehAExHptfJOp8Wx+zhZPn0ikPOG8L/LPh7O2avJfsl+6vmLLMIfIDsvPY5sqH6HgQczhCivwZ857DqLiKL9SrgDfs7hQBCuAqzPwGuXDDvK4EnEUJjzrx3YPZMsqF3s46h7Gmjc/a3kw/M+xPMfp/sh0IvjNTl3sC7COEzc8osLQeEcEv7x0PdhHD7kpaVMUKoR6cvzd8CH8Ls2cAI2Q/J7gUsfIpoHdmPyj4H/B0hvLy9vT/e7nA70NYO4UeYvQWzpxLC5zA7iez9QReRddLPtZFs6M4LgGeR/djsj8neEfeKJX42ERHpEOoYEhERSXsg8Pj9w0VkvwzMfh2Y3UB7JfDoecObZS+M/SPgHcBvt6c+HfjOvOF+QvgZZi8F/mPJtTxRLqQP9+bkQWu1bqBvwS8zlyb7/j4K/PP+DjwRWW4X4g0tFsLfzvvbzIBnkg1l2Qc0gXHgbitYv7hsqLflygs14u9CqpDdMDxyZjngjRw4xyzG5WTnsLl+A7hkzvuQasC323n6rw+xvN8iy6kisnIeRKy9lHUOXb3/b7MNwH2Ar2LRpts6zNYQwh7gwcAFC56mn8t7f9l353UKLZfsCe+RZVpaA7NcZLjhpb2fLoRvttumF5G9ouESsnPXwifbR8jy9PMJ4b/bZW/F7FXAy8mGaZ7rmcDbyN6DtAv4K7LvZ9+C+UbJnlC6X/t8BfA+zL6I2arIMHciIiIHUceQiIhI2psTF1f3Ai4/6J03ACH8dMF47w8nG+ZjoW9x8K8LF+dEuJCOi92cXOjxZL9uXR5mPcDHgQ/tv1AXkZWQB9Lv/zrgTWRPPb6AEHYCtJ8W+urKVO2ouZX4+yxOIxtGdDE2kf1i/DNzbvoOAKswu+kwh9dbTdb5NtfZwA8i8/Zjdo9DDHd6P0L4k8NYr4isjLk9QNPArYRw4WGUmwT+hxD+fEVqdWxtJcu1C5/+XPqTqCF8CfjS/r+zofduXDDPFGbXMn/YVIAriHfw7SP7sdQBWcf8wg64q8meGF34JP/PgTOAnx7WZxARkY6WO9YVEBEROcGFZVjGUoezWAmzF9ILrcSQTrGbkws9leV6obnZOuBisieFPn+o2UVkSb5L9n6EuGw4yVkPIYQ/398pBNlNNX8IyxYrdT1jVsbszPZTTEv1HbKhMOcuv0L2rolrnfVbe/3laDyErYRwd0K4cP+/bPigfzuoU8hsY/sJyYWeCFy6YNqvyH70sNA9yZ7eisuGDDyc4eZEZGkuAw4eDjl7z9Bd9v8dwhgwhtkFh7HMbwFPbL/P5tgzG8Ds5GVa2qVkTzPOXf4DSQ0Tupj8n+XYvwHeF4l+DVg4ZPS5yTocWO4TgOnIaABfAp4QKXE2S3tvnYiIdBB1DImIiCzelcADMes9KJL9anDuO3O+Rfzm6COA/mWpzfF+IX1kNyfnlisApxPCdYes9aGYnUbWKfR6QvjykpcnImnZ+yZ6MXtl+11rGbOzMfss2fE/q9k+Rmfn2YjZP5PlyZgrgSctWO6ZmL16GWp+OXA98PdLXlI2VGUDsyfPmfpW4AOE4P244O/b6798yeuH+wL/jdmZ+6dkN4v/APiXBfN+AXjCvJvJ2dCoLUK4KbGO32K5Ou9FJOUdwJswe/D+KVmn0MeAnQvmfQnwfswunDfV7MGYfQmz7J2ZWSfSW4DPYnbGnPkKmD0Ls48s+6fwmG0BbgNuw+wZy7DETwKDmJ3VXn4P8Day7eg5svxvdh7Ze0Q/0H5P6UJ/A7wVs1Pa8/cBbwf+KbHMUnu46f8H/OFB8ey9pldi9mdzyjwZ2EsIew+r3iIi0vE0lJyIiMhihVDH7B3AJzF7UfsibbYD5e+BwTlzfwb4EmZP3z8eu9k9ycYOX/p7c7IL6auAbsyeSQgXLXGJnwS+hdnnCeH6ORfSf5koczlwD+AfgZdF4vcFXo7ZS/a/0+fAzcnHJ5b7CLKOtaUxuzvZTdAXEsJVc6aXgYcTwleWvA4RiXk28GrgMswmyd5XsQN4EyH8dM58LwX+oZ1vSmTDG/0bcA5m3yAb2vPr++fOhuz8OvCN9nBqZbIncD64DHW+iezX91uXYVkAvw+8G7OXkb0/6WJC+IfE/LcBdeCWxDyZbLi9zwAnkw0ldyMhfHx/PIQvYXYz8E7M1rbXfyPw2+0bwsyZt4nZc4C/a59X6mS5/XcPUYtzgaFD1lVEliaEXe0Ok3di9ndkT67vAf4I+Ot2rnwrIXyVEH6J2W+RdSS9m+w9NQXgZ8CftIctm13uMGa3A//czhPjZEOBfg04MESk2enAv7aXc+8F7yV6R3t4taWYArYBG9qfa2lCmMRsEHhP+51A3cDbCOHHiVI3caj8n23PB5I98X4z8HL3fZUh3MTsO0Wzp0ULwF8TwvwnRrMOvn8lGwYQ4BPAUxM/IHgFWYfT99t/Xwv8ceJziYiIzGP+OUZEROROJPt13qfIhkK7N9nY3rM+QAj/OWfevwIeTfZOiL0ceAfQNkL4nciyHwW8Duglu4i+FnjNQb+uzurwTrILyRrZE0V/Tvaem4OHBTmyz7ce+B7ZhfRT5908XfwyzwXeRXYRPXshfXFi/ovJOnjeQAhvd+a5G9l7RObenPxTQrgtsdw3AJ8nhCuc+GuBx7X/mvvdzv++zN5IdoN694IllIAfE8KL3DqIiIiIiIiIiNxJqGNIRETkWMqGXfvGYb4cWEREREREREREZEn0jiEREZFj62WA3nUjIiIiIiIiIiJHhZ4YEhEROZrMXg48jWxM+ArwX4TwzmNbKRERERERERER6RTqGBIREREREREREREREekQGkpORERERERERERERESkQxSOdQVEREREROTEZkP2HOAlwM9DNbzoCMt+GLguVMNbVqhuHwF+DXhBqIZLVmIdi2VDdlfgH8iuyxrAu0M1/O8Sl3l34LXA6cAMsA94XaiGn0fmfRLwUqC3Pe9NwCtDNexZMN/pwPeAXy1YxN+EavhCoi5PB94DfHClvl8RERERETly6hgSEREREZElCdXwURuybwOvX0TxSWB6mau0X6iG59qQLaZeK8qGrBf4KDAYquFaG7Ie4GIbsu2hGn6yhEX/EfCmUA2/aq9nI/AhG7Jnh2rYO2f9JwOPAX43VMNIe9oDgPcDz4ws9wtH0ulnQ1YBXg78IXC/RX4WERERERFZARpKTkREREREjplQDX8cquFdx7oex8BzgE+HargWIFTDBPAXwJ8uZaGhGl422ynU/ns78BXgoQvmuz1Uw5/Odgq1p/0QKNmQ9S2lDm2vBN4HTC3DskREREREZBnpiSEREREREVk27aHM3gasA7qAHwKvmvu0Snu+9wF3BwaAi7yhxmzIfg94EXCPUA3rbMgeCrwZKAK7yIaIG2nPWwL+Cng8UAMmgGUZwsyGbD3ZcGrrgKeEavjmEhf5cBY8YRWq4cftYduWjQ3ZucAfAM84jHmfQPadTETC97Mh+x+gB1hFti3+LFTDTGQ5m4ELQjW8yYbswsXXXkREREREVoI6hkREREREZLncA3g38OJQDbfA/vfMfMGG7LHtp2IACNXwknb8QuBh3gJDNXwM+JgN2VdtyF5N9uTLs0M13GFDdk+g1V6OAZ8ELg7V8MD2tNXAB8g6cy5d4mfrAk4CuoH1S1wWZHW6JTL9oI6WxbAhexXwYuBU4DWhGq5KzPsp4ML2n78TqqG1YJadwL8CH5/TCfci4F3AyyKLfDvwmqXUX0REREREVo6GkhMRERERkeVyV+B5s51CAKEaPgN8DPh/S1x2nuxJlSeHarijveyfhWoYa8efCPwiVMO/z1n3XuB5wGlLXDftz3QqcGqohouWujzAQjXUY9OXYdmEangH2ffx28DuQ8z7TOAcsuHfYvGJUA3vWzDs3L8C5ywcds6G7OHASKiGK5b2CUREREREZKWoY0hERERERJbLpe132iz0aeARS1x2M1TDa0I1BCf+WOC/Fk4M1TAFfGmJ655d1kiohtuXY1lAw4Ysdj1WXKblE6qhHqrhv4ERG7JnHWLe0VANHwYecwTD2f0UOHf2j/bneSPwhsXUV0REREREjg4NJSciIiIiIsvF67Q5VGw5pJ60WZancJbZVrInmW5cML1rBdb1ZbJh9j55GPN+C/gt4D2HMe9qoDHn703ARuAzNrR/kw8Aq2zIbmoPCygiIiIiIseYOoZERERERGS5PMyGbEOohh0Lpj8D+NoKr/srwNOAH82daEPWBTyB7KmlJbEhGwC6l+mpoUvJOmD+ds7yH8jBHUVz118GTgFuTDw5FXN/YOQI5t26YL2nhmq4bcG0InA+sP/dRaEatgJ3XzDfhcDD1CkkIiIiInL80FByIiIiIiKyXMaBi2zINs9OsCF7KvAs4IMrvO4vAvewIXvBnHWvBj5O9n6iJbEh2wLcBtxmQ/aMpS6P7OmdQRuys9rL7wHeBrwjUeZy4Hrg7506PtuG7J3tzz077Z7APwJ/s2Ded9uQvajdwTM77bfIOqsWPln0LzZkf2hDlm/PVwL+CfgP5z1JIiIiIiJyHLNwRD80ExERERERmc+G7PeAlwI/Bz4DvAqoACXgB8CrQzWMzpn/94Hntv8cAFYBN7f/viJUw5/MmfciYB1wb+CKOav9cqiGty2oR5nsHTePAWY7LP4JOJ3sqaWPhWp41yI/43rge8AG4KmhGr6+mOUsWOa5wLuA7va/t4VquDgx/8XA44E3hGp4uzPP7wLPI9v2eWAX8LpQDVcvmK8beBnZ01ShPe+V7WXvXTBvHngF8GSyYfm6gQ+EaviXRF27yPaFk8m+39eHavi4N7+IiIiIiBw96hgSERERERERERERERHpEBpKTkREREREREREREREpEOoY0hERETkzmTY7nusqyAiIiIiHWrYTmfY1h7raoiISFrhWFdARERkyYbtvcB9yN5TcRGD4S1LWNa9gPcCGxgM91h65Q5a/ntZrroebcP2KOCvABgMjzy2lTmEYcsB/wf8BoNhekGsD3gfcCYwDfwv8G4Glzi+7rD9JvAaYBKYAP6CwXBtZL4PA3cBZuZM3clg+O3EsnPAJcDdGAzrIvHzyd4p8mCyd6lsTCzr14AnMRhenfw8IiIisvzUbl1ew/Zu4EnAWxgMHzvCsjcBv8dguHQF6rUR+CjwAAbD6mVc7qnA3zIYnhmJ3RX4B7J7fQ2y9u3/LsM6X0v2jrkx4EayNu6+BfOcDPw+2XvwNgO/Bxx6uw7b04EXkb0Xrxt4NYPhm3Pizyd7b+H2OaUawAsZDDczV1bPnzIYvngEn05EpGOpY0hEpFMM2zfIXhg9a+5LvPuBLzIYXn/U67UcBsMrABi2C4GHLXFZVwKPYti+usRaect/BbA8dT3aBsPXga+v2LZZXs8Hrj2oUyjzIeDjDIb/AmDY3gW8lOxCenGyp3T+DHgcg2GcYTsb+ATD9msMhqlIid9mMNx2BGt4MfBJ4Lec+BnAZ9t1+L9DLOtS4B8Ztg8yGG44gjqIiIgcHWq3Hu6y1G4dDH/OsP1skaXHyDoZlt9g2A48bgW+m78GPnPQ1GHrJeuIGmQwXMuw9QAXM2zbGQw/WfTahu1lwHrgwQyGwLA9mawt/YwFc54KXAX8LfDKw1huDvgXYCtZu3g8MfdbD7PT76PAlxi2LzMYmocxv4hIR9NQciLLwIZswIbszGNdD5FDaDIYLtz/D3405///+NhWTWQZDZuR/bLw3ZHYeUD3/k6hzOuA57YvUBfrVcCr9l/UDobrgGHgd5ewzMywrQaeCbzfnWcwfJbB8C0GQ+uQy8uejPpHDueiXURE5NhQu1VW3mC4F4Ph+8e6Godt2E4DHgp8OhJ9DvDp/U+rD4bs6XX40yWsz4A/Al6z/8n6wfDfQLH9I6gDBsNl7fbo5GEu/dXANxgMbzhEp9DhGwy3knUg+0/hi4jIfnpiSACwISuT/dL4fsD9Q/Xwf8VsQ3Y6cF2oBnd/siF7PtmvtwEaoRoes+jKHidsyCpkw/Y8hexR6U8Cy/JovQ0d/Ah4qMYfAbehg4cuCtXI0EXZvAc9Ah6qCx4Bz+aLDrMUqkscZklOHMN2T+DvyPaB3wNuBv6GbF9vAC9nMFzBsP1FO35gaIlheyTwBuCuZL8su2nOcktkN+EfA7SAIvBt4I3ti5eV/lynkN0MvyfZjyOawJVkN/RrkflXA28nG0IjRzaEwasZDD9fMN/JwFuBc4HZ4+RjDAb/Rv5KGLZXkuWhLzEYnrIMy7sAqJL9MjcPfBN4ozPvI8m+2772vNcAr533/Wfz9QLvBC4A6sBe4LXAR4AdZPvW/O175B4D7G53ziz0cBb+ynIwzDBsvyTbv2+OlDkcZzAYLlsw7XNkQ+/9e2T+t7eHAimQ/SL6tfOGzZjvTcCbGQxNhs2Z5Yh9Gvgbhu0vDxoKRGQ5mG0hG95ogOy8YcCXCeFdx7BWxx+LDPsTlmHYH4sM+xMWHOsWHdaS9rQHExbkb7Nnkt0gpF3XfybM62SP1ePpwHuADxKOwyGo5M5B7dbZ+Tu73Zot86lkHSEFoAv4FPDOeT+cyYYU/lQ7fjqpoeSyp8rvDzQYDI9h2F5INuwZwLcZDK+cM+/JZNv/rmT73U1kPxxaTtkT5PEfAj0cmP8U3WD4McN2+hLWdy7w48gT+J8n66CKtbUPbdgqwPkMhr8+zBLPZtheQPa99gH/xmB4nzPvx8mO208sqm7SsWzIngO8BPh5qIYXHWr+BWU/THZfdEXaOjZkHwF+DXhBqIZLVmIdi3Uk9y+PcLkvAV4I7ANuBf40VMPOyHwlsjbAA8jui34beEOoHvzUoA3ZZrIfW64la/++P1TDfzrrfzjZfYs6MA68PlTDj5b6uY43emLoKLEhe5YN2dOOdT08oRpmQjU8iawD4Ei1gJFDLP/DoRouDNVw4SKWf7xaRdY4fz7wsuVaqA3tfwT8j0M1PBJ4KvBKG7LzI/PuH7qo3dn258B/2pB1Rebd/wh4qIbHAV8gewQ85kPAf4VqeFh7uSeRDbMkJ7bPJWJbgR/u/2sw/IzB8Cjgw2TjRH8aeBeD4aFkTy5MtOd7F/CKeUsaDN9ov3/mC/OmZ09jfILsV1wPYzD8Gtn7UC4D/pthKy7ycx2JGtlnenT7V6ePBr7DwouoTA/ZRePHGQwPYjA8gKwD48MM2933zzVsm4D/AN7LYHgog+FhwGOBk9tjnh9Nm8luWiz9CcZheyjZxfqL2p/rArJtNRyZ9+lkv0h8Tntb3Z/shvAnGJ7zNOWw5YH/Ai5hMNyXwfAg4C/Jtl9gMDxqGTqFIOuw/5oTW0+88+dG4JQlrDP268ibgE2R6RcB72/vgw8Dnga8mWHbfNCcw3YPYB2D4RtLqNvBBsMI8EvgCcu6XJED/hF4HSE8ihAeRwiPVafQAnagzUc40ObDDm7zHeFyDwz7E5JtvluBXyeEC+f9g58AuxYs84lk+eLXCeFRwBOB+2L22EQ9KsDLgT9c0ueRTvW5REzt1oN1drs18zzg14Entr/7B5Jtl3+ZN9dg2MdgeGL76bMPJ5c4GP6iPV8Pw/ZJ4BzgkQyGB5N1jmSGbS1Z++6fGQwPZDA8hKwd/e9k19LLJdXGXQfcEpm+sPP/SKxUu/khwKUM27kM26cZtm8xbB9sd24udDnZOewJDIZHAA8C7te+/oi5BHgAw7ZhCfWTDhSq4aPA7yyy+CTZj6pXRKiG5wL/tlLLX6wjuX95hMt9HFmeuCBUwyPIfuzxMRuyfGT2N5J15t0/VMPDya5xvWuOfwOGQjVcQPajj4fZkB00VLsN2XqyYTufGqrh18ieyHyrDdmWpXyu45E6ho6eLrIX6d3phGq4JVQjL8K+kwvVsD1Uw7+GatixzIt+DvDp2ad+QjX5CPirgFeFavbodajGhy6yoQOPgM8+9ROq2SPgNjT/EXAbyoZZCtWDh1myoSUNsyTH2mD4x0TsVgbD553oA4HHMxgub8+73XkS41CeRfaLwM/OGYogMBg+TXbhPbiIZR6ZwbCTwfCT/evPpl1E9vTKQpvIbip8a868VwIvIGskzKoCL2UwXDFnvikGwxuADQzbGcv6GdJeDpxF9svGpXoD8LsMhq37p2RDR3yJuU8cZzdGXgk8i8Fwx5x5LyPLO++Ys8ynA99hMHxqznw/I+t47luGOs86H/A6mArEG+11spfeLtbB49Nnv+Y8+GnawfA/836Zmo1B/1riHfBvJxtqYyVcQbatRFZCNyH88lhX4jiXDfsT2k96h2UY9sfmDPsT2ue60B72xxYM+xPCXxHC3gXlVwN1wkHD+jwW+AdC+1fjITTJ3iPx/ERtXkn2BHrsPWsiaWq3qt165HqAP2J2KLPB0GAw/BXQx7AtdR33Bj7FYHj1/qdnBsN35sRfBbyBwfC9/VMGw1XAn5A9QbR02VM25+G3cY3BUI9OX7yVajdvJOt0+hDZE3gPJ7u5fFH7h2QHDIafMxg+tf+zZf99Gd6PDrLv/wayJ+dEjopQDX8cqh35A6gjuX95JF5C1tlUay/3CrIfcMx74KJ9r/PBoXrgCcJQDR8DTrEh27Rg3gcAV4ZqNspHqIZ6u54viaz/+cDbQzVsa8+7i6xdu9xPgR5zGkpuARuyQbJfFa0ie6y6Drw5VA/cwLEhewzZjfLm7JBoNmQbyU5km4F3hGr4cHv67C9ytgDBhmzu44iXh2r4i0gd/oisAdcEysDXgWqoZg0cG7J3teP/QdaDWifrIX0+2a829gK/O3sAtcucSdYgPLu93DHgLaEaHbYmb0P2KrIXXIf2v3eE6vzGtw3ZA8lu+Blwj+XqHGov9/Vkv3iB7LHBt4fq0n8tbUMHHlcP1WV6XH35HfQIeKiGH7eH7FvojNmkNsfnOHjoonOBH4fqYT0CftAwS6EaZmxoycMsyYnrzQyG0WVYzq+R/brr2ZFYgSzXrazsJawvIbvBVSS7mb+X+PlwDPi/g6YOhp8xbBvnTLkA+IAzxFcv2QXcjUuq9+HKbhzcsOTlDNsqoMbgwY9qkw07Orfz+V7A5cTGBh8MP13wFMzDiQ+r9i1gOfaxWRuAPU6sRvbdL1RhaS8fPniozazT7HCH4Lyche/8yX4JeTmDYaXy7m6yi3KR5WP2H8BpwL0xu2RO5JuEUJ0z36GHfgpzblyaM1zlwcOdHXq4yrDIJxPN1gPfI2ujPoXgDv94uA4e9ieEH2PLMOxPWPSwP78J/E9k+n+RPc30MkLYhVkf2bVF/NexZpuBCwjhTZhdePjVF1kytVvn6oR26wGfdYZY+zRwIVlba7G+y2D4TCL+IGI3DAfDVQzb1UtY71xryX7c7bVxGwxbLrINlvJ020q1m0fJRj65NwfeifRthu2rZE+kxs5DBwyGifb7jzy7OXA/SeSI2ZDdHXgb2X7URfaU6qtCdf4PamzI3gfcnWzo5Iu8oeRsyH6PbBjKe4RqWGdD9lDgzWTH1y6yIeJG2vOWyO7pPZ7sGJxg+V5bMa8t69wTPhJHcv/ySPSG6kHn8s+QbYe571jbANzBwT4PPI7svvmsM8muH+bWtWZDdoMN2WmhOu+a+0zmPhWazXulDdk5R/Yxjn/qGDrYdcDvh2rYA/sfi/uMDdnvzCaAUA1fBb5qQ/bV2UKhGrYDj2sf7IU50+9oT38+2bt1PpZauQ3Ze8kO/IeHaphpT3su8N82ZE9qD/n2FzZk9wfGQzVc0E5YPwGeFKrhKzZkLwaeTXvIiPYTIR8DXhaq4YftaScD/2ZDtjpUw+cWVOP9wOfbj9ZhQ7YW+LAN2apQDR+Z89kuAx7ZnuerLAMbskeTjZv74tme2Xbn2j/ZkPUv7JxahOV+XH0lHMkj4Ic7dFHqEfAHR+aNvYBz9nFxdQzJYk0Cb2EwXHxM1p4NCXIRWYPiN/f/2m/Y1pANvXEk5t7snwF+i8EFv7o+8R3JO8WW4/1jy/byHLIblRUndivZePILnUZ203ixYm2qLUCscy1mNdkPN+a6AHgIw3bhnGn3Zti+QLbPHfx+gSPTxdKGFxE5WAjPA8Dsq4TEOyVD+BnwKMzeSHbh+1jgpYRwOWYbmfsUYfaemt8HnkNoP5lo9kDgE5gNEsIN7Wmzw1X+CyH8cXvaPcmepg7tIdCWootsSKBulqdT9WgP+7OwzRfzFOCPD5oawrcxOwnYhtmvyH5sNkp28zzm7WTvwBQ5UandeuJJtUdjHUZHy3K1cWc74itkP3xYaCtZe3Zhx95Bw8wfgZVqN18NXLq/U+iAK8h+4HA4UqMNqI0rS3EP4N1k9yVvAbAhezrwBRuyx7afigEgVMNL2vELgYd5C2zfC/6YDdlXbcheTfZjnWeHarjDhuyetHNU+wmYTwIXh2p4YHvaauADZO3G+PvQDt+J0JYFGLch29i+1z7reRycH3YBm23IbME70Z9Ddp98ruvIHrLYr71tf5PsXHvzgnnvxZyOpHZn3qNtyMqz9+vvDDQs1AKhGi6b7RRq/z1OduDdY6XXbUN2b+CUUA2vnLuTtTtjPs/8R2UboRre0I7/AvhWqIavtGNXkd2MmvV24A9nO4XaZW4nezLqNTZ00PjIPw3VAy+eDNWwm2yczZe3e65X0ivJkuO2Oeu/o13XVyzD8pf7cfWVYO1HGg+aHpl20K90QjU6dNGRPAK+Uo+Ly51XnezX2wst3F8uBv7fylfHdTfgGgbDvzL/Baojzvz9ZDcq58ve+bJ1zpQvknVoH3vDZgzbmQxbeUnLyX5p28WwxRqLT2d+ProSeCDD1hupz/lkF5SzvkXW8FroEWTbe7ncQPZDgJjvkN34PGD2Bbiw8OJ0Nn442/UWhu2+C6Y9nezll3OXtdF5L8ETWdjQHwx/2R7//8L9/+BHDIYnLUOnEGTbaHEvDRZZXtnQT6E99FMI2wntoZ9sznCVYc5wlSExXGWYM1xlWMbhKkO4BTgVOJUQLlry8sAIx9GwP2bdQB9h3kX4bOw0sndZ3pcQ7k62HZ5KCL+KzPtwYGTeE18ixw+1W+9s7dYDnuY8RfJ0Vv4Jr8vI3lcx37DdDbjLsqxhMOwm65D32riXko36Mnf9DyT1BNiwldvfgXfeuQ04L/IdPY2FbdwjMRhuANa0RymY61zm1nfYutrvb1pY73OJPyUwS21cWYq7As+b7RQCCNXwGbIf3C/1vJAnG6Hqye17nYRq+FmohrF2/InAL0I17B9lo/2QwvPIOmSXpP2ZTgVODdXlacsewf3LI/G3wIdsyFbbkJkN2XPIOmrmPUUUqqFJ9rTsW23ICjZklfYDFz8D1iyY90fAWTZkTwWwITuJ7MdjFy2cl+xJo7+wIbtbe977kz1B9rnIvCc0dQwtYEP2IBuyj9uQfdOG7Os2ZP9LdtKLNR6X22Pwf/3zSWINDd/cg/DU9niM84Rq2Af8CLjngtBBj0i3e8R/QHYgrggbsg1k48B+1Ybskrn/gK8A623IlnQAhmoIoRpuOM57dxvOu3xiNxIP+lVUu6Nv4fQjeQR8pR4Xlzuvq4CH7b/ZPWy9DNtbWPCuKwbDN4GbGbZ/YtgO3KAbtlUM2+sYtoOG1lxm24C7tTsBZtd9b7L8Esvxo8B7GbaHzpn/HmQvsH3dnPneBTyFYfvD9q87Z+c9nWH7MMP28OX8EIfw98D1LG2ojFlvAv6TYTvwYtlhezLZmN4HfnWZjfP9DuCT7Rcaz877QOCfmT+sxmeAh857Weyw3ZPsUfmDb0Qu3jfIbjQfLLsQbbQ/y6y3Ah+YN4b/fIezXd8LvKs97AsM29nAb5MNMzvXfcleWn3gydVhuwD4Axa+HHnlXUC2rUSOtTcT3KGfsuEqD37nDYTwU+bfIHs48N+RZSzfcJUhjBDC7cuyLGhgh93mO1xLacc9nthQVJk/A15JCFcCEMJO4BeYzR+XPfs8byR7T53I8Ujt1jtnuxWy88E/MWzZEzLDVmDY3gjsYTD8dJnW4XkH8CaG7cCTmVmn0Mc4/KfHD8cleG3c7J7RIMN2Vnv9PWQ3Mt/hzA/Ztr+e7Ls4WNY2/hhZW5n2cp8CTDK45PcIvh344P59fNjOIXtx/RfnzLOWrN38iDnr30S2X785utTh/e/TW9ywsSJw6YInVWZ9muwHjUvRDNWw/93fEY8le/p9nlANU2Tv+l2yUA0j7YcFlsOR3L88bO0h7v6BrNPm62SjPj2H+PnvLWR59hKyH3X8gGwI6X2ReZ8JPMaG7FKy0bL+iuypoHnztt8p9DzgzTZk3yTrEHxmOxxb7glLQ8nNYUP2eLIbXq8M1XBVe1qe7IR1tKQef17sUD1HWu5YPYI9DdwaquHCFVzHieBIHgE/3KGLjuQR8JV6XFyOB8N2P7ILQiMbkuoSspdCP5PBsG/OfH8FPJpsX3gKwzZ7Q20bg+F35i1zMOxl2P4d+DbDNvtrkf8ku4j4KMP2LAbbDY/B8P8Ytj8Avtz+ZdoM2U2sTwIfXuRn+n3gue2/BoBVDNtsR/oVDIY/aa97F8P2t8AX2+sukz32/Jr2tP9rL2c92Xsv8mQ/DHgrw/Z3ZLnxduAFDM75hXQ2xvVjyRoVP2TYZod43A7807yXAB9uXRfvNrJfwsYe5z4y2TjfVeDf2zdEymRPBz0OuLK9vZ7HYLiDwfAZhm0v8LH2k0N5sqdvfofBOe//GAzNdqfQOxm215J997eSvSPvQ0uu8wGfBF7NsJWcJ2t+H3g3w/YysqcILmYw/ENieYferoPhJwzb35BdvObJPttzDnr30mD4EsN2M9k2WNte/43AbzO4/5diBxu255E9+n5vhu1/gKfN+2zZ9nxc+6/ZYxtix2w2/4OAve0XU4sc74634SqXy/E27M9T8W60ZUPHzX+vZQijmD0ReN+cqZvIXir+GQ78AH0AWIXZTYT0sNoi86jdqnbr4Ri2dwG/QfaeizXAt9rfbZnsux1aMP/fc+AHr6czf5/5DwbDh9rznQ78K9k199y2FcA7GAwHbtJm39czyNp3s9t/D9mTrX/NsH0DeCuDYalD8H+UrD344YMig2GSYRsE3sOwdZMNFfU2BsOPE8u7ieyJpq2Jef4B+AuG7Wtk2/QGsrb0fMP26xx4X+bpHNiudeD3GQy3zpt/MFzU7rz6OsMWyIZv/KP2j85m57mNYfsNsk632fex1IDXJT7X04H/ZDAsHKJZ5HCtxH3Zw5Vqr3ZKWxaAUA1fYk5nmA3Z+ZH10O5ke0/73+y8f0rkRwftByReOneaDdlriT8g8SuyfDI7XxlY3x5Z7E5DHUPz/QHwnLkvEwvV0LQh83oDYwmhRLzzpMWhn9D6GlljJvY43+8Ci21EbLUhu/fCp4ZsyPrIhlRb2KB7OtmTRHPn7W7P+4pF1uGQQjWM2ZCN2ZBdEKoh9o6bJWuP13kGsPVYPTXUfr/T5OyL5SJmHwH/2zllvEfAb7Ehu2+ozmsUHTx0UfsR8MhYmE8DFv7a7Tvtde+/SWtDhxhmSU4cg+FHtN8Ndoj53ox/cyg2/3+SXXgdzrz/wnI+GTEY/h3490POl807r3Exx9yXk24D5r6H4ukcymCYAF7d/pea7/DruhiD4R2kfxV4pMv7DtkvyBc6+GWug+HrHM4wHdmNnPmP4Gc3PJavTTIY7mDYvkz2xM7HI/ExsnP+4S7v8Larv38tnO8q4BmHvf6szH8w/+WZC+N/TfYi+MP1B2RjZ4sc77LhKs16D3pqyNzhKhfeLFq+4SrNBoDuZXpq6KA2X/vdSf6wP2Zlsnc+3kiI/to0G/bHrEw4ZJtv7nILwOn7h/A72K/IRhn44ZwyFRa+1zKErWQvYZ677AuBh6lTSI6Y2q1qtx7ecv6C+fntvYeY/+WHudybOJJRWwbDVrJ3PS90JCO/HMrnyDqaTmNw3ovSZ+twDfDkg6Z7BkNsiOeF8wTgb9r/UvN9kflP+xzO+tPt22yevWQ/4D607Cm453Ik20DkYA+zIdsQqmHhD2qeQXbfdiV9hazNtvCebBfwBLKnlpbEhrK27DI9NXQk9y9n4/vbsoknpxaWKZLloD89jHk3A8/iMNoPNmRPAKYPc1u8kdi9hROchpKb70bmvEC1PTbhK4C/dOZvtm/yY0OWtyH7PeCdzrxXAk9qP4E0u/wz2y8dAyBUw0/JOnHe0T5QZud7DtmJ7YOL+lRZg+8DNmQPmLPMTWTD1v11ZDzIZ9mQvWjOvGvIdv73OGNHLqeXAO9vv7htPxuyB9uQfandmbUUy/24+hGxIXsG2QX7bTZkW5zZPgkM2lD2CLgNJR8Bfy/wrvY82FB86KJ2sp33CLgNZY+Ah+r8R8BDNRtmyYYOHmbpcJO2iMgRehnw5WVe5hDwZ/hjpneuYdsM3I/svCByfAtzhqu0OcNVWmK4SpszXKUt43CVZltot+MwO7LO3bhs2B9rD/tjyzDsT4gM+2PtYX9CctifR5B1rHneC7wLy6592h1UHyAbm11ERI6G7CmYIQ7Vqde5fhu4lMFw/bGuiJzQxoGL2h0MALTfS/MsFn9f9nB9EbiHDdkL5qx7Ndk92SW/4qR9H3L2nuSytWUP8/7lrHRbdgEbsvPIhtf7QKiGnx1i3seTdTa/sD38njdfyYbspWQ/WP3DQyxzrQ3ZPwK5UA0fOJw6n0gs/kOzztTegf+ObOzCAtljev9N9tj0k4CPhmp495z57032WG0ge6T2ErLH6F4CvDxUw7wxum3I/pADvyApkz198cFQDd9aMN//IxtWp9me7+tANVTDZDv+LuCFZE92PC1UQ82GbBfwoVANf2lD9jCyC8I3hGr4SLvMmWS/JD67vdx9wFtCNVzSjpeBz5LdKHoM2S+Jf43scfkm8LZQDV9YsK0u4sDjgfcGZp9ICsCfhWr4SXveuUMALJx3EnjG7Gdrz38G2bst7tauZ4HsxWHvCdVwDUtgQ/Yqsl+TfSVUw5OWuKwtZL+gKjD7aD3M/mrnHe3HHheWuRD4PLAbeFCohuh4wzZk55Jts/2PgIdquNiZ94lkv5CaHbro5aEaro7MZ+35nsCBR8Bf0n6UcuG8/WS/JD+d9jBLoRreunA+EZFFGbaXk/0SKpC99+K/GAzeDyuWsp4nAl9zhpPrXNn7jboZDBp7XZaXWR/ZD4+6mN/eA/gAIfznnHnnDv20lwPvANpGiAx/aPYosvdkzB2u8jWEOcNVHqjDO8newTA7XOWfAx8ihKX9attsPfA9YAPwVEJY+svM7eA2HyHe5mvPfzHZk5xvIIT4cNcWb/MRDm7zzSnzBuDzhIPfSzpnngeTXU+UyNr1Hwf+yXlyCcy6yDrrTiZrJ7+eEO50v7QUETnqhu0pDIbPH+tqHHeydxH9lEH3vYUirvaP/V9K9n6qz5D9+KhC1u75AfDqUD2wb9lQZLjNA/cErwjVA8Nt2pBdRPa058L28ZdDNbxtQT3KZE+nPIZsKEaAfyJrMz8D+Fiohnct8jPOa8uG6tLbskdy/7I9//62bKjG27I2ZO8ma8s3ybbpUPtH7AvnK5A9WVske/jlUrIHIA4a7s2G7G5kw4NOtyd9AviX2A/gbcieTXZvf4aso/A9y7GtjkcnbMeQZS82/ROynr3Tyd6p8ingDSGEiWNYNRGRE55yrIjIylKePYqyjpJvEDr+PZYiHUV5VkRk5SjHipz4TuSh5N5DNobhVWRD0HwaeDlwcTs5iYjI4inHioisLOXZo2clhqsUkeOf8qyIyMpRjhU5wS3fi56PIjO7O1nS+WwI4elzpt9INkbh76DxrkVEFkU5VkRkZSnPrjCLDFcZ5g/TISJ3bsqzIiIrRzlW5M7hhBxKzszeQjbG+MNDCN+eM71C9u6Wb4YQfj21jLVr14YtW7ZEYyfiNhE5Hl1xxRW7Qgjrj3U95MgsR44FKJbKoVzpjcZa6QpEJ+cSPzrKJX6PlM/5ayvm/YLeuaDV8pcXErHs/mScOZ8ZwPBjhUL89x2pz1XM+++sLCS3sR8zZ325UsktMzk17cbyiTqmYubUMfWDtVzO374zMzNurNFouLFi0f/chUK8/n4toNlsurFrrr1OefYEtBx5tqdSCQO9fd4K/ILu62ASeSgRayXazan92qtjs+Hv75Y4XlPHcqppv4hNlfxcXh7KFpgomFqmV8lk3f2Vpc5jqdzmnQdyyf3DX1fq/Jb6rlP19/bHfC7xvubEdrxj1y7l2BPUcuTZ3r6esHbdmmis1UodY/E8lg9+fku9UTw47T2AyZr7bm36ulZFpxcTy5uYGnFjtWZiZCgruqFi3m8XFYvl6PRCruKvKrG1UuertCNP0Kk8m3xYIlkuPj2VZ1PnnfS53S+XOrcHZ/9OSW2rq391jfLsCWi57hmsWbs2bN4cvzdbT1wDBad9kWpbHDeOXpo6MaS2xwp85qO7GRNrW0QodYorOG3drbfdyp49e9ySJ+QTQ8ADyO4rXjZ3Yghh2sx+2o4nbdmyha9/Pf7eqNQF0eIbGiInrlRDLnWTdu3atTe7QTmeLTnHApQrvdzzgsdHY1PNxI36QvwCsauryy3T7V870l+ZdGObVne7sfp0PTp9YspfXm3moHcc7met+PIAykX/Ytpy/ql63Zp10embVve7ZU7q7fGXV4535AH0VfxtVeiLfwHdW85wy/zol1e7sVWrnJvdQP+q1W6sVI7XsVL2952uir/tb7jxOje2fecuN3bKyae6sfVr1kanW/DbHuP7xtzYIx//m8qzJ6Yl59mB3j7+8MlPjca8TmPw27mlUjz3Qrqzc3ra7+RNdSjn8/Fjb+/evW6ZUtk/XrsTJ4JmM9HZkehIbzbiNx1yibyc2o7JH58lQsVS/HOntm/qM+/bt8+N7dmzx431dMfPH6Wi3xasJTrYU515lYqft8en/fPw5Ex8f+zv98+Lqeu7N/3bvyrHnriWnGfXrlvDq6t/Eo1NTPs3LKcn48dYX3M0Oh1gVdNPAo2N8fYewI9vvMKNXXivJ0Wnn7J6g1vmB7/8vBu7aewyN1Yo+Pf1N/Sf5sZO3nBWdPq67rv467J4hxdAueKfr7wOO4CW02mXuv3TqPvLKyfano26f03Q5ZxeKkX/vFN22r8A+cSPtAqJtv2Mk0sB6hPe9Y6/D0/V/HPBQx7xGOXZE9Oy3DPYvHkLX/raN6KxHXv8a6BaI94pnkt1syfaHcstlTvSo+ylOmUTscOo03JZ7G1xt9MuscB023lx26Pp/Ew5VSbVVkzVMSQ6N0n90Ml5808hcd2yxrnP87QnpftnT9QxH08GdoUQYmeXrcA6M/PPgCIikqIcKyKyspRnRURWlvKsiMjKUY4VuRM4UTuGugHvJwfTc+aZx8xebGaXm9nlu3b5v/QVEelwi8qxMD/P1uv+L81ERDrcktuyE4kndUREZOl5dnyf/yS4iEiHW5Z7Brt3696syLF0onYMTQLeOA2VOfPME0L4YAjh/iGE+69b5z+OLSLS4RaVY2F+ni0WE+O7iYh0tiW3ZXsqyrEiIglLzrO9ff4QuyIiHW5Z7hmsXat7syLH0onaMXQ72WOJsSR0CtnjjLWjXCcRkTsL5VgRkZWlPCsisrKUZ0VEVo5yrMidgP8Gu+PbD4HHAQ8Evj070cwqwH2Abx1qAfl8ntWr/RdYi4h0sCXnWIBSrsWp5XhbcFvTf9lp3XmJdVfRf1n2xkr85ZMA9z7nVDd2xuYtbuz6G26PTr/5tgm3zEzTfylhX7f/q9P+vj43Vkq8GHbfRPxz793nvzy8q+S/HHGg369joTvx8lrnJfL1Sf97ybX8F6OHxMuBLfFaSO9ljIW8/72klpdLxIqJFz+myuG83LiReCnv3r0aYuFOaBnybICm89LSnP8y02I+nmODtyygiX+8NuuJWOoFuvn4+roSL8rO5/zjrj7l33tIvTDWef8sADnnJbnFxEuDa4m8l1Is+JdlE1PxZTYTL7S1gl/HSsX7gS/0OS+uBag733XTFvdi4FYz8aLyCf9cOzUZ/QEyAAXnBe3W8L/oWk33re6klpxnm60aI9Nbo7Fc8NtMRSe/1Rr+ub5W84+HtYk25Mn9J7mxfPCPdc+GVf7ybtnpv9S9XPTzUW/Jb8t25+NPC+Ry/rkgldJD8IPpd4DHt38hkZsbDf/8Vy77ObhQ8L8Xr81aStQjdVuvUPa3faHsP3k8PuHnWXPybHPa37/zOX/fkRPWstwzaDQDu0br0di1d4y65Waa8SGVc4njIZfIHcstladw2peHEhJtKlLXn8760nVM1WNx5bz1pdrpXm7O6rG4injt1sTpA0t8Z8kt3/Lbn/lErEU8Z+YS22p0VTw2k2gDw4n7xNAnybb9KxZM/wOyMSw/frQrJCJyJ6IcKyKyspRnRURWlvKsiMjKUY4VuRM4IZ8YCiH8zMzeB7zUzD4LfBE4D3g58E1g+FjWT0TkRKYcKyKyspRnRURWlvKsiMjKUY4VuXM4ITuG2l4B3AS8GHgSsAv4B+ANIYT0c1IiInIor0A5VkRkJb0C5VkRkZX0CpRnRURWyitQjhU5oZ2wHUMhhCbw7vY/ERFZRsqxIiIrS3lWRGRlKc+KiKwc5ViRE9+J+o4hEREREREREREREREROULqGBIREREREREREREREekQJ+xQciup1fKHwjSzo1gTkeOfjgnxFHPG5t747w/yU/vcctNhJDq9x/zcvK5YcmNrSnk3dur6Pjc2NlqJTp+a7nLL9HWvcWOnnLTWjUHTjUxNTbmxXcVGdPqeMb/MjrExN9bVVXZjfX1+rJf4Nq5P+N8ztRk31KjX/Fiz7saajXi5Rt7/HUwx7+87OX/XoVj0l5mz4MZCK/6d1ROfeWJi3K+IdDDDcvFzcKPp55RSKb7PT0/7+yD4sVbTz82Fon+pYc4h1N0dz70AwT+0aNTjxxZALu/Xo+hsj2x98RWm8hCpZlHiA6SO85mZ+PZvOvkEoLffP781G379U+eBrq74d9NIvEagXOjx65HYT0dGRvxlOvUAWNUb/9yVil+mldqxpKM1W3XGJ7dFY1259W657kJ8P8w57SWAVph2Yz2lATeWHy+6sZ23bo9O37Tab6/29/a7sVLiZ8XrBla7sYFV/jLLpfixWSr6uYjEdkxemybaZ17yLiauMVqJHJwv+HkxJOqfL8ZzZj5Rj0LF3we6+/1t36j75wKvfQGQs3j9Uy+UyecTjWrpaM3QZGx6NBobb/rXtK18fI/Ltfx9N33napnbAonFHS+tjmRKTFh0/Z2CqXok15VK94liuUXUo5WsiB9sJdrIqfZz08molmizjk3HP3Wz5be3QU8MiYiIiIiIiIiIiIiIdAx1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHSIwrGuwPHIzBYVExGRA3IEKjSisbX5cbfctMXLxKdmJsen3Vio7fXL7bnBjeWmx6LTz1jf7ZZZs3aVG2sG/xNcd/NWN1aw4MZ6S13R6SOh6ZYZHZt0Yze2drix0Kq5sbPWr4lOr9T97dGd2B67d2xzY1MzU25s7doN0emrB9a6ZUqlvBtrNv065szfxvWGX8eJyXg7YmbKL5Oqh3QwAwrx/bdY8Jv4rRDPKaWuil+m1XJjU1N+/u2u+MssFuN1bzb8/X1i0j9OioWyGyuU/Njeff75qFQuRqefdNJ6t8zu3bvcWGPG31aWyEUFi3+fXcX4OQCg5OwbAAT/+8wlrnWCs++k9rdi2d/2tZkZN9bX1+vGukr+fuXV3vL+7yELOf1WUjwtQojniEZrnVtqvBEvsyqxq+VK/nFUT+TgiekJN7Z164+i0zedutEts/Hk+7ixczf7+S1f8dtFRdvkxgr5nuj0nMXzL0BicwB+uzlnqS8gPtlyi7s3lMoqVvA/gJWc7eicMwEqvf61SSlx/ms0/O8slRbzzfjnbiS2Rz6fOCdJhwsE6vFI4nor55zxC8HfD1vmH3shcc3tty4W50S/q5yqvyVysBexxBJT61rsN+Z91envxd93Wq1ETRJtbhL3bHDa3KlKWmpdCWoFi4iIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0iMKxroCIiNw5hdCiPj0RjdWbU265bWN7otP3Tk66ZU5eu9qN5eunuLGJ3aNurJRrRKf39ZbdMmFmxI1df/M2N3bFr252Y+sH+t3Y+fc4Jzp9Q79/et+6y9+OO3bGvy+A8X0jbqxRiy/zzI3mlqkU825scsdON3bH9h1ubGRd/Ps844yWW6ZY9H8j02jU3Nj0jL8P13fF9x2AsUIpOt0IbpkQ/PpL5zLLUSjF81Gz7u+D5uxqfX3dbpngH8p0d3e5sVKx6MaarXhFLOfnhh78WD7v5+abbrnDjf3smmvc2KMf/5jo9Ps95OFuma9/6YtubGJszI11dfv1LxTiMQt+/irm/fNAqejHZmb8vFdwyhXLft3rLT9/NRI7Vsn5zABmfrmuSuWIy4j4cpCP58bxht9mKhAvU2n65/pio+7GGk1//+3u3+jGbr89nt8+dfH/uGXOefzT3Niak+M5EeCkxk1urNhM5Dcnd5v5+b7V8s9xeb9YWjOeq3JNv0hPKZ5vAPq6e9xYLtH2zBXj7cRKxT9HlxM52PtcANbw98d8SMScfNpo+hsrdd6RDhcMa8X3j1xItPucvFhs+PtaPe8fD8FrIAOJy7QTg3sK8T+Y+YUIrUQs58dyxLd/cK4JACzn58tUy86cdQG0vJKJBYbEczUhl6h/oh2cb6ae1YlXJrWb5pzjKPVdgp4YEhERERERERERERER6RjqGBIREREREREREREREekQ6hgSERERERERERERERHpEOoYEhERERERERERERER6RDqGBIREREREREREREREekQ6hgSERERERERERERERHpEIVjXQFZbmEFlmmLW12i2HILi/jcyaoHv/LJj3UUP7PI8a7VbDA+tisa613b7Zbb0r0mOn3tTK9bZsOAHytXim5sfKLmxoqV+G8nCq2mW2b7rr1u7Nrrb3VjN90W304Au3eNuLEC9ej0U07e7JexhhsbGfXrv3W7v6127tgenb59U3w6wJpV8e85U3IjxZyfaMdG9kSn33SDn/HzuUTM/HUV8nk31mr5ywwhHkusimLR34elc5kZpVL8WKm3EgWb8Rxmzr4JEBL7tLc8gLxTv5Rmw19epeQfCzsS+ffbl33fjd3tAfdzY+c/5MHR6b+6/nq3zNTkhBsrF/1Lr96ushtrONskn/O3b193jxubmBh3Y5MTfv17e/ui00PL3+EKiZxdLidyWyIpNhr+ecyccjMzM0dcRsQsRz4Xb7MG/FzVdC4Ka4k8W2/6x9G27fvc2PS036ZetWZLdPqO0Xj7EeDLV/q5tP9B93Rjv33KOjd2yt6b3JhZvD3VSmyrlFYiH+UTiywWnPycaPffvnOHG5uu+TkndYruXzUQnX7O2We7Zbp6/HwPfnvVUrk7sf1zziKbLX+/yue73JiIlwcs+M8ytJxruEYucYRZ6uhLJIgTvJ0QnM/dNP8zF1p+G62cuFYfr8WvxwFyrcn48kqr3DI1UrkjkcMS9zzMeUYmJJ6dscT+kb4fnSiXeFQnuDeXF1OP9PlUTwyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHSIwrGugBz/Qiv4MT+EmS1mbYlIKxFLVsSZnihC3g8mVpW0mM0hcgJrhSYztfFobF2xyy13+qZ10eldvX1umUqXv7xW4kzXavjBknPQFvN+fujuKrqxdat73NiW2hp/mRV/mZs2rI1Ot+aUW2bf2C43NjKyx42NTc24semJ+O9Muiz+/QMUi/7yuvvWu7F8q+TGms75ql7zt8eunXe4sZ6+bjeW2g+s4Mfyhfj3mU+cM0NRv+ORgzWbTfaNjkRjXeWKW65Yiu+DrWbTLdNq+W2weq3mxlL1qDjHSWOi4ZaZmJp2YyPjI25szUY/xz77Oc9xY2eddW50+k+37XTL9JX981GiKctAn3+OCyFesDbjf2ej+8b8aiS+z3zRP+c0nXpYqnGcWFc5kUebLf+zzdTqbmyi4Zfz1Ov+8qSzGTmKxNsCXcHPRwXnvF2b8dsjraK/PCve7sbWrvVz5montvcXfltw609+5caus1Pd2N0ee7IbOzlxfinUnfxR8ttFuZzfLkrFag3/fLX1tvg2vvnmW9wyO3fvdWOW8/Nbzvw6Wj6+PS7/6Y/cMve5133d2EMveJgby/vpHjN/W2Hx6ycz/1xQSOR76XCWuHeYuIcWnP0t5BL3FBP7aPpG32JvAh4fCk77rZXIU7XEtt91zffc2LZf/p8by+XiC91wxvlumY3n+jG6/fZ9I/gfwIvYIu85J9vBqXvcqf3b+c5S3GPiEOV0p0FERERERERERERERKRDqGNIRERERERERERERESkQ6hjSEREREREREREREREpEOoY0hERERERERERERERKRDqGNIRERERERERERERESkQ6hjSEREREREREREREREpEMUjnUFZLnZokq1Wi1/ieb3H+YSXYsheNOdAJDL+fU38v7KFiNRj1bwt4dfKh3Med+NLe47EznemRnFSika6+oqu+XWre6PTu9dFZ8OMNPw6zGVCDYbNTeWr3RFp1cqFbfMqT3xzwvQ19vtxu41PuPGCkU3xCnr+qLTR/btc8ts37vLjTUbU25setKPhXo8P+/rSeT0vH8CaTT87bF3xP9s4/X49Mq4X+aOnXe4sU2bTnJjG9etc2PdPb1uLJeLnyhCy99PQ9P5YNLRQmjRqMWPlZlEg6SVjx+vhZyfbPJOGYBS0S+Xal/Wms3o9JBoF03NJI6Fop9/Tz31NDf2va9f5se+9pPo9NUFf3sUnXwIUEu0LycTObZcin+2RsNf3sTEhBtrONseICS+s1I5fu6u1RP5K7EvFgv+pWi95i8ztV/lne+mXvP3ndT+LZ3NgLKze9QSl3AzTMfLNPzjslLwY+vW+vmhO/j77623botOP3mjv66Tb/XbZ7+8w29DbttxqhubWRVvUwOUnG2VS5yTcuZfR+wb8z/b93/8Izd2xx07otML5m/fQsmvRy7RgG80/fxWcO5RjOwadct87avfcGPTU36b+uEPubcbC+bnWacpm8ylhbx/jpZOZ+49sdSdsuR9OZnHGvEtWWj47cEdW690Y1f+7/vc2IZG/LwD0NUVv0a+8bar3TI2s9ONnXr/X3djtbx/rW4hnoNz+Hlv0XvjCbAT64khERERERERERERERGRDqGOIRERERERERERERERkQ6hjiEREREREREREREREZEOoY4hERERERERERERERGRDqGOIRERERERERERERERkQ5RONYVkKOnFYIbs5zfR9j0izE9OeXGarV6vB6tllum1Wq6sXzB313L5bIbK+bi5cplf3lm5sYC/gbJ4ZeD+OcOie+FxPJSdRQ5HpjlyJe6o7Fc1yq3XKsyEJ3eLPYk1tVwY/man6eKRT/3dff2RqeXuv16lAr+8dzV5eepk9b6ua8+M+rGirl4nt20Ya1b5oxTJt3YNbftdWM7R/1y3qeenvG/l207/HX19rsh9k3W3Njtu/dFp08k6lGudLmx3aPx5QHUz4xve4CTN53kxroq8f0gl0jpuVRQOlaxUGDDOu9Y9/eZeiN+PJjfPKMx4x93hWLRjc0k2olT9fgyd+z2c97EpH8sjzf9Y3JsasKN3XjTN9zYuvWbo9MfdK+7uWVKxbwby9Uqbqxlfrs05Erx5RUTbeOu+PkXYHpsxK9Hop2+ZzRebqbmfy8DqwbcGK0ZN2SJ9nEzcb1Qca4XcolrHRFPjhY9DSePBf/427Fve3R6s+nn0mbJzx179+7xy+X942F8Ol6u2Ocfs6s2+W30XPDzyo6ReJ4CyPdN+8vMx4/1yfqYW+aWG+LbF+Dqn9/kxvaO+e26Sk+8PdjV5bf7c3k/r6Su8UPwz9E55xZdLu+fa+sNf/v+4AeXubEzNq92YycP+PvBTN25r5G4caS2rLhCIDhtj8XeK5P5vBZybWSnWybcfLkbO7Vn3I3tHfVzVXMyXq7Mbn95137Hja0+9Ww3lj/Vvx/SSu1WjvTt10QwuQ8vdz0WRy1kERERERERERERERGRDqGOIRERERERERERERERkQ6hjiEREREREREREREREZEOoY4hERERERERERERERGRDqGOIRERERERERERERERkQ6hjiEREREREREREREREZEOUTjWFRBfCCERNa+QW6KZiO0eGXFjV//qV25s+7Ydbmx6ejo6vd5ouGXy+bwbq/shKl1dbmygpy86/aSNG90yp2xc78Z6eypuLLRabqxSLkenl4olt4zzLQPQbDbdWC63uD5fs9QaRY5MC2M6xA/cPXV/X2uO1KPT82PjbpmZmXi+AWg1/Zxz0tp+N7aq2BudbqV4TgEoFBJ5uznhhoJNubFSwc9v3lYsVnrcMievX+3H1vqf7dbtu91YdznenOip+HVv1OPfM0Cz4ceKiZZLuRTPfWNTfm4em/C3fS434sauueFGN1Yq+ZU8ecO6+LqKifNfM9UekE6Vy+Xo6oof66k2pNVr0elTkzNumVLFb/uUEwdlvRlfF8DuvSPR6dvG4tMBrNDtxhqJ466na5Ubu+f9znJj+8bj9d81tcst07fBz7GVgn+cFxeRA5qJlmK5299W5Zr/Xafagl7bs5Xzz7PTiXZ/IbGuQs7fHs2mf47w2gOpYyKXWJd0ttBq0ZicjMYqOX//7W3Ec0e9UPRXZv4+umffHjdWM7992SjGj/X+Pj8/rD7Jz2G9t/lt8dpNV7uxqZZ/P+HmiXg+vWaXfz176023u7HGtH+N3NXrf+7+1QPR6aWyf62euh7PJ67Hm63EPZtGvM3aTFzPWOJcMDE+6sYu++733dhvPvqRbiyE+Oeu1/x9sdmMH0ci4J+jdQW0PIKTxrpXx69LAQonnePGpm/zc8eufX7bf3Qinjs29frfdI+NubHxbde5sTWbzndjDUucizuQnhgSERERERERERERERHpEOoYEhERERERERERERER6RDqGBIREREREREREREREekQ6hgSERERERERERERERHpEMdNx5CZvcbMPm1mN5hZMLObDjH/Xczsc2a218wmzOzbZvaoo1RdEZETjvKsiMjKUY4VEVlZyrMiIitLeVaksxSOdQXm+GtgD/BjYCA1o5mdBXwXaADvBEaBPwC+bGZPDCF8dWWrKiJyQlKeFRFZOcqxIiIrS3lWRGRlKc+KdJDjqWPorBDCDQBm9nOgNzHv28gS1P1CCD9tl/kI8AvgfWZ21xBCWNnqLo9FV9Mp12r5RW7fts2Nfe/yy93YLbfd5sbG9024sbGxffHpo6Numbve7Tw3tuXcc9zYtm3b/djtO6PTt956h1tm65oBN7Z+7Wo3VgtNN9bVF9+lT920yS2zqqvLjfX09LgxEcdRzbP1VottE/Eccdt1N7jl8rfFj+d8vuyWmZicdGOTtWk3dtrGtW7sYS2LTi+X/OOy0Ft0YxbiywNoJZJ3T3e/v0znwV/L+Q8Erx3wv/YzT13nxu7YvceN1WYa0emruv3t0dfrf5+FvL9r+aWgu5yPTi8WEts+XnUAQuJ72bN3zI2Njo27sVNP2hidvqpvwC1TbyQqKceTo5pjm80W+8anorFUQbP48VDoqrhlQmIfLOT9fDNer7uxppOnTt5ymltmYN0GN3byltPd2NRUzY1t23q7G5vctyM6/axz7+qWySVyfbHsb6vR0RE3Bs53ltj2tfqMX49iyY2lzkfNZjxWLMZzL8D0dHwfBag1/T3V34pg5per1eOxfOK82NXdnVibHGeOap4d3zfFN7/982hs/Tq/RbJ7LH5NuPGMk9wytV7/2JvBv+YudvlHS1clfqybf1jS2LnXjQ3s/bEbK+8ZcWO76n1u7IfXxK8Jthf9a+5czv/Mq1avcmOVsp/7ioX4rbGZGf86ol73z43euRZgatpfZsHi+bSQPLH7wa6Kn/tuvtm/z7Ptjmvc2Ob18fsQM01/39l7k3+/Ro47R/3erH+0LOZ+6QlxK/ioalm8Pd7o9vPsRM8Zbuy6bf69lzV5v/25akv8HNhd8Nvp/Yn7K61p//5Eazp+PxrAutdEp58YvQg+c/b9VJsajqOh5GYTz6GYWQ/wZOCS2cTTLj8O/CtwLvCAlaijiMiJTHlWRGTlKMeKiKws5VkRkZWlPCvSWY6bjqEjcC+yHwx/LxL7fvu/Sj4iIounPCsisnKUY0VEVpbyrIjIylKeFbkTOBE7hk5u/3drJDY77ZSjVBcRkTsj5VkRkZWjHCsisrKUZ0VEVpbyrMidwInYMTQ7CHRs4MLpBfPMY2YvNrPLzezynTvj750REZHlybO1xLjbIiIdbFly7MRU4iURIiKdbVny7EzNf3+siEiHW5Y8O7LXf0+MiKy8E7FjaPYtV7G3PVYWzDNPCOGDIYT7hxDuv379+hWpnIjIncCy5NlSMf4SVxGRDrcsObanq2tFKiciciewLHm2XMqvSOVERO4EliXPDqxesyKVE5HDcyJ2DN3e/m/skcTZabFHGUVE5PAoz4qIrBzlWBGRlaU8KyKyspRnRe4ETsSfc/+M7FHFB0diF7T/e/nRq86x0WqF6PTdu/a6ZX7wgx+6sZtuu9WNjU9HO/kB2De2z42N7YvHJib95eUL/i553pnnurE1lVVu7PpfXh2dvvXqG9wyd7T8YQMGVve7se41A26suLovOn3fhL89zjxpoxtb0/CH6erujj6xC0CpVHJjZuZE4vtbu1QiJieoZcmzzQCjzfi+s2e3P5zn6PiNzvIS+2FiNywUim6siH8c3Xx7/NdL3WX/NxWTA/4v+PvK/rp6yn7OCcFfZq4Y+4EWNOoTbpli0d9YW05e68ZGx/0hom+/Y1d0enfJ31apc0uu7n/XlvPPE61GPTq9WY+NcDBbyP81cC7nb/uZRs2NjU/42x+Lr2/VqgG3SLPR8pcnJ6JlybGWy1F0zun++dxXLvvH1sykP2zdZGKopXyX3z67+z3OiU4fG52OTge4/sab3Fhr2q//9t273djOPfH8BXD+Pe8Wnb5hlf+59m6/3Y9Njbqx6UR7cMPaddHpljgvhry/D1Qqfm5L7TsjIyPR6akc1VX2252tpl+umLgmSD2R7FU/tTy5U1qWPNtqQW08vlONB7+NM1GLt0cmxv38Viz57dWxKb9d0Z/32zF9Tptj34Rf94FEnurb5l/77835sZvWxHMY+Llq3Ro/z3b1xq+rAXoTT9Omck7N+c6aiWvumRm/fdlsJsrV/f2gnI9/N5XENXxvj3/tj/nniQL+Pnf11de4sYlt8c/WrPtt49tv98/DcsJapjzbZHw8nj8aiWOs3B2/Dk7fuzp6FlsLW4H65y2+rfZu/ZVb5odf/Zgb2719mxs77S4b3NjZp8bvr+QT+S1vfi7Nr664sem8n4+Cs42P/p3NxD2PI5wOkEvk+5QT7omhEMI4cDFwoZnde3a6mfUCLwKuBS47RtUTETnhKc+KiKwc5VgRkZWlPCsisrKUZ0XuHI6bn06Z2XOA09p/rgdKZvb69t83hxA+Omf21wCPBv7PzN4DjAF/QPa44pNCSP2sXESkMynPioisHOVYEZGVpTwrIrKylGdFOstx0zEEvBB4xIJpb27/95vA/uQTQrjOzB4KvB14NVACfgw8IYTw1aNQVxGRE5HyrIjIylGOFRFZWcqzIiIrS3lWpIMcNx1DIYQLj3D+XwJPWZnaiIjc+SjPioisHOVYEZGVpTwrIrKylGdFOssJ944hERERERERERERERERWRx1DImIiIiIiIiIiIiIiHSI42YouROF9+o0s8Q71RLvW0u9ii1gbuzS7343Ov2yH1zulhmbGHdjzUT9C8WiG9uyaZMbq5xxRnT6xpP8Mmc4ZQDKOb8fc3X/Kje2yanj+K7tbpkbL/+hG9u5fYcbK3eV3djq+94nOj1Hyy2zrr/PjdVbfrlVjbobK5X9Og70xdeXT+wfZnk3Jp3Ncjny3b3RWD/+PjVTr0Wnj43v89eV9/NDoVBxYynbdu2JB0LTLbN3oMuNbV7vx07d0ONXZGLSDZUr8e1Ym/a3Va0248as5eeO3rJ/rK/ti2/jmRl/W035q6KQ9887uVZi33E+Wz3xmXNFf/8o5lMnaT8HFwt+uZw52ySxX+VyfntAOptZfN/wpgPknPZUzvw8mi+U3NhUos1Rq/v1GN0ez7HX33iLW+aG629wYzM/ucKNDaxZ48bOv8+93NiWjRuj0/ft3OaWmRwfdWPk/eO8q8vfxrQa0cn9vfFzLMDIRLwMpHPi9PSUG/NS0eo+vx6W2K9qtfj5HiCf9885XRU/b+ecfT8k2h2tRJtaOluhmGfVyfHro57gH7Mli++jIZEv84kbA/mWf6xU6n6bCecYqzjtc4CTN/mf66af3eTGbh9z2s3ATyt+PurOx69NiyU/l1reP7dMT/k5LJ/z88rMZLxcveZ/Z6Hpx3KJdmK94efgUIrXsau82i1TSGyP+pR/3slX/O/61u3TbuyaX8bP0+Pju90yu/b4Mels9XqD7dvi7arplt+GqPQ4eTZx+Za4xbrsUqtKVTF1Hzj50RLtrYbTtvvWFz/rltn640vc2Dnr/PNOq+7nnKJXxVzifmPTX15f2d9WMw0/h1FObcnjQ/Das4lrvKZzb/ZQn1ZPDImIiIiIiIiIiIiIiHSIJXUMmdmFZnaRmd1mZjNm9m9zYo8zs782s5OWXk0RERERERERERERERFZqkUPJWdmbwFew/wn5Ob+fx14FXA78I+LXY+IiIiIiIiIiIiIiIgsj0U9MWRmvwW8FrgFeAawITLbJcAu4DcWWzkRERERERERERERERFZPot9YuhlwBTw+BDCNXDwS25DCMHMrgXOXlINRUREREREREREREREZFks9h1D5wM/mO0USrgN0DuGREREREREREREREREjgOLfWKoAuw+jPlWAa1FruOEElrBjS14mOqwg63gx3700yui079z2Q/cMo9//OPd2N3OO8+Nbd682Y3RbLqheqMRnX7yKf7yavW6G9u1x9/lxmem3Vh5VW90+pOe5o9y2HjgvdzYjz7xaTf2yyt/6sZu+NmV0emnP/ABbplKb58bC8Hf57bv3uvGavWaGzt986nR6esH4tsQwBbdvyx3dgGj4ZxmCqWKW67S3RWdPl2f8leWyKWlQt6NzSRyzu6x0Xig5ec9a/jHSjnvlwv4sZHdt7qx07dsjK+r4C9vdN8+N3bbdj93jO6bcGOlUjE6fWzC374zLb8J0kq0HOozfg4bm5qJTo+fjTKVvJ/DWk2/ZCHn5+CerrIfc/bvSld8OkCu4C9POlgINJ12WCtxEOXz8ZzYavplUsd/ocvPezM1PwdMTsWXedL6NW6Zen3SjU1M+23B0884zY31d/s5YPe2W6LTc81Ebqv556r1G1a7sUbNz23bt98enT466p9LyxU/li/4+TfVqhsYGIhO7yr6OWpsbMyN9ff0uLEmfo7N5xK19K7J/MVRysfPYSJWKFBaHxs1H7pXDbjlmtu3RqfvHvHbWY0ePwcUcv4xWxv3c05/JX5sWqJhVJ7w63FGwW+rXD3l5+Abt+9yY+t7+qPTC9N+PYqj/vJqNb8NXCyW3FjJ2Vap82k50YZsNvzzRCtxHd/btzY6va8/vp0AmolzUj1xHu4qd7uxNWv8c/GaU9ZHp9+29Xq3zOq18TIA/N/P/Jjc6ZlB3rlezzVTrRLvOErdgD2aEveIE6Wa+PcuQqJkKZGPfv6TH0an/+IH33TLbPHTPT1+Fcknrp9rM/Fr9Z4uPzf39/jt2VzLP+/kan6s5TQ/E03FFWHJNca/z1aipd50u3jSx8Ri7+jeBtwtNYNlY8vdHbhhkesQERERERERERERERGRZbTYjqGvAHc1s6cn5nkBcCrwpUWuQ0RERERERERERERERJbRYjuG3glMAh83s9eZ2ew4ZEUzO8PM/hL4B2Av8HfLUE8RERERERERERERERFZokV1DIUQbgKeDswAbwJ+TjYc3yBwHfAOsiH9fzuEsG1ZaioiIiIiIiIiIiIiIiJLsui3xocQ/o/sPUPvBX4JTJF1FF1H9rTQPUMIX1+GOoqIiIiIiIiIiIiIiMgyKCylcAhhK/Dn7X93IraIIn6ZVqJYoxnc2FSt5sZ+7cJHRqff8z73dcuce865bmzVwIAbK+TzbuzKK65wY/39/dHpjZa/RUZHR93Ytu3b3VhPb3xdABs2rI1OX9VdcsusPuVUN7YuEev61iVu7Mrbd8aXt2mLW2am5u8fX/zCF9zY3r173Nh9zj/fjeVy8b7i/u4z3DJd5aIbk05nBOc000r8LqFUKken9/f0uGVarYZfi9B0Y9NTE25sPB8//grNulumK5eqx4wbu/7WaTe2Z3c8dwB0dzvHbE98GwLcsXPEjd2ybZcb27vPr3+xEM8DY9P+trcu//ucrvnbcWLK31Yzzfj5pZzIUz2JbVUqJ5pJiXNZo+7vI7lc/Jzav2qNW6ZY9reVdC7L5eiqVKKxRPOSmVr8WN65a69bJldItJmc9h5AcdrPGwPl+LHXSOTYfd3+sbx6oMuN9Zb8DdKaGnFjoRxfptdeAkg0mykE/3qhXPHrP94Vj01NTbllimX/O+su+bH+3l431nJy7My0X49S0c+jvYnz+tj4PjdWryfOR/n4+qan/XNHJbHtpbM1gD2NeP6YmPH3w5KTZ2sz/n4Ymn7yCDk/97XMv2fg5aru3Gq/TN5f12l9boh8zs8r+/aNu7HgnLD6errdMqWGf55IHevFol/HciV+TioW/e1R7Pbr2Gol2sBOWxCgrze+kbsS5+HRCX/71hP1yAb9ietyzjsA69fHzxMzM349zj77rol6fDoRk47g7Iq1xD1Rc+7bJprAJ4RU/YuJRztGd9zmxr71v5+JTm+Mpu6xxq8xAPq7E23unkTOLMS/s4EB/+Syyq8Gk+a3MXOJWOs42UnCIvoecol7W4UQv4dihzgqFvXEkFliC4uIiIiIiIiIiIiIiMhxabFDyd1hZn9vZvdf1tqIiIiIiIiIiIiIiIjIillsx9Aa4CXAD8zsF2b2SjM7ZRnrJSIiIiIiIiIiIiIiIstssR1DpwGvB34FnAe8DbjJzL5sZoNmpoGaRUREREREREREREREjjOL6hgKIdwWQnhbCOFuwAOA9wF7gMcCHwW2mdm/mdkjlq+qIiIiIiIiIiIiIiIishSLfWJovxDCj0IILwdOBp4CfBYoAS8Avm5mNyx1HSIiIiIiIiIiIiIiIrJ0heVaUAihCVwMXGxmq4A3Ay8lG3buhBJCOOIy9UbTjTVaLTc2MV1zY9O1hhvbdMqW6PTVa2fcMvum/NjYxDa/HjPTbuyaG29xY6dt2Ryd7m8N+NxnP+PGvnXppW7sbve4hxt77nOfG52+ZmCTW+aWPaNubFfie5na6C9z943bo9Ov+ZXfd7r9Dv972b5rrxvbti2+LoB6uMKNTUxPRqefsmG9W6ZrQ48bkw5nRq5QioYKOT/PllvxfNpnebdMs+7n0mYipZv5sWIrXjDU/HWNjo67sT1jfmxknx87aaDoxox4HWvTdbdMq+l/6Lqf3tg5ss+NzTir6+pf65bpycf3DYCJxPaYTJzLPN0Vv7mzZlW3G8vn/N/P1Ov+Nq43/H0kODtdqeyPwruIZol0gJwZlVIlGts1NuaWG5+J75+9a1a7ZUpFPw+1ZuJtB4A1Zf84r4X4MXTr7l1ume6Sf0y2Ei3MdT3+cd6d95dZzMdzR2j66xro6U0sz98e4xN+3isX4t9zZZWfNwolf131un/dEpp+jjXnvJgr+Ntwasq/jqg3/JNO3dlPAerBL5crxtsKBee7BJiYmnBj0tla9TqTO26Pxpr7/DxgtfixUir5bbByqc+NFUt+Dm7U/PZIrRE/NldX/HW1evxruzM3+g2S85snu7EfXHebG2s6x/pMwT9mm4kc3EjklWYzkfuCs8xEI2w60U7MJWKlRD6q5OLf9XTiOiIk7k90OddikN4eqXaucypgzRr/nkF3r+4ZiC8417S4009sAf9ckEvcn6Dut7m/++X/cmNbr/lJdPqZ6/3j8owt/nXBQI//vaxfP+CX64+3kUsF/0Pni34uDU3/3Eg+lXO8ZabuVvtS95S8a39I7wc456Rm4rprZOSO6PRG4l4ZLGPHEICZbQAGgecC925PXtyWFRERERERERERERERkWW15I4hMysDTyXrDHoskAcM+BXwEbJ3DomIiIiIiIiIiIiIiMgxtuiOITN7OFln0DOAPrLOoL3AJ4CPhBB+sCw1FBERERERERERERERkWWxqI4hM7uB7N1BBjSA/yF7OujiEEJ68DoRERERERERERERERE5Jhb7xNDpwE/IOoOGQwg7l61GIiIiIiIiIiIiIiIisiIW2zF0rxDCz5e1JiIiIiIiIiIiIiIiIrKiFtUx1MmdQqOjo9HpYxNTbpmu3j43dsvWbf669k24scmp6ej0Ead+ABMT/vJqMzN+rN5wY6Pj+9zY+FR8m4zt8R8w++jHPurGJqbjnxng5ltvcmN9fT3R6b/7e891y9x2+w43dv3NN7qx7//wMjd2zZVXR6ffcv3NbpmNp57kxvr6+93YyVtOc2O1uv9d/+Dyn0Snn3+3u/jr2rDRjUlnM4NcPh+NlYvdbrnVvb3R6V3BX9f0Pj8HNxt1N1auxOsH0NMXP0VOTfl5b88+PzY644+0WiyYG7vr6Se7sf6eeH7Lmb+84oS/PepNv9zYlF9uphnfjj35iltmfNw/J43uG3NjraZ/TqqUStHppYL/PZcTsXwiVqv556RWy69jsxnfjvVEbjbz6yGdq95osG1XvL0y02i65Url+HGZC/5+m2/6Cbir4h/nBfx6TM7Ej6Fu5zgGKHeV3di27dvdWKj5n608sMqNebm00uPXsV7zc2WyLV73y5lzLm22/O1rrZYfcyNQT+w73V1dTsTfP3IF/3Kzltivil3x8xtASJzXR0b2Rqd71wMAljhnSmcr5IzV3fF9eNXqoluubPHjr7HXbycWgn+s5Js5N1Zv+jm4qxK/D1Gv++2Kykb/2m5gr9+Wfdiae7qxH117mxuzejzn1Kf9dlGj5OepfM7/bCH4OceLNZv+uqac+x0AXW6+hN6e+LUOQLMRP1/NTPvryuX9HObXHnKJbVVKnIuLpfi5uJg6f3f7137S2fL5PAOrBqKxCZt0y/nH80qc0xM3Ilx+PULwY6nr1p/98HI3dsmX/tuNDZTj6ztpvZ+LBvr9HLa6369j/yr//nexFD/PdSfuyaS2/JT59a+X/PulLYufU3MhkTET31kzpM47/iJTGbrsNAluvf46t8zI7fF71TNT/vUHgN/CEBERERERERERERERkTuVw3piyMyaZB11dwshXNP++3CFEBI/fxEREREREREREREREZGj4nA7bIz5z8EdybN5ejZfRERERERERERERETkOHBYHUMhhFzqbxERERERERERERERETn+qYNHRERERERERERERESkQ6hjSEREREREREREREREpEMc7juGOsrU5JQbe//7PxCdvnts3C3zyMc+wY394upr3Nje0X1urFZvxKfXam6ZZrPpxkIIfsz810TNNPxlNpz1/eh733bLkPPXddfz7urGJsZH3dh3vhNf35ZzznPL7JuedmPbbt/qxqZGx/zYRLyOI/mWWybs8rfH5MykG+vt63NjzZb/Xe/ctSc6fcfuvW4ZEZ+BxX9/EPL+7xKsWIxO7yl1u2VWd691Y6FRd2Pdvf5psBYmotPHphLHed0/f5QK/rG35eTVbuycMza4sZ7eSnR6s+XnjvGZXW5s+4ifS8em/PNLsSuec6brfpm9e3e7sXpzxo2VCvH9AyCfKzll8m6ZRqKOZv66GnV/v8oX/O2fy8XPjc2Wn9PzhbIbk85lZuRL8X10w8CAW67RiLchW3X/uKPht4tmJv1jYSrRTszn48frurXr3DKWaCfWJv06juwdcWOrB/z86zWZ9uzxl9ds+u26esPPN61EW7yQj3/urop/XkxdE0wl2rn5vJ8vvXb6zIy/vGIiZwfzP/PYpH+uLTn7DkCPs01C8Pcdc7aviOWh0hdvszYSt1IKxfjx19Pvt39zuXhuBrCmfxwVE22V6el4Xm/V/OOr3OfnjsmT+t1Yftw/hxSc6wGAlnPPoJVoZxWLfp5K5bBK2W9PeeeXVsvP6TMz/mfu7vbzc1+fH5uajn83qe3RU+lyY63EtX/qnJpLbMd8MV4ul1heMH//ls7WagWmnXZEq+W3IxfzNvuQKGT4x7rhH0eeVuINLLmcn7cnRvxr9Uu+/EU3tmeXf8/upC3xa/Wy+Z85l2gb9fT2urF8wW+jzRDPwVN1vx3ZslVurN57phsLZT/P1p3vs5Rqiwd/WyV2HVrm59JWyz+H3H7Tr6LTd9x8tVtmcjS+DzQS98NgCU8MmVnZzF5pZj8ws71m1nT+6QwgIiIiIiIiIiIiIiJyHFjUE0Nm1g1cAtyPQ/fT6idYIiIiIiIiIiIiIiIix4HFPjH058D9gS8D5wIfAQJQBu4OvBWYAt4WQuL5ORERERERERERERERETlqFvuOoacDo8DvhBDGzLIBokMIdeCXwF+Z2TeBL5vZVSGEjy9PdUVERERERERERERERGSxFvs0z1nAD0IIs2/GCwBmB96qFEL4KvB94CVLqqGIiIiIiIiIiIiIiIgsi6UM87Znzv9Ptv+7ZsE8N5MNLSciIiIiIiIiIiIiIiLH2GKHkrsdOHnO3ze3/3s/4H/nTL8L0FjkOo6Zn//i527sox/9WHT6TOJVSuMzLTc202i6sbpfjHyhGJ3eCsEtY/7iktHUMuv4sV179kSn37p1q1vm9DPOcGMbNm50YzffOOHGdmzfHp3+3e9/zy1T6OtxY/UJf13FnL8fVHor8UDJLUKtPuPG9ozU3djI2F5/oQce7DvI1GR8ffvG/c8s4glAy8mNzcTvEnaN74tOH2nEcwpAT9E5voBCIvnlE/l5YmYsOn1s3D++8gU/J5601s8rZ2xa5cbKRf8DNJ3qNxI5fc/kpBvbO+7HQj5+3gEoluKJ7I6d29wyE5Px7xmgWPDzVCGRZ3POxy7k/TKt4O8DU9N+Ds4nllnK+82r+vRUdPreXfFzFUALf3tI58pZjr5SPPcVLJE3GvH2Q23SP9dPJfJGd2+fG6vV/cuAclf8GKo0/eOnmDgWuir+eeCOHTvc2M5du91YuRzPbSO7/fNAueTnSszPN9OJfNPTEz9/5Iv+uqan4rkGoNHwvxdL5Njxqfh+YIlzei741zqrV3W7sU1d/n51+213uLGis02m6zW3TCHv7zvS2awBhT3xfdjK/rVYaU18n8p3+2WK5rchmfaP2fGZaTc2NhHPK32JNl1+2q/HaOL+RC1xa2mg18/dO8fi26TR9M9juZp/PBcT54LuRMz71C2vsQ2EWiJvF/3PbE1/P5h07jVUSv72yFvZr0fF/156yv53XcD/bI2p8Xg9yv66ahP+dyadLYRAvRY/JlqtRF48xB3OeAl/eSF1TzT5TIVTLtEWLxf85f30yp+4sauu+LEbKyaqmHfOL2tW97tlurr8vDLT8vNib8EvF0I8L+6Z8m+K1vpOc2OF/tPdWC6x7xTz8fqXc36bdfct17oxav510smnnOrGbt3mX/9ffulXo9NX9/a6ZYqV+PdpiXvAsPgnhn4CnGdms+W/QXY0vMPMzjOzPjN7FXA+8LNFrkNERERERERERERERESW0WI7hr4ArAceDxBCuBz4InBP4OfACPDXZD+8eNOSaykiIiIiIiIiIiIiIiJLttiOof8ENgPfnjPtWcA/ATvIho/7OfA7IYSvL6mGIiIiIiIiIiIiIiIisiwW9Y6hEEID2Lpg2gTw0vY/EREREREREREREREROc4s9okhEREREREREREREREROcEs6omhO7urr7vGjW045VQnUnLL7N61242Venvc2Eyr6cZozkQn5zC/TAh+LFGulSgXcn658bGp6PR8oha16ZobyxfKbqyvd40bu+O27dHpe3bc4ZbpDxvdWEh9LeZ/utVr48ucnJ5MrKvlxnI5f1355Fb2lXLx7V8sJPYrEU+AViueP1qJ3yW0cvFT03TLP1bG9o26sRz+cVQq+vt2IR+PWck/dRYSP7coFf1y5XzRjU1Pp+ofnz7Z9BPVxHTDjdWD/wGC+bF9E/HvZvfIXreMmX9uKeT9bZXL+fUoOF9AqeTnRK8MwOTUtBtbt6rfjfV1+eerhnOeG90z4pbx9wDpaKFFczreHtyzc4dbLOed01v+nlZv+DlldN+4GwtOPgcYnd4TnV5ItEkLiTy0e6+fb2674/ZEuXg9ANavXRed3tfT65ZpJrZjIZGL+hI5JZ+Pf+6JyQm3zMSkf85sNPzzwEBXxY1NT8b3N0t8L6Vilxs7ad1qN3b2Fr8t3l/295Fdo/HPPTZZd8vMNNXOlbhCzlhTiZ/TazP+dWth3Ml9XX57j7J/rEw0/HZuoxU/LgFKzfj6yok2aQm/feaeP4D+sp/f7nXOKW7sK5dfG19X4lrBan4OC1P++aqZ98t57dJc4n5HwfxYt7PfAFjT38bNRvwcYoldZ/Na/57SeZsG3Fil4G+rVit+DwVgemt8O+5N5NndU35MOl2gFZz9PnGMpZa3mFgrcS+vlby/Fl9mMXEF15oac2NX/fRH/pqa/nnHnG2YxZw65hL5vuFfB3vXswC1mT431lOO5/Vx2+CWqa+7jxub7vLPLZZo6zZ2Xh+dftPWG9wy11z1UzcW6vF73wAb1sevJQD2jPj7weaT1kenN1p+38P4dHz7hpA+jhbdMWRma4CXAI8ENgHemS+EEM5a7HpERERERERERERERERkeSyqY8jMzgK+DWwk9ahJJtVdKyIiIiIiIiIiIiIiIkfJYp8YegdwEvAD4G+AXwH+OBIiIiIiIiIiIiIiIiJyzC22Y+iRwG3Ao0MI/gDWIiIiIiIiIiIiIiIictxIvCY7qQL8YDk7hczsXDN7k5l938x2mtk+M/upmb3OzA56m56Z3cXMPmdme81swsy+bWaPWq76iIjcmSjHioisLOVZEZGVoxwrIrKylGdFOs9iO4auAjYtZ0WA3wf+FLgeeBPwl2RD1L0F+K6Zdc3O2H7H0XeBBwPvbM/bC3zZzB6zzPUSEbkzUI4VEVlZyrMiIitHOVZEZGUpz4p0mMUOJff3wL+Z2X1DCD9eprpcBLwthDA6Z9r7zexa4HXAC4F/bE9/GzAA3C+E8FMAM/sI8AvgfWZ21xBCONQKvRn2TexzyxRKpej0nu7VbpnR0TE31mVuiEai2y6XiwcL5hfyygCY+RVJbcpcYn31ej06vVDwd7s1a9a4sWIxvu0BTjllsxu76Ybro9Mn9o1GpwOsW7feje3aM+LGdu/e7cbG98X3q6kp/8G7RrPmxsrlihvr7+93Y7nEPnfSSfHtf95d7+IXkhPFUc+xmZYzNe+WKHXF999KV1d0OkBo+MdRnqa/roL/MQq5eKw2M+GWmRrf68Z2j/p13Lum4cZW1/w8G6bin23XPr+Oe/ZNubGp6XjeBpiY8vNRI8S/56YzHaCQOO8Ui/55oqtSdGOVrnisUPT3t2Lejw10++edLSetdWOnbjrJjfWtWhWdnk+c45xdUY4/RzXP1hsNtu3dEY3tHR1xy63q7Y1Ozwf/mCw77V+AmcRxPlXzc5HXhhyfmnHLJDeJ+bE1awbcWD6RAzDn/NHy82EeP0eVC/52zBf8XN9yPndXpeyWySVy7J69/rmqkNge5VL8s7Va/ros8TvE0V1+W/yXe/e4sakZf/vXnf3YSt1umXLRj8lx5Ri0Zc09JnJ5/1gPzXh7qjnp57fRCT9Wb/qxXMs/Zq0Zzzn5xHFZLvrHc8nJAQDT036+P/+8s9zY1bfG88DtO/wcUCz7n7nZ9O/lTE5Mu7FczvmeE/dQcvnEPZSW37av1f1rgqbzXa8f8K/vH3jPU9zY2QMDbqxV93Pp9Ix/vbBnJL6NU7m0VfCXJ8eVo55nc7kcPd0HPYwEwPikv4/iLNpI3PBK1SbRbkopOPcaSi0/b19x+Xfd2NW/uNKN1ev+fY1UW2zPRDwf7R3z63j6Rv9atyeRg/N5/z7lxKpzotOb6+7lltk+4u8Dhb0/c2PjN9/oxm6+Pt6NEYr+OW7DptPcWK4Sv7YCaNT8887UDr8dXGnF63LT1p1umYc8NN4fW67499FgkU8MhRA+CvwN8AUze6GZnbqY5SxY5uULks+sT7b/ew+A9uOLTwYumU0+7fLjwL8C5wIPWGp9RETuTJRjRURWlvKsiMjKUY4VEVlZyrMinWdRHUNm1gReDWwAPgjcbGZN55//U4nDM9vptL3933sBZeB7kXm/3/6vEpCIyOFRjhURWVnKsyIiK0c5VkRkZSnPitxJLXYouSN5xm5xz+MBZpYH3gA0gOH25JPb/90aKTI7zX+WVkREAOVYEZGVpjwrIrJylGNFRFaW8qzInduiOoZCCIt60mgR3gtcALw2hPCr9rTZgUtjgyFOL5hnHjN7MfBigC1btixfLUVETkzvZRlzLMzPs6VDjGUqItIB3ssKtWVX9cTHYxcR6SDvZQXbsv09/nu8REQ6xHtZwTy7fsPG5amliCzK0ergOWJm9mbgpcAHQwhvmxOafVNfrJVWWTDPPCGED4YQ7h9CuP/69euXr7IiIieYlcixMD/PFhMvKxcRubNb6bZsd9l/uauIyJ3d0WjLdlXUlhWRznU08mz/wMCy1FVEFue47BgyszcCrwc+BPzRgvDt7f/GHkucnRZ7nFFERFCOFRFZacqzIiIrRzlWRGRlKc+KdIbFvmNoxZhZFagCHwFeFEIIC2b5Gdnjig+OFL+g/d/LD2ddrdCKTi8U/M3S09sbnb5+vf/44x07droxy+XdWLno18Py8T69QqKvL++UaS/RjQQWfgUHJKpPyylnBX9djdBwY4W8X27v3hE3Njo2Gp0+c0PNLbPjjm1ubNeOXW5szFkXQD4f31jdiaFgxsf3ubHE10JPj/vULmefc44bu/BhvxadfuZpp/srkxPK0cyxGJiTdoIXAMjHh+3IFf2h6fLm7/O5Vt0vh58HchbPR8XEwTc5Oe7G9oyPuLGrb73Dje2djD2hn+ntjm+TXaNjbpk7du91Yy2LnxcBykU/B+dDPFYs+L+0zSe2Y6XohigV/X2n4J0bE+e//h7/qYsNAxvc2CmbTnJjqxK/fKs149P3jfr7zkFHqRzXjlaeDbSYacTzQ77ktyEnpqbigaazcwL9+X43ZubnhkrBbyj29PZFp9cqfl5utfwcVa/7ub63z29rNRPL9NrivRV/eKlWw9+OpaKf3CYm3R/WMjk5EZ2+du1at8zAqvg1C0B3IsmmroNoxrdxo+EnqZq3vwGT3f52HJn2t0czkRNbpXhOD4nvLJ/T03cnkqPZlrWCYavjbS2r+8f6nn3x68Vizc9vG0t+ntqLv67JGT/3TTuxtav8fT7Vdpua8tukxZJ/jBUSbcj7nhd/DUmt6beLpqb8ewapN1yHxHbMObF8YoGlfOKJskYih3mNQeC0DfFl/saj7uOWOXPjGjdWDP66JhLbat+kv682cvF29b6RHW6Zk9YM+CuT485RvWeAkXP2qVoiZ/b4I9UtSup6K2d+sMu5n3DV5Ze6ZT7x7x90Y3ds2+6vq3eVG7vLebGvIrN+7ero9H2N3W6ZXXU/QdRzfts5N+7nxTXnnR+dXsutc8v89JKPuDGb9O+hFBv+vaNJ597s+Q98hFtm8znxugM08D9zcNrOABs2392NTTjnudWn+/viefe6V3R6xblnNOu4emLIzN4AvBH4KPCCEA7uuQkhjAMXAxea2b3nlO0FXgRcC1x2VCosInICUY4VEVlZyrMiIitHOVZEZGUpz4p0luPmiSEzewkwBNwCfBUYXPALxO0hhK+0//81wKOB/zOz9wBjwB+QPbL4pEhvtohIR1OOFRFZWcqzIiIrRzlWRGRlKc+KdJ7jpmMIeED7v1uA/4jEvwl8BSCEcJ2ZPRR4O/BqoAT8GHhCCOGrR6GuIiInGuVYEZGVpTwrIrJylGNFRFaW8qxIhzluOoZCCM8Hnn8E8/8SeMpK1UdE5M5EOVZEZGUpz4qIrBzlWBGRlaU8K9J5jqt3DImIiIiIiIiIiIiIiMjKUceQiIiIiIiIiIiIiIhIhzhuhpI7FnIW7xfr7u52y9RmZqLTp2em3DIztWk3li/7X0FqmTivcbPE+91arZYby81/odw8haJfx0az7samp8aj08f3jbllyqdvcWMTY3458zYI0Gw1otN379julhnxNwf5xLZa29/jxlohvv33je1Z1LqS7/Jr1NzQS//wD9zYbz75ydHphZz6kOXIhRBotprxYN3fR5v5YjxQKrtl8qWKG7OWn6dC08+zgXi+zxXiOQWgq+KfP6wVXx5Avenn5227R91YcXQyOn18xj/vzDSc7wQol0p+zPlawD+H5At+7iglzi3dXf53XSr6sYqz/devWeOWOW3Taje2pq/fjZn59U99toFV8fUVK32LWpd0rlwuT29PbzTW57RxAXDaD02nnQJ+mxmgL9FuziWaKmMT+6LTe/v85aXaPlNTfj4fHY2vK+N/tnw5nhNz+bxbJtXe7u3x24nlop9/e51tnNoe5UQdC4lc32j654ii0ywtJ04QTfzYeN3fVvW8n+uLZX8fqeOcj/J+OyGfS5zgpKOFEKg34m2q0PKv07qc4zmXyDdTNb99OdPwj5VW0z/Ww0y8DTw96bcTJ7v8Y2U6UcdK4jxhdT8/n3tKvI020zjbLfPjn13rxgh+Dsvn/ToWnVAu53/P3T1d/vK86xmglNhWFz74XtHpd7/XXd0yk5P+90Ih0d6ejt+vAagn7vNUnFNZ3jtJALXUvS3paKHVSrbhjnh5yZi/j5bxc0eY8a/HL7s0/jql//ufL7hlegb868/n/+bT3NhJm093Y5vP8HOmVVZFp4/uuMUtM3rDd93YDbdc5cZ2XHe9Gzur+ZXo9GbTz6VdOf972XCPB/mxU+/rxord8fWVev3r8Sn8cyOJc7QFPwevOfkcN7Y6Fz+35xP7acO595a6dQx6YkhERERERERERERERKRjqGNIRERERERERERERESkQ6hjSEREREREREREREREpEOoY0hERERERERERERERKRDqGNIRERERERERERERESkQ6hjSEREREREREREREREpEMUjnUFjiVzpp9y8ilumbVr10anT+wbc8vUp8fd2OjMhBtbs3aNG8uF+PS8WwLI+9Ebb77JjV13/Q1urNVsuLH73f/86PRnP+uZbpmx0RE3NrrH38Y7duxxY8HZWE/+jSe5ZV78whe4sZTe3l43dt2110anv+Y1r3PLbL39dn9lzj4AcO497unGHveYx7ixvq6u6PRWSKxMxJEzKDk/P2glduB6ox6dHqZn3DLBKm6sqxTfrwFKhbIbK+bj+a054+fS5oyf7wv4dezt8peZMz9WKvVFpw/k/dP72Lhfx6nJSb8ebgQKhfj6Vq8ecMs0nO8ZYGbG/65LJX87nrppc3T6Xc6MTwfoKbfcWF93vxvbvdffjjM1/9y4obsnPn3TyW6ZXKHkxqRz5XI5envi7Y6ic0wC1JxjL5UbZmr+MTnQ7x8nBfMzR5/F81cjcX5ItTvz+aIb27B+gxsrFvxy+Vz8aiGf9z9XPufHcu7VBzTqfk4c6F8VnT41NeWWqdf85XV3d7uxlGajGZ0eEuccy/mxXMU/P+dz/vdCYpm1mVp0ejNxLu0p+W0B6WyhFQhT8f1+OtUurcePzULB3w9v2zPqxupNP3cUW37OqbScci0/l45N+vcnSFwTzoz7OWeDcw+lvdDo1B6LH8sAOfO3x/i0X64/cU7q7Y+3L+uJy+DuXv9zlbv9/HbqGv+8edamdfF6TPht9JBopYfEeaeWOLeXu/z2dj7E17c2cXexUV/ceUc6gIE5x7R3jQkQnNyR2uctcce0tmerG/vFZV90Y9dedVV0+rnn3dst86DHP9mNbd5ymhtLfbZmIr81Q7xNtW7LXdwya9eudmM337rNjU2P+/ePd//ie9Hp/Vv8bXWXC/z7tutPv5sbs+BvqxDi53X/rgCE4EeDJWKJcrTi9QBoNJz927k2AbCyc97xiwB6YkhERERERERERERERKRjqGNIRERERERERERERESkQ6hjSEREREREREREREREpEOoY0hERERERERERERERKRDqGNIRERERERERERERESkQxSOdQWOR2efc7Yb27BxY3T61Vdd5ZbZs2OrG3v6057uxh76kAe7sUa9Fp3earbcMs2GH/vOdy91Y7ddf60byxWKbuwh93tAdPqvPegCt8xFn7nIjV39i1+4sTt27XBjZvHpZ595hlumVCy7sXqz6camp+PfC8DA6nXR6fe93/39ddV/6Ma6u7vd2BOf+BturFbz6z81MRWdXq7424O8s4FFAEL89wfNxO8SzIkZ/r6W2K2TwZA4C+Zy+ej0mXpwy9QbfqyS8z9zb9nPpeVSyY11dffF19W3xi3Tcr4TgFptxo3Va9N+uUYjOj0Ef3tMOvkGYM3qVW7stM2nubEzNp8and7fFf8uASYn97ixO3bvc2N7Rybd2FTD/z67+0ai0/OFilum0Ujt4NKp8rkcPV1d0Vi9VnfLeYdlyzmOAayVyHs1v+2zfa9/fJVK8X0+sSoKBT9p9/T0uLG8k88B+nv9ct098e07Mjbilmkljtdmog2Z8xqsQNNZZqXi541WIv82gr+u1LnWnPbxVGJdld5eN5bYHBQSbfFK2W8DV+JfGa1cYsdSjhWHYRSa8XZYa8ZvB+Sb8eOogJ9na9N+u6je9HPf9KSfg825Xtw74bdvSq3EteK0304s5BNtrSm/XMlp5568cb1bZsvecTd25XX+91Is+G3qRz3kHtHpm05b65bZvtf/Xoolf3s89MHnu7GBk+K5bzpxjVEo+OexhvnfZz2RS0ur/M/NjHMvard/36vhbw7pcCEE6vV4uzV174rg7/eeVsvPwddce70bu+6m29zYAx7+mOj0c+7xUL8e3f1ubKrm15FEe9byfj4quJ/bvy8wk4/fZwCoNf1r3VKiTdWy+Hd2xj0f6JZZc+Z5bmwqkVgKLf/c2MLJp4m2uHllgJCIJZrVWKL9nM/FCzqTl0RPDImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdIjCsa7AsdSiFZ2+bs0at8xTf+NJ0em/OH2zW6aYNzd29llnubFyuezGas4yG7W6W2YmzLix+51/bze25ZRT3Bgh74bWrI1vxz27dvn1uM993NjmTX49ZloNN1buKkWnb1q/3i1z0403ubFcoejGSiU/VizGY7/3e89xyzzjGc9yY93dXW5s82Z/fwwhvt8DmMX3qxDcIiKugBHy8f0+l6+45awQP2bN/OOrGfw8O1P380OjXnNjtXr8WMn5hxDFkn9cduf9A6mn7H+2roq/TO9zN2uJnFjpcWO9/f66oOlGpmvx7dhM5I4zTx9wYxvWb3Rja1evdmO5ZvwcOLZ3m1tmanrSjbVy/raq+ZuDfZP++XZ0X3x9xeKoW2ZiYsJfmXSsViswMxPf1wp5v4lfcdqXlY0b3DLNGT9XlhLtoubAgBurN+PJtKe71y0zNTXlxnKFxGVNIhc1E4mqNhXPKZMjft5otvzk0HRyFEBXyT8vNhvxbTU2mdgeFf97GZ/2c1RXT78by/fF82+308YF6Or286i3/wIUnPYDQMFpJwBUnP0xn9g/du3a6caks4UAjXo8RzT8phb1mXiZUmK/7kq0Bc1PwTSLfu5o5OOV3DbiX4/31P17IaWyv65iIoeZ+cfftJNn83n/Xsh5Z57qrytxTXD6SWvd2JOf/Kjo9FPvcp5bZu+I/8WUc/65rFTx61hveO1E/zfdhbyfE2cm/PZlV8mvYyv46/O+zsSphXzRr6OIdx+q2UwkWk/i5pV/5MHms851Y2s39rmxDSfF772Fyiq3TDNxAskl2jgt8++/pu7zhVx8m1h9r1vm9p99z1/evq1urDDg32ctnhLfxqX1Z7pl6q3U8yyJGzOL0Erd+EzEkrdLU+VSsUXcm00tL0VPDImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdAh1DImIiIiIiIiIiIiIiHQIdQyJiIiIiIiIiIiIiIh0CHUMiYiIiIiIiIiIiIiIdIjCsa7AsZRz+sUqxYpb5qEXPCA6/WHOdIAQghtrNptujEQ5P5KwyOXlzBazSMLiarns63Krn1heLuf3mVpie1iinLcdzRJlcv66UlLbalF7z/J+ldIhLJejUC5GY01S+3YrOjVn/o6Yz+XdWAh+rJX4fUTNqUch79e9xLQbK+frbqxSLruxYrnXjTXq8dN4s5X4XLWaG1s9sMqNnb5lsxvLO7nq5ttu9cvk/e8l3/K31b69O93Y5MRIdPr4vt1umULebwqtWtXnxror8X0bYKbh1390fCI6PV/x1zUx1XBj0rnMIO+1OxINgYbT9pxp+Llh7cBqN5aPp0oAevr7/Xo4dbxj23a3zNTUlF+Pgp9TVvX59SglyplTx66Sn7NrdX87WnfJjTXr/jXBdDOeU8r9ft6Yds5hAKWCX4/eNevcWL0R3x7d3d1umXLJX1dXl39+KxT93Fyv+duqNhPf/jOJc19/v3/ukw4XoNmM7/f1RqotG28jTLYS7dW8fw8iBL8dMJ24n1BxclV92j++Rkdm3FixnMhTJb+OE8Ev19fTE50+Njbilil1d7mxe593phu76xn+sb5uXTyfTk/5bbquHr8tWMkPuLGJ6XE3Vi6uiU73zkcArbq/vFzT/15yrUQs+Odbr9zUxKhbJjjHkUhK6l5ZqxVv54SWn5tT9/n6Vq/3Y2v89krIxds5tcQ9iMStC0Li/oQFv21Xxm/njE+ORKff9PNvu2V2XfkNN7a6zz9fbbznb7qxNZvvHp1eXn2SW6bpfM8AidtDyVuYXjoNie2bkrrnT6L+6fusTjDV9HA/WGo9emJIRERERERERERERESkY6hjSEREREREREREREREpEOoY0hERERERERERERERKRDqGNIRERERERERERERESkQ6hjSEREREREREREREREpEOoY0hERERERERERERERKRDFI51BY5HloiFEKLTW870QykU/K8gucRFru9oMotvSW8bpsocqtxiHM11pYTQcmONxuK2VUqqnBtb3Kqkw4XQol6ficdy/u8S8oV4LLXLh0TGDOT9deVLbiznFAtN/5hNZY5czv8A+bxfx1rDX99UoxGd3qrX3TKr+vrc2IaNp7qxs8+9lxsbG90TnX7lVVe7ZWZmxt0YrfjnAigktnLOmvFAYt/JFbrd2K07b3ZjkzM1N9ZK/O5m++hEdHr/7t1umWKh7Makc5nlqFS6orFy2c9tNSdvbN+zyy3TaPnHXSuRE63uHwvlSiU6vascn36oWP+qVW6su+wfQ6v7et3Y6MhodPpMfdotU6r466ok1rVzVzyPApR7e6LTi73+8iql+L4B0AqJ81HOvzbJW3w/2Juo++rVq/16tPx9p1Ty9+FC0Y+VnO96phZvjwAUS0U3Jp2t0WiyZ89INDY5PeWWM6fh0Wj6+24+Hz/OAcolv11Ey89HhVy8jZMr+8deodc/HppNp50FhODXY3LCj3lN4P5+v322qtfPU+s3+HlxZjreBgMYn4m3nVet8nNprTXpxqamt7qxIv65rOGco8uJC6HmxE43ZgV/37GWf72Qb/qx8Vo8VupJtD0S7WbpbCFAoxnfTycn/WN2VavfWWDi+YdE+wfzr8dTMadphCXu8zVT7epEFcuWuC+w8zY3dvUPvhydvuO269wyJ510lhvbfN4D3djA6f49g1COn+e87x/Agn/eSd18aSVuAHj3jlL3lFL34NP3jxP3dBOljnxph+hDSNATQyIiIiIiIiIiIiIiIh1CHUMiIiIiIiIiIiIiIiIdQh1DIiIiIiIiIiIiIiIiHUIdQyIiIiIiIiIiIiIiIh1CHUMiIiIiIiIiIiIiIiIdQh1DIiIiIiIiIiIiIiIiHaJwrCtwPDKzI46lyqSEEPx1pQoucz1I1MNbl9z5pPZHkSNlQN7LH8WiXy4XjzVSu2ez5YZy5p/qGi1/oXmn6oXgryu0mm6s1UqUM/93GtO1mhtrNOKV7O/vd8vc9S53cWNnn3WWG8vn/j979x0nSV3nf/z16TBpc2JhyUEUBROKmDGc6Hlijog5/c4cTjG2bcIA6unpGc+E3qmgKMYTFQUTIiJ4ooKwZBY278xO7P78/qia2Zne+tSE7t6d2X4/H499wHw/Vd/+dnXVp75d365vxW0c2DmQWT7YvyNcZ3C4P4zBWBjpKsXt6C13ZZYXS/H+1j8Uv9bGHcNhrJ53/i7EsdFgmwzmfM5dXd1hTDqXGRSK2cdDbSzORT29PZnlB6zZP1xnaDjeP0vd2fUl7cg5loOe7tq1a8N18vq5w0Px8bp9R5yLCjl1ein7/FErFcN16qXsPAQw4vH5aNnadWGsFuTfvPzVlXPO6e3tC2ODOduxL1hv6fKV4TqjOefnW2+9NYyt3S/eD1atWRzGok/GgmMFYHR0NIyJQPY5ffHieD/csmlzZnnfojhfrli5IowN74xz2MH7rwpjXV3Z+ahWi88RQ4ODYaye088dHY6PI+9aFMZKQb9u1Zpl4TpHHnVoGLvr3e4exrbefnMYG962JTuwbFu4TqEe5xWr7QxjI4M3hTFflJ1nbSjOpTYS7x/F4HsVgHXH+473xvu39W/MLO9eHJ8/yj29YUw6W3LNIPtY6uvJO99n5zfP6f/k3huRdx2YnOMo+E7oYY8EKMT9wfJo9vdqgI03XhXG/nH5b8LY4Kbs3Hfnu9wvXOfAu58Uxmrdy8MYnrONg26r5Wwryznv4PFnVs+5oh5ezpnr5dC866i511jzrrVnx/Lu7il69nac7oq+7hgSERERERERERERERHpEBoYEhERERERERERERER6RAaGBIREREREREREREREekQGhgSERERERERERERERHpEBoYEhERERERERERERER6RAaGBIREREREREREREREekQpb3dgPnI3ffIOgmLI3GI6OXy2zHHNubUaXmN3EfN/bOe/6LPM+89d+I+ILMQ7B6jo2PhKoVSObuqUle8jsUxrBiG6nnHs9eyX6sWt702NhrHCtn1AZSC9wzQk9N+CvXM4sV93eEqI4P9Yeyav/85jNVG4/c2FNR52Lo14Tq9iw4OYzfddksY29E/EMa8mL0d3eLuztDwSBizQvz7ma5S/LkUCnGsVMpuS7mct3/n7APSsdydkWD/Hdy5M1xvUX1pZnlvqSdcZ2nv4jA2QnYeAiAnt43VsnNi/7YdcXXB8QMwmpOjRnLOOaP1uB+zctWqzPI1B8b5a3gszvXF7iVhzLriHDAW1Fkejbd9bSSOeT3ejuWunLzXtyizvDvnp4Y7c/bF1fsfEMb6lmbvpwC1OfRLizn7ztDwcBiTTudg2ftbMSgHWLkie/9dvmJFuE4xp+9QXhTn4HI53rc9+v5vcX7oWxSfC8aG4mOlJ6cdI0NxXuwfyO5DrlixMlzngANWh7GVK+NttXL13cPYDX+6NLO8Vvt7uM6yg48LY91dcfvN4nNj1GUdGbojZ52cy3qj8X5VK8R9YO8ZDGOFYvb+09e7LFynfzCuTzqcOYVidh+uUMq7Xpqd3wqFuM9XL8R524nzVO41ryBU8KFwlVr/1jB2yzWXhLGbr7kijHlOd/zoB5+cWb7fkXEOK5Tjc4F5vI3zGNn5yHLuWfG8zyyvP5jTDg++u9gcr5l7fW7X4T2vlcH+bTkfdN65JY/uGBIREREREREREREREekQGhgSERERERERERERERHpEBoYEhERERERERERERER6RDzZmDIzO5sZl81s6vMbJuZ7TSzv5rZh81stwmo0+XPM7MtZjZgZheZ2cP3RttFROY75VgRkfZSnhURaR/lWBGR9lKeFek8OU+p2+MOAg4Avg3cBIwBxwEvAZ5hZvd099sBzOxI4NfpMh8EtgEvBn5sZo9x9wv2QvtFROYz5VgRkfZSnhURaR/lWBGR9lKeFekw82ZgyN1/Cvy0sdzMfgl8A3geSbIBOANYDhzv7peny30Z+D/gE2Z2F3f3ubalUJg3N1KFzOa0Vqub0ZFsbht/QevE97yv2Rs5tu7O8PBIdqxYDtcrBym4kHOTa70etyNv9y3kBOu17PJSIX7rJRsLYzUPKgSsEG+PVcuWhrENW/ozy2/ftDVcZ/vAzjC2bFFvGFu9dHEY23/18szyUnlJuM7gSPa+AWB5NzR7Xj7KXq/c1R2usXpVXxhb7sUw1j8wGMYGR+LP2oM2RuWJ+d8vkb2QZ80olrNzx7Lly8PV6mRXu33HjnCd3r5FYcxL8XFSKMTH66bt2a+X145SKc6VeX2VJctXhLHeJcvC2Ggp+6tSqRh/hVqypCeMeTGODQwPhbFC0I4C8cmvXIjzUDn+yBgrx+9tLDjZ+ljcjnrObrxkaXx+6+2N83atlpNjg5cby1nHcvZTmT/2Rl/WzCiVss/BwznH7KLe7L5FMafDOhb0mQG6u/IO2njf7u7JPo7KQTlAf3923xKgWOwKYytWxHn2xhtvDmNr91+XWX7IusPCdepbt4SxwTtuCGNL1905jA3Xs88vN1z593CdB935IWGsUM/5vhB/ZNRGtmaW9xdG4/rYL4z1leLPenT01jBWqMevtzPYV7fdsTFcZ2hkexiT+WOv5NlCgXLwHbQcfSEHCHIzFudLszl+p8q9oJBd58iWOO8NrL8sjG259R/xS/XE31vvfO+TwtjKQ+6aWT6c8+nk9d/yuk3TfHnJLs3rhuV8959r763gc9gPct5YXm11z7lQlfPe3KIXjNfp6ss+jqbr5y6EKw3Xp/9dAWBmi4BTgAvHkw+Au/cDnwOOBu67h9soIrJQKceKiLSX8qyISPsox4qItJfyrMg+at4NDJlZj5mtNrODzOxRwKfT0A/S/94d6AZ+k7H6b9P/KgGJiGRQjhURaS/lWRGR9lGOFRFpL+VZkc4x7waGgBcBdwA3Aj8muTXx2e5+URofv9c467688bID29lAEZEFTDlWRKS9lGdFRNpHOVZEpL2UZ0U6xLx5xtAk5wF/BRYD9yK5PXHNpPj4pIrDGesONSwzhZm9hOShaRxyyCEtaKqIyIJzHm3KsTA1z3b1xs9SEBHZh53HHujLrloaPxtHRGQfdh57qC+7qDd+po6IyD7sPPZQnl29Nn5Gloi037wbGHL3m4Cb0j/PM7Nzgd+bWa+7nwGMPzU76yl641chM5+s7e6fAT4DcJ/73Gfah6CJiOxr2plj0/on8uyi5cuUZ0Wk4+ypvuxh69Ypx4pIx9mTfdnVyxcpz4pIx9mTefbIO99ZeVZkL5qPU8lN4e5XAH8E/jUtuiX9b9ZtieNlWbcziohIA+VYEZH2Up4VEWkf5VgRkfZSnhXZd827O4YCvcDK9P+vJLld8f4Zy52Y/vfS6Sqs1Wps3bo1M1avxwPWZtPVLNJpdFDsA1qeYyHZM0rF7P1jsDYWruejI5nlRSvHL5bzMwezOKcXc9YrFmuZ5X1d8T7f43GsPpZdH8COway78NM6c36s2lXOPo1bzsmqtyee4s+KxTC2uX8gjG0fHsosL3XFr7VzOH7PA/3hD8wgZ9/p68neRw5dtyazHOCux94zjPUuXR3GfnvpH8PYX/5+bRjbPpC9rWr1erhOXr9EFow29GXrbNnenxlbtmRJuF6pO3tqpJFSvA96zrneavF6i3oWhbGl+2XPMNK1Mp5SpLc3nJWEwcHBMNaTs16xnPVj18TocPb5qJBzPnLyYvFJp6s7bke01kgtzpU7dmyNX6sUt6Nvzcow5p79WRdy9o/uUjwVV1cp56to8FoA9ZzzQKGYXWch54RfLOf0L2ShaEtftlgwlvcFfZlFcR+nt7c3s7wr2D8Bgu4vAO5xP6BgOft2EOvKyXuLFsfH13BOI7f17whjo4X4fR985DHZr1WL+80DW7aGsa5CnDtKfYvDWGFp9md2QFd2+wAKOf3c+nB8TvLg+xFAoZT92ZSG4vPYWP+2+LVWrgpjI2PZ7xnAc/qeY4Xs9vcui9vo23L69rJQtCXPFnB66tnH++Grl4frLV4cxIK6kheLj728b1t5V7wGdmbv2zu74u/VK/ffP4wtyZmOv3tp3Ec+6E7Hh7FCd3bui/p10K5r39FWjrd+3vkv9xvyXNbLWWeucqvMidWDa1jFnH14dTDNeHTNaNy8uWPIzDKPDDN7GHAs8FsAd+8HzgdOMrN7TFpuMckD0q4GLml7g0VEFhDlWBGR9lKeFRFpH+VYEZH2Up4V6Tzz6Y6h/zSzA4CfAdeTzEt5PPAMYAfw+knLvhl4BPC/ZvYRYDvwYpJbFh/reUOKIiKdSTlWRKS9lGdFRNpHOVZEpL2UZ0U6zHwaGPpv4LnAacAakpuqrgc+DXzI3W8YX9DdrzGzBwLvB04HuoDLgEe7+wV7uuEiIguAcqyISHspz4qItI9yrIhIeynPinSYeTMw5O7fAL4xi+WvAh7fvhaJiOw7lGNFRNpLeVZEpH2UY0VE2kt5VqTzzJtnDImIiIiIiIiIiIiIiEh7aWBIRERERERERERERESkQ1inPg/MzO4gmStz3Gpg415qznyk7TGVtsdUM90eh7r7mnY3RuanhjyrY2gqbY+ptD2mms32UJ7tUOrLTkvbYyptj6nUl5VpqS+bS9tjKm2P3SnPyrSUZ3Npe0yl7TFVS3Jsxw4MNTKzS939Pnu7HfOFtsdU2h5TaXvIbGmfmUrbYyptj6m0PWQutN9Mpe0xlbbHVNoeMlvaZ6bS9phK22N32iYyW9pnptL2mErbY6pWbQ9NJSciIiIiIiIiIiIiItIhNDAkIiIiIiIiIiIiIiLSITQwtMtn9nYD5hltj6m0PabS9pDZ0j4zlbbHVNoeU2l7yFxov5lK22MqbY+ptD1ktrTPTKXtMZW2x+60TWS2tM9Mpe0xlbbHVC3ZHnrGkIiIiIiIiIiIiIiISIfQHUMiIiIiIiIiIiIiIiIdQgNDIiIiIiIiIiIiIiIiHUIDQyIiIiIiIiIiIiIiIh2iYweGzKxgZq81s7+a2ZCZ3WhmZ5nZor3dtnYyszeb2TfN7FozczNbP83ydzaz88xsi5kNmNlFZvbwPdTctjOzo83sXWb2WzO7w8x2mNnlZvbWrH2hA7bHnc3sq2Z2lZltM7Od6THyYTM7IFh+n90e0hzlWeVZ5diplGOllZRjlWNBebaR8qy0kvKs8qxy7FTKsdJKnZpjQXl2MuXZqfZ0njV3b+07WCDM7N+BVwHfBn4IHAO8ErgIeKS71/di89rGzBzYDFwGHA9sd/fDgmWPBC4BxoCPAtuAFwPHAo9x9wv2QJPbyszeD7wc+C7wW2AUeBjwNOAK4ER3H0yX7YTt8QjgrSTb4iaS93oc8HxgO3BPd789XXaf3x7SHOVZ5Vnl2KmUY6WVlGOVY0F5tpHyrLSS8qzyrHLsVMqx0kqdmmNBeXYy5dmp9niedfeO+wfcDagD5zaUvxJw4Fl7u41tfO9HTPr/PwPrc5b9BlBLd7rxssXA9cDfSAcWF/I/4D7Asozy96T7wis6aXvkbKenptvjjdoe+jeTf8qzE//f0XlWOXbG20k5Vv9m9U85duL/OzrHpu9HeXZm20l5Vv9m9U95duL/OzrPKsfOeDspx+rfrP51co5N36fy7K73ojw7s+3UljzbqVPJPRMwktG0yT4L7ASevacbtKe4+7UzWS69Xe8U4EJ3v3zS+v3A54Cjgfu2o417krtf6u7bMkJfT/97LHTO9shxffrfFaDtITOiPDuNTjiOlGNnTDlWZks5dhqdchwpz86Y8qzMlvLsNDrhOFKOnTHlWJmtjs2xoDw7mfLsjLUlz3bqwNB9SUamL5lc6O5DwOXs2zvSTN0d6AZ+kxH7bfrffXk7HZT+d0P6347aHmbWY2arzewgM3sU8Ok09IP0vx21PWROlGen18nHkXKscqw0Rzl2ep1+HCnPKs9Kc5Rnp9fJx5FyrHKsNEc5dmY6+VhSnt0DebZTB4bWARvdfTgjdjOw2sy69nCb5pt16X9vzoiNlx24h9qyR5lZEXgHyRyNX0uLO217vAi4A7gR+DGwHHi2u1+Uxjtte8jsKc9OryOPI+VYQDlWmqccO72OPY6UZwHlWWme8uz0OvI4Uo4FlGOlecqxM9ORx5LyLLCH8mypuTYuWH1AVvIBGJq0zMieac681Jf+N2s7DTUss6/5KHAi8BZ3/1ta1mnb4zzgryRzU96L5PbENZPinbY9ZPaUZ6fXqcfRR1GOPQ/lWGmOcuz0Ovk4+ijKs+ehPCvNUZ6dXqceRx9FOfY8lGOlOcqxM9Opx9JHUZ49jz2QZzt1YGgnsF8Q65m0TCcbf//dGbF9dhuZ2buBVwCfcfczJoU6anu4+03ATemf55nZucDvzaw33S4dtT1kTpRnp9dxx5FybEI5VlpAOXZ6HXkcKc8mlGelBZRnp9dxx5FybEI5VlpAOXZmOu5YUp5N7Kk826lTyd1Cclti1sY7kOR2xk4flb4l/W/WbWfjZVm3qy1YZvZO4G3AF4CXNYQ7bntM5u5XAH8E/jUt6ujtITOiPDu9jjqOlGNjyrEyB8qx0+u440h5NqY8K3OgPDu9jjqOlGNjyrEyB8qxM9NRx5LybKxdebZTB4Z+T/LeT5hcaGY9wD2BS/dCm+abK0luR7t/RuzE9L/7zHYyswpQAb4MvMjdvWGRjtoegV5gZfr/2h4yHeXZ6XXMcaQcOyPKsTIbyrHT66jjSHl2RpRnZTaUZ6fXMceRcuyMKMfKbCjHzkzHHEvKszPS8jzbqQNDXwcceE1D+YtJ5t/76p5u0Hzj7v3A+cBJZnaP8XIzW0zyAKyrgUv2UvNayszeAbwT+ArwfHevNy7TKdvDzPYPyh8GHAv8Fjpne0hTlGen0SnHkXLsLsqx0kLKsdPopONIeXYX5VlpIeXZaXTKcaQcu4tyrLSQcuwMdMqxpDy7y57Os7b7AFxnMLOPk8xZ+G3gB8AxwKuAXwEPz9oJ9wVmdhpwaPrnK4Eu4Kz07+vd/SuTlj2KZCcaBT4CbCdJ0scBj3X3H++pdreLmb0c+A/gBuDtQOPnvsHdf5Iu2wnb49vAAcDPgOtJ5qU8HngGydyUJ7n75emy+/z2kOYozwIdnmeVY6dSjpVWUo4FOjzHgvJsI+VZaSXlWaDD86xy7FTKsdJKnZpjQXl2MuXZqfZ4nnX3jvwHFIHXA38jufXqZuDDwOK93bY2v+8LSUbls/5dmLH8McB3gK3pDngx8Mi9/T5auD2+mLM9dtsmHbA9ngZ8H7gRGAIGgb8CHwcO6bT9Q/+a+6c8qzyrHLvb9lCO1b+W/VOOVY5N35/y7NT3pzyrfy37pzyrPKscu9v2UI7Vv5b969Qcm7535dld7015dur726N5tmPvGBIREREREREREREREek0nfqMIRERERERERERERERkY6jgSEREREREREREREREZEOoYEhERERERERERERERGRDqGBIRERERERERERERERkQ6hgSEREREREREREREREZEOoYEhERERERERERERERGRDqGBIRERERERERERERERkQ5R2tsNEBERERER2aeZLQE+ARwBDAE/As7C3VtU/5OBjwCfwf09GfEvAncGhieV3oH7UzOWvTdQBRYBY8AvgTNwrzUsdxWwIaM1a3E/Zi5vQ0RERERE9gwNDImIiIiIyMJj9nRgFPdv7e2mzMAXgK/i/m0AzM4EXgF8vOmazXqAVwEvBY7PWfKpuN80TV0HAGcBz8T9trTsccBbgXc1LP0z3F+e0ZbvzKL1IiIiIiKyF2gqORERERERWYh6gb693YhpmR0D9E0MCiXeCjwHs1Z8H3sjyd1Igy2o677AdycGhQDczwfuv9uSjYNCiUcBP21BO0REREREpI10x5CIiIiIiLSPmQGvAZ4OjJAMYFwJ1IDP4n5NulwJeDPwQKAnjW8CXjflTpfkrpYvAYcAjtmLJr3apbi/oQVtPp9kkONtuH+oydoeApw7pcR9OJ2K7WDg+jnXbHYwcCLu78LspGmWfj9mB5F8BzTgLbj/omGZi4FXY/Zj3P+SDly9ADhyhi16AvD+mTZfRERERET2Dg0MiYiIiIhIO30KuBq4/8QzdcweAZwD/Pek5Ry4EPgQ7kPpckcBnwRO2bWU3wo8CrPnAWO4n92GNh8GdJEMPjVrDfDbjPLrgANpZmAoGYR58wyWOwfYivvFAJitBb6J2am43zixlPtmzF4GXILZZmAlsBh41rSvYFYEjsD977N9EyIiIiIismdpYEhERERERNrD7N4k06idOaXc/aeYvZvkjqDxshpwUcNy12DW2/6G7uY+JIM217WgrhIwlFE+SjL4NDdmDyEZ7PnTtMu6f6/h7w2YvYXkOUdvmlRnGfg0yV1C5wFl4H7AH2fQogcDv5pR20VEREREZK/SwJCIiIiIiLTLSSQDDLtz//CUv5Mp554GnAYsIZlKrh+4axvbl819GLi2RbWNkAywNOoBxuZUYzLF2zuBp865VXApyfOJJvsX4MJJz0MaAS5KB5HeN019TwS+0kR7RERERERkD9HAkIiIiIiItEsRqM9w2XcBfcDzcb8DIL1b6IL2NG2PuZFkarpGhwK3z7HOA4C1wLmYjZctB5Zhtn6G0+utIBl8m+wo4HcZyy7F7Fjc/5xT3/G4v3oGrysiIiIiIntZYW83QERERERE9lm/Bh4XRpNn3Yx7AO6vnxgUAnAfBIaDteu06/uMWTdmR6R3MTXrV8DjG+rvAe5F8uylrNe39PW7M+PuN+N+N9xPmvgHrwE+v9ugkNnadIq4Ro8BLm4o+xtw94xljyO5eytbMmXgTKabExERERGReUADQyIiIiIi0h7uvwIWY/ZGzIoT5WZHYfYtksGJcTXMDp20zFrM/hN4aFD7FcBjG+o9ArPTW9DyS4F/AB9ruib3a4ExzE6ZVPpe4NO4e7DWx9LXv7Tp14d7A9/F7IiJErMTgRcDn21Y9vvAo9P4+LIvA+q4r895jScSTRkoIiIiIiLzjqaSExERERGRdjoVOB24BLOdwCDJFGrvwv3yScu9Avg4ZouALmAn8HngTpj9HHg37j+bWNr9csx+Bvw8nU6tm+QOnM+0oM3rgTsDN7egLoAXAGdh9kqS5yedj/vHc5a/CRgFbpi25mS6vXOBdSRTyV2H+1cn4u4/xOx64IOYrUpf/zrgqbhvn1KXew2z04B/x+yQtA2XAs+cphVHA9Vp2yoiIiIiIvOCxT9SExERERERERERERERkX2JppITERERERERERERERHpEBoYEhERERERERERERER6RAaGBIREREREREREREREekQGhgSERERERERERERERHpEBoYEhERERERERERERER6RClvd0AERERERFZ2KxqpwEvB/7sFX/RLNf9InCNV/w9bWrbl4EHA8/3il/YjteYK6vaXYCPk3wvGwPO8or/qMk67wa8BTgMGAZ2AG/1iv85Y9nHAq8AFqfLrgfe6BXf3LDcYcBvgL81VPEhr/j3c9ryZOAjwGfa9fmKiIiIiMjsaWBIRERERESa4hX/ilXtIuBtc1h9JzDU4iZN8Io/x6o2l3a1lVVtMfAV4Fle8autaouA861qG7zif2yi6pcB7/KK/y19nbXAF6xqp3rFt0x6/XXAI4FnesW3pmX3BT4FPC2j3u/PZtDPqtYDvAp4KXD8HN+LiIiIiIi0gaaSExERERGRvcYr/q9e8TP3djv2gtOAb3rFrwbwig8AbwBe20ylXvFXjg8KpX9vAH4CPLBhuVu84q8dHxRKy34PdFnVljTThtQbgU8Agy2oS0REREREWkh3DImIiIiISMukU5mdAawGeoHfA2+afLdKutwngLsBy4FzoqnGrGrPBl4EHOsVX21VeyDwbqAMbCSZIm5rumwX8HbgZGAEGABaMoWZVW0NyXRqq4HHe8V/0WSVD6HhDiuv+GXptG0tY1U7Gngx8JQZLPtoks9kICN8vFXte8AiYBnJtnidV3w4o56DgRO94u+yqp0099aLiIiIiEg7aGBIRERERERa5VjgLOAlXvEbYOI5M9+3qv1TelcMAF7xl6fxk4AHRRV6xc8GzraqXWBVO53kzpdTveK3WtWOA+ppPQZ8HTjfK35CWrYC+DTJYM7FTb63XmB/oA9Y02RdkLTphozy3QZa5sKq9ibgJcBBwJu94n/JWfYbwEnpn8/witcbFrkD+Bzw1UmDcC8CzgRemVHl+4E3N9N+ERERERFpH00lJyIiIiIirXIX4Lnjg0IAXvFzgbOB/9dk3UWSO1VO8YrfmtZ9pVd8exp/DPB/XvH/mvTaW4DnAoc2+dqk7+kg4CCv+DnN1geYV3w0q7wFdeMV/wDJ5/FUYNM0yz4NuBPJ9G9Z8QGv+Ccapp37HHCnxmnnrGoPAbZ6xf/U3DsQEREREZF20cCQiIiIiIi0ysXpM20afRN4aJN117zib/aKexD/J+DbjYVe8UHgh02+9nhdW73it7SiLmDMqpb1fazcovrxio96xb8LbLWqPX2aZbd5xb8IPHIW09ldDhw9/kf6ft4JvGMu7RURERERkT1DU8mJiIiIiEirRIM208VaIe9Om5bchdNiN5PcyXRdQ3lvG17rxyTT7H19Bsv+Engi8JEZLLsCGJv09wHAWuBcq05s8uXAMqva+nRaQBERERER2cs0MCQiIiIiIq3yIKvafl7x2xvKnwL8tM2v/RPgScAfJhda1XqBR5PctdQUq9pyoK9Fdw1dTDIA8+FJ9Z/A7gNFk1+/GzgQuC7nzqks9wG2zmLZmxte9yCv+E0NZWXgXsDEs4u84jcDd2tY7iTgQRoUEhERERGZPzSVnIiIiIiItEo/cI5V7eDxAqvaE4CnA59p82v/ADjWqvb8Sa+9AvgqyfOJmmJVOwS4CbjJqvaUZusjuXvnWVa1I9P6FwFnAB/IWedS4B/Ax4I2nmpV+2D6vsfLjgP+A/hQw7JnWdVelA7wjJc9kWSwqvHOos9a1V5qVSumy3UBnwS+FDwnSURERERE5jHzWf3QTEREREREZCqr2rOBVwB/Bs4F3gT0AF3A74DTveLbJi3/AuA56Z/LgWXA9enff/KKv3rSsucAq4F7AH+a9LI/9oqf0dCObpJn3DwSGB+w+CRwGMldS2d7xc+c43tcA/wG2A94glf8Z3Opp6HOo4Ezgb703xle8fNzlj8fOBl4h1f8/cEyzwSeS7Lti8BG4K1e8b82LNcHvJLkbipPl70irXtLw7JF4DXAKSTT8vUBn/aKfzanrb0k+8I6ks/3bV7xr0bLi4iIiIjInqOBIRERERERERERERERkQ6hqeREREREREREREREREQ6hAaGREREREREREREREREOoQGhkRERERERERERERERDqEBoZEREREREREREREREQ6hAaGREREREREREREREREOkRpbzdARERERET2MWaHAB8FlgNjgAE/xv3Mvdiq+cfsLsDHSb6XjQFn4f6jFtT7FuAUYDtwHfAG3Hc0LPNF4M7AcMPadwbuj/v6huWfBrws/WsM+E/cvz1NO54MfAT4DO7vmf0bERERERGRdtDAkIiIiIiItNp/AG/C/aq93ZB5y2wx8BXgWbhfjdki4HzMNuD+xybqfSWwhmRwxzE7BfgC8JSGJW8EXov7lob1fwBsbCh7DPBo4J9xH8KsCLwTs37cfxK0owd4FfBS4Pg5vx8REREREWk5TSUnIiIiIiKt1qdBoWmdBnwT96sBcB8A3gC8ds41mhnJXT1vxt3Ter8LlDE7asqy7m/PGBRaAYzi3t9Q8z8BH8d9KF23BnwYeF5Oa94IfAIYnNubERERERGRdtHAkIiIiIiItIbZlzC7EDgeswsn/as2LHccZj/DbD1mD8LsYMz+B7NfYfYLzO7RsPzDMLsAs99hdilmX8PssIzXX4zZJzG7LF32R5jdG7M/p693bBPvbQ1m12C2FbOHzrmeXR4CnDulxP0y4LAm6jwauGxiAGeX7wAPnMH6jwO+l1H+beCNmK0GwGwJ8D6g8XVI4wcDJ+L+jZk1W0RERERE9iRNJSciIiIiIq3h/lwAzC7A/ZE5y10JPByzdwInk9yR8grcL8VsLbBkYtnkOTUvAE7D/da07ATgfzB7Fu7XpmVFkgGMz+L+r2nZccDXAMf94U2+u15gf6CPZKq2Zq0Gbsgob3zmz2ysAa7PKL8OuP8M1n888K+7lbpfhNn+wG2Y/Q04CtgGPDio5/3Am2fSYBERERER2fM0MCQiIiIiInvTCcDJuG8DwH0DsAEAszLJlGSPmDK9mfslmL0M+ADw1LT0ycCvptyl4n4lZq8AvtR0K91vwOwgkmnybmm6PjDcRzPL565E9l08o0BXfmusD1iSbv/G2KHA64F7434FZmuAO+H+t4xlHwJsxf1Ps269iIiIiIjsEZpKTkRERERE9qZ3TwwK7e7uwKUZz7wB98uBgyeVPAT4bkYdvyS5u6V57ltbNCgEMIZZ1vexchN1jgTr9wBj06x7MvC/Qex1wBtxvwIA9zuA/8Ps5VOWSt7PO4F3zLjFIiIiIiKyx+mOIRERERERmc+8BXU0cxdOu9wMHEoyzdtkvU3UeSPZzyg6FLh9mnWfALw7iB0FXDKlxH0bZo8BPjGp9ABgLXAuNrHJlwPLMFuP+9nTtEFERERERPYA3TEkIiIiIiLz1RXACZgt3i1idi+SgZBxvwQel1HHQ4GlLWmN2XLM1rWkLrgYeGJD/Sew+0DR5Hg3ZkdgFg103QQcg1l3Q/mTgIty6i0Bh+F+TbDE34DjGtbpIRkI2sX9ZtzvhvtJE//gNcDnNSgkIiIiIjJ/aGBIRERERETmp+QZPB8Avo7ZrkGIZADlP4E3TVr6XOCBmD150nLHAW9n/JlFzTA7hGTg5SbMntJ0ffB14FmYHZnWvwg4g+T9Ri4F/gF8LDPq7sDZwHsntfvxwE7cr8qp96EkA2uRjwJnTgyKJQNPnwa+lrOOiIiIiIjMU5pKTkREREREmme2BPgGyVRo98DswknRT+P+35OWfTvwCJJpzx6P2fgzgG7D/RlT6nU/F7MtwNnpnUNF4GrgGbivn7RcLR0U+iBmbyF53s6NwPOAL7TgHQ4CtwH7AZubrs19J2bPAj6CWR/QB5yB+2U5a60H7kwyDV3k48AbMPsp0A1cC7xgmtY8EDgnp603YHY68FXMukim5vsq8MlwHbNeksG6dSRTyV2H+1enaYeIiIiIiOwBlvyoTEREREREZB+UTLv283RaMxERERERkY6nqeRERERERGRf9krgx3u7ESIiIiIiIvOF7hgSEREREZF9h9mrgCcBDvQA38b9g3u3USIiIiIiIvOHBoZEREREREREREREREQ6hKaSExERERERERERERER6RAaGBIREZF9h9m993YTRERERERERETms9LeboCIiMgeZ3YI8FFgOTAGGPBj3M/ci62af8zuAnycpL8wBpyF+4+arPOLwJ2B4Umld+D+1BksR1p2f9zXT1r2XsBzgfsDhwFrc16/G3gr8HBgFNgOvBn3v8z6vYh0KrN1wJeAe+G+em83Z59k9jjgzcBOYAB4A+5XN1nnEuATwBHAEPAjkrzuDctdBWzIqGEt7sc03Vaz/YHTgXuS/FDxetxPm/X7EZGE2VrgK8B9cV+xt5sz77SjP5vU+3LghcAO4EbgtbjfkbP8vYA3AvsD3cA3cP9owzIHA58CVpH0gT+F+3/n1NkDvBx4LEk+LQKPx33zHN+ViIh0EA0MiYhIJ/oP4E24X7W3GzJvmS0mucjwLNyvxmwRcD5mG3D/Y5O1PxX3m6ZZZvwL9paGdv0A2Niw7OHAt4DXAf87Tb2fAX6O+zvS+g4BvozZabjfOLPmi3Q491uAf8Lsgr3dlH1Scufj64BH4d6P2VHA/2D2YNwHm6j5C8BXcf92+jpnAq8guWA62c9wf3lDm3qA7zTdVrP7AWcAb8X9NU28FxEZ574BeJRycoZ29WfNHgU8ADgR9xHM7gGcjdk/417LWP6lJD9K+jfcb8ip+fPA23C/BLMy8FHMhiby9tQ6VwP/Q5LbH4l7fc7vR0REOpKmkhMRkU7Up0GhaZ0GfHPiV9/uya/A4bV75NXd354xKLQCGMW9v2HZb+H+y2m/EJstBwZw/+KkdW8A3g08rwWtFhFphTeR/HghyXXu1wBfA5455xrNjiE5902+uPhW4DmYTf1O2DgolHgU8NOm2prk8CrJr9l/M/s3ISIya+3qz74c+FfcR9J6/wR8H3jSbkuaPQg4Hven5w4Kmd0XuAL3S9I6R9N2ZuVkgP8EXo37VzUoJCIic6GBIRER6RxmX8LsQuB4zC6c9K/asNxxmP0Ms/WYPQizgzH7H8x+hdkv0l8FTl7+YZhdgNnvMLsUs69hdljG6y/G7JOYXZYu+yPM7o3Zn9PXO7aJ97YGs2sw24rZQ+dczy4PAc6dUuJ+GclUbc16f7rdL0636Uzb+zjge3N+VfetuP9rRmQn0DPnekU6mdmdMDsvzY2XYHZ6sNwRaR69NM1/P8k89s2eneaHjenfD0zz40WYfTsd4J28/KvT1/45Zj/E7MOYfT2j3nWYfSHNORen/17W/AYAzE7CbBtmV6e/4G7W4RMXBnc5D3hwE3Vm5fRh4Crg4Bms/4S0DY1m09aXAe/CfccMXk9EIkk++3Kac3+d9juzj2OzEzD7brrcrzH7MWYPC5Y9dVL/7DeY/TdmR2Qsd2a63AXp3y9Ml/8NZh9s8r0tlP7sYty3NZSdC/xzxrKvILmzcjpHAH+fUpIMPF2L2aFTys3uD/wR9/+baYNFREQaaSo5ERHpHO7PBcDsAtwfmbPclcDDMXsncDLwT8ArcL+UZB73JRPLmj0ZeAFwGu63pmUnkEyl8yzcr03LisC3gc9ODE6YHUfyy2rH/eFNvrtekjnL+4A1TdYFsBrI+lVj4zN/ZuscYCvuFwPj8+J/E7NTZzCV2+OBrIGduUum6XgH8a8xRSRWAP4LeA7u16V3nnwMsyfh/q2JpZLpxc4GXon779OydcDnMVuB+3kTy7qfTTIdzwXpINMDgVNxvzXNmfVJ9T4dOAR4BO5jadld09di0nIHkDwT6Q3pr7rBrBd4M2Zn4f76JrfDapLzQpEkBzdrZ0bZeuCAJupcA/w2o/w64EDg+nDN5Px1BO5/z4jOpq0nkvww4NXAU4BBkudnfCtjWRHJYraKpC/1+ok775K8918k/cDJyz4CeAnwEtxvS8sOAD6J2VLcvzNp2beR5LBH4z6Ult0L+Apmz8b9uoll3d+Qxn+TDsRfBzwM9yHMHtjkO1wo/dl+zNam0/iNey5w9JSlkn5mCTDMPgbcC9hEMl3cnxvqvAZ4fsP6K0h+GHUuU/P0Y4BzMXs08Pr0NX4CfCBzKjsREZEMumNIREQk3wnAybhfCiTzuCdT5Yx/2Xsj8PSJQaFkmUtIfhn9gUn1PBn4Fe7fmLTclSS/IlxCs5KpKQ4CDsL9nKbrA0unsNi9vBnu35sYFEr+3gC8hWQ75LTG+oAlDV/Am5N8fl8B/nNiAE9EZsOBZ05cMEymsvkYyYD6ZO8HXjoxKJQsewvwNJLBmXJG3UVgGXDKRH51vxL37ZOW6QU2TwwKJcv8BWj8NXyFZHD/T5OWG0yfNbYfZofP8P1mS3LueP7Ne3bETI3tVpJs22Z+1FcChjLKR4GuadZ9MPCrIDabtvYCHyX5XB9GMtj/RMyeOM3ri8gubwLeMWU6xiTvvRq4S8OybyQZWL9t0rK3kuTe10yUJXcb3Qn36sSgULLsH0l+/PS2oC33AL6B++kT67lHuWJmFkp/Fj4MfAGzFZgZZqcBdwca7yJaTZInzwMuwP3BwCtJBucOmbKk+x+AIzF7QtJC25/kB2TnACsb6l1LMsXni4Gnkzy/aBtwVpPvS0REOojuGBIREcn37oypIsbdHbh0t2feALhf3jCtx0NIfs3Z6Jfs/iVybty3AltbUheMYVbImLM86wJusy4luXiR52Tgf1v2isnDh78KfAH377asXpHO4rjf1FC2E+huKDtoyqDMxNq+A7M/AMcBlzVEa7i/eZrX/zLwOsy+T3L3yY3Ab4DGO1BOBD6NZV4HXAwcQ/KL97lLBrpaxXcrSQbPdi+fuRGy83cPWYM7Uz2RZBA9y2zauoRk+qVXp3+PkTyQ/bskd9SKyPTuRzI4NJX7XzD768TfZvsB9wQuCHLfasxW4r4ZuD9wIsl0y1kGg/Jf435uEJu7hdCfdf9F+qOlc0h+cH0hyfOMGqc83go8FXjeRH/T/UbM3gS8iuR5R5M9DTgDszcAG4G3k3w+jVNwbiO5Q+n4dFpQgE9g9gPMluV8dxEREZmggSEREZHmNHOhblyzv1psh5uBQ9n9YmlvG15rBTDdtBdPAN7dkldLngHyDZLpNn7ckjpFJE8r8mRGrV4HzgTOTKc7Oxx4LHA+Zv8yaTqdYeCJuG9pSztaL+s72iHAHU3UeSPZz9Q4FLh9mnWPnzSY02g2bb0a+PyUEvedmLVn/xDpPJP7k0PAjbifNIP1dgLfa8G0mvNR+/qz7j8EfjjxdzL13nUNywxidjXw3w1r/4nsAb4dNN5Fb/YWGp+TBH8lmZq5cUq8P5OcCy+f0XsQEZGOpqnkRERE5u4K4ATMFu8WSb4cTn5mzi9J5ghv9FBgaUtaY7Y8fW5HK1xM8ivxyfWfQN6v6s26SR4wnz3QZbY2mDLqMenrRfWWgMMmpvBrRvLw3vNJ5nbXoJDInnEzZvfYrdRsCXAf4Mo51Wr20Yn/d6/hfg3u/w78jWSKo3E/IHnORvskD4Nf3qLabsDs3g1lTwYuynn96fL/r0imbpu8Tg/J8y6uzqn33sAfW9TW84F/aai/2TuhRDrNJcDuz8lMnjN054m/k2k3t2N24gzq/CXwmPR5NnvffO/PZq9TBj4EfCIj+lOSqd4mOzq3DbvqfTQwlHFX6g+BR2escRR5z4wTERGZRANDIiIic5XMWf4B4Ovpw3wTyRfO/2TqLwHPBR6I2ZMnLXccyRQRzT83J5mn/CbgJsye0nR98HXgWZgdmda/CDiDqc9NanQp8A+SZ4xkuTfwXcyOmChJLli8GPhsTr0PJblo0Ryzu5H8YvOFuP96Unk3Zv/UdP0iEjmdZCq3+06UJDnzG8D7guc/zMTjMXvBlBKzo0meDfe3SaVnpsu+FLPCpGUPw+yLmD1kjq8/Xs9T2JV/D5lu8Rn4KMldUIvS+o8imYooezq3meT/5DlqY5idMqn0vcCncc8bmHkiybMxWtHWbwEPm3g4fXLR9b0k03qKyMx8AHgXZvefKEkGhc5m9zv1Xg58CrOTppSa3R+zH6aD8+ODSO8BvjXlmWtmJcyejtmXW/4uIgujPzuV2TEk02F+On1+aKMPAe/F7MB0+SUkz977ZE6dXZi9Avh/wEt3iyfPiroCs9dNWucUYMsCujtWRET2Mk0lJyIinSH5EvYNkqkj7tEwj/qncf/vScu+HXgEybQ7j8dsfJ7u23B/xpR63c/FbAtwdnrnUJHk19fPwH39pOVq6aDQB9MpIUZI7ih6HvCFFrzDQeA2YD9gc9O1JdP7PAv4SDqHeh9wBu6NzwGZbD3Jr1VvDur8IWbXk2yDVSTPm7gOeGrDA+UbPZBkDvdsyfZ8VPrX5M+28fN6KrAG+K+G+fa7SJ5v8pOcNojIuGTatm8Dx2P2U+D/4f739IL/h4AjMPss7i8GwP2aNJ+8Lx04qJE8L+E9uF/YUPc5JA/rbszTP8b9jIaW/BpYitn/kkyhVCTJfy/EfWBiKfeBdPD37cDvMduZRjYAn8S92YHnjen72UT8LI6Zc/8jZh8iGUgvkpwvTst8nl1ipvn/BcBZmL2SJP+ej/vHp2nN0UC1JW1NzoNPBP4dsw+QPIvqO7h/aZo2iMg4943pgMkHMft3kjvuNgMvI8mxPwfei/sFuF+VHnPvwuwskjxVIrlL89XptGXj9X4Ns1uA/0z7aP0kOfWnwK6pJM0OAz6X1tOYpz+QTq/WjPnfnwXS7XkCyfnseuBV6QB8VhvWp4M8X0rv1CyR/Chi6t2ayQDf50imAQT4H+AJOYP3ryEZcPpt+vfVwL/mvC8REZEpLP8HYiIiItJWyS+mfz7DOeBFRERERERERESaoqnkRERE9q5XAnrWjYiIiIiIiIiI7BG6Y0hERGRPMnsV8CSSqT96gG/j/sG92ygREREREREREekUGhgSERERERERERERERHpEJpKTkREREREREREREREpENoYEhERERERERERKRNrGqHWdVW7e12iIiIjCvt7QaIiIjIPGC2BPgEcAQwBPwIOItm5pw1Wwm8FTgRGAFqwH/gfl7Dcs8D3gRsaKhhLfAB3L/YsPxjgVcAi4FhYD3wRtw3NyxXBF4OPIXkmU514CfA+3Gvz/l9iUhzzNYCXwHui/uKvd2cPaIdOTap93HAm4GdwADwBtyvzljubsBbgMNI8uYO4K24/7klbTV7MvAioAvoA07H/Rdzf2Mi0siqdhpJv+bPXvEXzXLdLwLXeMXf06a2fRl4MPB8r/iF7XiNubKq3QX4OMn1rzHgLK/4j1pQ71uAU4DtwHXAG7ziOxqWWQe8ADgZOBh4NnDxDOreLad6ZVdOtWpm33kMeKFX/Pq5vysREekkGhgSERFpF7OnA6O4f2tvN2UGvgB8FfdvA2B2Jsngy8ebqPMFwI9xf31aZzfwccw24j75S/FG4LV4w5d0s7cDNzeUrQMeCTwT961p2X2BTwFPa3j9k0kGgx6Gey1d9kUkX6TPaOJ9iUgz3DcAj8Lsgr3dlD2o9TnW7N7A64BH4d6P2VHA/2D2YNwHG5Z+GfAu3P+WrrsW+AJmp+K+Zc5tNSsAnyXJ1U/FvX/O70dEcnnFv2JVuwh42xxW30ky0NsWXvHnWNXm0q62sqotJvkhwrO84ldb1RYB51vVNnjF/9hEva8E1gD394q7Ve0Uktz5lIZFDwL+AnwYeOMM6p2SU72Sm1Pf6xU/ey7tFxERAU0lJyIi0k69JL/ym9/MjgH6Ji4CJt4KPCe96Dc37mfi/r+T/h4G/hN4QsNy39ttUCjxMODChmVvwf21E4NCSdnvga70V+6Tl/0B7v8xMSiUlH2OZGBJRGTPaFeOTQa53zQxGON+DfA14Jm7Len+yolBoeTvDSR3UD6wybaeDvwc93doUEhk/vKK/6tX/My93Y694DTgm15J7qT0iid3VsJr51qhVc1IBtvf7JXkTkqv+HeBslXtqMnLesUv8Yp/yyu+c4bVnw783Cv+jmkGhURERJqmO4ZERETMDHgN8HSSKc8GgStJpj77bHqxDcxKJFP2PBDoSeObgNfhftOk+g4AvgQcAnh6l8q4S3F/QwvafD7wKOBtuH+oydoeApw7pcR9GLOrSKa9aM2UFGYrSC4w/nQGyx4K3IL76AyWfTRwN5JplPKWKwH/RnKHkojsKcmdfu8H7kIy1c16kkGNrGWPAN4HHEWSY7cD78mclszstSTT8gynJR8jGfg9Fvg47l9tos0LIccejvslDWXnAW8H/it3TbOjgRez+6/bZ95Wsx7gXri/b/ZNF5FmWNXuRnL382qSHyL9HniTV6beAWhV+wRJH2k5cE40lZxV7dkkU5cd6xVfbVV7IPBuoEzSb3q+V5If5VjVukjyzMkk/eYBoCVT1FnV1gC/Sd/X4ydPnzZHD6HhDiuv+GVWtcOaqPNo4DKveOMdWN8h+Y5wzVwqtWqSU70y45x6qlXt+STX9ZYAn/eKf2Iury0iIp1JA0MiIiLJNGRXA/efeIaC2SOAc4D/nrSck9zB8iE8/TKYTN3zSZI5xtOl/FaSaZKeB4zhbZnm4TCSeccPaUFda4DfZpRfBxxIswNDZo8CPgTclWSbfm4Gaz2B5At2Xr3fAE5K/3pG+Nyg5KL0N4B7kXzO/zKD1xeRVjBbRXLcvx7336RldyUZuNi/YdmjgLOBV6Z3Ao4fv5/HbMWU55OZvY/kguX9cB9LX+erwD2BE3Ff32TLD2P+59isX6CvBw4I1zB7E/ASkumN3oz7XxqWmE1bHwBcnA4yvZfkuXB/JbmLqXF6OhFpnWOBs4CXeMVvgIln0nzfqvZP6V0xAHjFX57GTwIeFFWYTkl2tlXtAqva6SQDHKd6xW+1qh1HMjXv+N0yXwfO94qfkJatAD5NMpgz7fNzptFLcm7oI8lHzVoN3JBRPpxRNlNryM7b1wH3b6LeBwAXW3X3nNo44AdcSnIO+LZXfNSqVgY+bVV7slf8XERERGZAU8mJiEhnS57R0JdOe7brwdruPyX5peSmSWU13C+aGBRKyq4h+RK7p90HOBJ4VQvqKpE97/woyYXR5rj/L+73IHko8SXMrP/xGOCH09T7NOBOTDdnezL93INIfjH7JfTDGJE96U3AOyYGhYB0MOLVJHcQTfZ+4KUTg0LJsreQPD/szZiVgfHBohNw/zfcx9LlNgHPIhksaoWFkGPHditJBsjjHOf+AZLt/lQmn992mU1b15JcIP0C8E7cH0LyLI9zMCtO33wRmaO7AM8dHxQCSAcDzgb+X5N1F4FlwCle8VvTuq/0im9P448B/s8rPnFXYjpo8Vzg0CZfm/Q9HQQc5BU/p9n6APNK5t3n1kSd7crpU3KqV3blVKtOzale8T97xb8x/t7S/74SeGkTry8iIh1GA0MiItLpTiKZemd37h/G/caJv80Ms6dj9j3MfoHZzzD7LsmdMHuW+zDu104ZzJq7EbIvpvaQdeFxrtx/C/wPydQnMbPVwPCMnlfhvg33LwKPxKaZFiS5g+DfgaouWorsMfcja/rIZHDorw2lB+H+p4xldwB/AI5LSx4A/CBjuc3Ar5tq7a66FkKO3b1tyeBZfpvdR3H/LrAVs6c3RGfT1m3A64Dn4f5/ad0XAReQXDwWkfa42Cu+IaP8m8BDm6y75hWfeHZOhn8Cvt1Y6BUfZLof9MyQV3yrV/yWVtQFjFk18/lozfyIoF05fSKneiXJqV6ZeU5N7xRrZsBLREQ6jAaGRESk0xVJp8eYgXcBJwDPx/2huD+c5LlE69vUtj3lRpJpkxodCtze0ldKptm72zRLPQ44f5Y1/xJ44gxevw7cCtx9lvWLSOs1XsBqxSDMfNSuHJt1Z9AhwB0zXP/HJHdZTTabtv4VuBhPHuo+yZ9InhElIu2RlyvbnUfzBh7m46DEzWTfydTM3f7tyul/JRn0ayanLmni9UVEpMNoYEhERDrdr0kGIrKZrZ301wNwfz3uuy66uQ8Sz1Nep13nWrNuzI7ArBVfwn8FPL6h/uSh4skzebJe39LX757VK5ktofG5Irs7BfjurOpNpn3a2oZlRaQ5lwCP3K00ec7QnRtKb8bsHhnLLiE5bq9MS35N1q+nzVaS3E3UvIWRY29Ip0Od7MnARTNsV1YunHlb3a8FVmK2rKGOo0metSEi7fEgq9p+GeVPIesOzdb6CfCkxkKrWi/w6Fa8gFVtuVVtXSvqInnm0ZQfDlnVTiAnR1nVuq1qR6TPU8pyE3CMVXfLz09i5vl3N15JcqpV83OqVa3XqrYqo91Hk/z4SUREZEY0MCQiIp3N/VfAYszeOGV6MbOjMPsWUy8+1jA7dNIyazH7T+JpO64AHttQ7xGYnd6Cll8K/AP4WNM1JRf3xjA7ZVLpe4FP50yj9LH09S/NjJodjdk56cPkx8tWk0wl95GwLWaLgEW4Z//i0uwszF408ayRpOyJJF/6vz6pzDA7H7OHTSorY/Ye4CbcddFSZM/4APAuzHY9kDsZFDqb3e9sOR34NGb3nbTsAcA3gPfh6XMikucO/R6zMybyazIo9AWyHzI+F/M7xyY+CpyZ5k3SfPtUkmdS7GJ2KmYfxGzFpLLjgP8APtRkW98PfCYdPAKzOwFPIGuqPxFplX6S584cPF5gVXsCyV3sn2nza/8AONaq9vxJr70C+CrJXfhNsaodQjLwcpNV7SnN1kfSN3yWVe3ItP5FJFMafyBnndz8n06zdzZJbhxv9+OBnV7xq5ps7/uBz1g1yalWzcypq4DvWtUmvn9Y1Q4APkvyfFQREZEZsdZMmy0iIrKAJYMMp5N88doJDJJMBXEm7pdPWu5o4ExgEcnDZXcCnwdeQvJl+N24/6yh7pcCp6Z/dZP84vozuP+yyTafD5xM8lD39zdVV1LfUuAskqkxlgDn4/7enOXfRPLl8ye4PzZY5n7Aa9l1h9AYyTb9UU69DwOOxf3jQbyP5OG6jyaZLqVIMgD3Dty3NCx7MPBvwD2BWrrst4CP414L2yAirWV2IPBB4E4kx+1moAK8j+S4fC/uF6TLHpGWH0Vy3O4A3oP7hRn1vo4kvw6R3LlZIXkA+nvSZ4o10+b5n2OT5R4DvIFkO44Ar8K98dlNYPZMkm3TlS67EXhrsOxs2/pckgeeO8l58ZWZ9YpIU6xqzwZeAfwZOBd4E8lzbbqA3wGne8W3TVr+BcBz0j+XA8uA69O//+QVf/WkZc8BVgP3IJm6bNyPveJTng2Z3inzTpK7QUfT4k+S5IynAGd7xc+c43tcA/wG2A94glca+tVzq3O8/96X/jvDKx5OWWzVXfnfK9n5P72b6A0k/dFu4Frg5V7xHQ3L/TPwxvTPw4AtJM8SGgVe4JVJzzLdtc5uOdUrU3NqOhj3LpLPq0yS/9/qFb843BAiIiINNDAkIiIiIiL7BrNzgZfgvmlvN0VERERERGS+0lRyIiIiIiKy8JmdCBQ0KCQiIiIiIpKvtLcbICIiIiIiMmtmDwGqgJF8r/kbu6ZNEhERERERkYCmkhMREREREREREREREekQmkpORERERERERERERESkQ2hgSKQFrGrLrWpH7O12iIhINqvavfd2G0RE9gmmfCoiEjJbjunagIiIzH96xpAAYFXrBr4FHA/cxyt+0yzWPQy4xise7k9WtecBz0v/HPOKP3LOjZ0nrGo9wHOBxwMHA18H3tOiuu8CfJzkGB0DzvKK/yhY9nHAm4GdwADwBq/41cGybwFOAbYD16XL7shYbgnwCeAIYAj4UdoGzT0pHcGqthb4CnBfr/iKvd2ePaFdx/1Mc5RV7YvAnYHhScV3eMWfmlN3AbgQuKtXfHVG/F4kefr+wGHA2rm+DxGZI9uVT/HOyKezYrv3+fDsPt8s692tz4fv3ufD7ASgAiwG6iS5/0zcaw3LzS6fJs9/+iAwCvQDb8P9D028IxGRfJbdl6XZ5yfY7n1ZvKEva7O8NjDz3HsVsCGjhrW4HzOn9yMimaxqpwEvB/7sFX/RLNf9Isl10ZZcE8yo/8vAg4Hne8UvbMdrzNVsrl/Ost6XAy8EdgA3Aq/1it+RsVwX8O/AfUny9EXAO7zSkE+TZQ8GPgWsIrnu8Cmv+H8Hr79bX9Yr+15fVncM7SFWtadb1Z60t9sR8YoPe8UfS9Ihma06sHWa+r/oFT/JK37SHOqfr5YBNZIBr1e2qlKr2mKSCyj/6hV/GPAE4I3pBc7GZe8NvA54VDrY9nrgv61qvRnLvhJYA9zfK/4o4PvAF4JmfAH4tlf8QWm9+wOvaPrNiSwQXvEN6XGyz534c7T8uJ9Njko9dfxckf4LB4VSLyH54n15ED+c5EcP9weunPUbEJHmuW/AOy6fzozt6vPhu/p86SBMM/VO9PnSbZ/d5zO7O/Be4IW4PxR4OMmX5Pdn1DrzfGq2Bngf8ATcHwycBrwXs0Pm+I5EZG8xezo2f69jNPgC8G3cH4S36Dus7erLpnW+HvhvbLe+7MyvDcwu9/4M95Om/INHAzfM+T2JSCav+FeAZ8xx9Z0kA9Jt4RV/DvD5dtU/V7O5fjnLeh8FPAA40Sv+UOBDwNlWtWLG4u8kGcy7j1f8IcBVwJlB1Z8Hql7xE4FHAg+yqj0x4/Un+rJe2dWXteq+15fVwNCe0wv07e1GtINX/IasX2rv69ILx5/zit/e4qpPA745/ot6r3jyqyR4bcaybwLe5BXvT5e9Bvga8MzJC1nVDHgZ8ObxX/97xb8LlK1qRzUsewzQ5xX/9qTitwLPSX+dLyL7mDYe9zPKUXNhVVsBPI3kFz+ZvOLf8or/0iteb/b1RETa4DTgmxO/PPfcPt/M2K4+38Sv5D3p82FT+3zAU4GX4X5bupzj/lHgnpiVpyzp/i3cf4nPKJ8+D3j/pHo3Am8kOSeIyMKyMK5jWNKXxXfvy2LN92XxpC+LB33Z5EcQn8NndG1gNrn35RnrPwr46azehYi0lVf8X73i0WDEvmw21y9n4+Ukg00jab1/Ivmh05QfKqTXOu/vFf/EeJlX/GzgQKvaAQ3L3he4wit+SbrcaNrOrDz7POD9XknytFf23b6sppJrYFV7FsmFpmWAk9wy9m6v+MWTlnkkSSejNj4l2qRphw4GPuAV/2JafgDwJeAQwK1qk29HvNQr/oaMNrwMeD7JL066gZ8BFa/4zjR+Zhr/EskI6ijJCOnzgAOBLcAzxw+gdJ0jSEY7j0rr3Q68xyv+i4zNULSqvQl4YroNPH1P32lo5wnABwADjm3V4FBa79uA8fp2kByQP29B3W8kuaX7h17xxzdbX5s8hOT9T/CKX5ZO2dfo8PGkNsl5wNuB/5pUdjRwmVe88RcM3wEeCFzT8PrnNrz+sFXtKpL9+/qZvQ2RhcOqto7kV3p3Ibn9eT3BSX82+dSq9lrg2eyaHu1jJL9MORb4uFf8q020+XySL4Zv84p/aK71pNp13M80R417v1XtIJL+iQFvCc5TAO8iOT/XrGpzbJ6ItJzNPJ+mU+ns1ufDM/p8ZqcCLybJD8W03rfifm3DcmcC9wHGcH8kZi8ExvvfF+H+xibe2xrgN2l7H4+H+Wmmduvz4X4Zltnnm6mjgcvwGfT53N8e1DFKsp1H59iGI9LX28X9CszuNMf6RGQ6yaDwa4CnAyPAIMndfTXgs+mABpiVSKZFeyDQk8Y3Aa/DJ00nb1OvY2BTr2Pgu1/HmEObJ/qyeOv7srgPp1OxNdWXxWfVl51e87n3CWTfXSQiLWJVuxtwBkmfrxf4PckPHrc0LPcJ4G7AcuCcaCo5q9qzSfqjx3rFV1vVHgi8GygDG0mmiNuaLttFkmNOJsnnA7TusRVT+rI537VnajbXL2djsVd8W0PZuSTb4ZuTyvYDbs1Y/zsk55cvTSo7Avh7Q1tHrGrXWtUO9Ypf37DsdxqWvcKq+15fVgNDu7sGeIFXfDNM3BZ3rlXtGeMJwCt+AXCBVe2C8ZW84huAR6UHe2lS+a1p+fNInq1zdt6LW9U+SnLgP8QrPpyWPQf4rlXtsemUb2+wqt0H6PeKn5gmrD8Cj/WK/8Sq9hLgVNIpI9I7Qs4GXukV/31atg74vFVthVf8vIZmfAr4TnprHVa1VcAXrWrLvOJfnvTeLgEeli5zAS1gVXsEydRALxkfmU0H1z5pVVvaODg1BweTJN75/DDI1WTfGj6cUbYzo2w9cEBD2RqyO8PXkUwJ0rjsb4NlDwzqEVmw0hx3DvB6r/hv0rK7knzZ279h2RnnU6va+0jyzf284mPp63wVuCfJLdHrm2z6YUAXyRf2ZrXruJ9pjoLkM9g6/kOM9AcX37SqneoVv3Hygla1Y4HVrfjBgIi0kO3Kp3iST7HsfIrt6vNN/Go6uRD5ScyW4pP6fGZvIxkMevTEgEcy3dpXMHs27tdNLDt+sdLsN5h9nSSPPQz3Icwe2OQ77E3fRx9J3mzWbPp8MzWbPt/uzE4G1uM+2EQbrgHuzuQv38m2fwRm3bg38/5EJNungKtJppBM7hZM8uw5wOTnJzjJ8xk/NCmfHgV8kuS5ZOlSyXUMLLmOgedfx5ijw9i3+rJzN9Pca1YEjsD977nLiUgzjgXOIrkueQOAVe3JwPetav+U3hUDgFeSu/qsaicBD4oqTK8Fn21Vu8CqdjrJ4PypXvFbrWrHkTyiY/wOmK8D53vFT0jLVgCfJuk3Xpz5AjO3EPqyAP1WtbXptfZxzyX5AdRkG4GDrWrmU5+NfBrJdfLJriG5yWJCum0fRzLodH3DslP6sulg3iOsat3j1+v3BZoWqoFX/JLxQaH0736SA+/Ydr+2Ve0ewIFe8TdO3snSwZjvAC+dtPiYV/wdafz/gF96xX+Sxv7C1M7V+4GXjl/ETNe5heTOqDdbteF2ZbjcK/6pSctuIpln81XpyHU7vZEkOd426fVvTdv6mhbU/yrgSJJfks5Xlt7SuFt5RtlYY0E6ZVLjoG+J7PlOR0k643NdVmRf8CaShxP+ZrzAK/4X4NUkv3ifbEb5NB0sOsEr/m9e8bF0uU3As0gGi1rhPiT57FUtqKtdx/1McxRe8e9Nvjs37QS+hey54d8PnN5Eu0SkPd4EvGNiUAjAw3z6RuDUiUGhZNnd+3xmBwN3wr065S4Y9z8CL6Dxjptd7gF8A/fTJ9Zz/9Xc3tbEa94AHAQchPs5TdWVMHzGfb6Zmns+N3sIybMxXtfE60Py68w3pIOCYHYfkl/dngesbLJuEWmUPAenD/czJwaFANx/SvKL9E2Tymq4X9SQT68huVi4py3Ivmw6pWbrfmQ9u9z7YKC5c5mITOcuwHPHB4UAvOLnkvxA9P81WXeRZIaqU9JrnXjFr/SKb0/jjwH+zys+cUdiepPCc4FDm3xt0vd0EHCQV1rTl53F9cvZ+DDwBavaCquaWdVOIxmomXIXkVe8BvwvyfN/Sla1nvSGiytp6HN6xf8AHGlVewKAVW1/kqlBz2lclrQvm/5gmPTmjH2yL6s7hhpY1e5H0jE5iOS26hFgLXDRHnj5RwLfCGJfBz5HMg3RTEw+CA9K52Ocwiu+w6r2B+A44LJJoXMzlh2wqv2O5EC8dIZtmBWr2n4kv6S/IJgWaLVVbeXkgbvZSkeQr512wb1rzKpWyHgmRtbFZG8sSC9MN5aPBOv3sHtndzbLiuwL7kfGNEde8b9Y1f7aUDzTfPoA4AcZy222qv26FY1Of0DQqnzWruN+pjkqcinJxePJ6z+ZZCpW3b0oMv9k5lPc/4JNyqe2q8+HZff5MFuJ+2aSu1xOxOzC4DWjX1f/Gvfd+rRNc98KbG1RbWOYFTKe29PMDwjmls/N/oXk2URPz5iGbnbcN2L2XOB9mK0m+dXl04BPkEwXKCKtdRLJxarduX94yt/JlHNPI/k19RKSax79wF3b2L5svjD7sulzgGbal803+9z7RJJHGIhI+1zccKfKuG+S3AXfzLOEal7xN+fE/4lkAGoKr/igVe2HTbzu5Lq20sK+7CyuX86YV/wXVrU+kkGbAsmdrqcB38tY/D0kPyq7kOR7wX8BfyYZTGv0NOAMq9obSO42ejvJd40p/VOv+EarJn1Zq+7bfVkNDE1iVTuZ5Jcab0x/LY5Vrcienb81r4Mx187HbNfLW76dD/AeAm70ip/UxtdYCG4m+SXAdQ3lWb/iyjqGDwHuaCi7keRW/UaHAo0PyJzNsiL7usYrlq35Ejj/tOu4n2mOiqwguWAx2YnAA9Lb9cfdw6r2feCJk5+vJyLzyuR8OgTciM+oz7cT+B7ur29Lq/au2fT5Zmr2+dzs+SRTSD2l6UGhce5/A5486TW6gTUTD3AXkVYqMvPv6e8imULo+bgn/TGzXqAlU8PvRfO1LxubW+49HvdXN/3aIpKnHddlZyrvTpv5+GDddvRlAfCK/xCYGAyzqt0r43XGbwD4SPpvfNnXknFTg1d8Bw0zkljV3kL2DRJT+rJWTfqy6cxi+wxNJTfVi4HTxgeFYOK2tGg0MCshRLcp15l+e/+UZMq2LM9k7p21m9Np6qawqi0huX37yobQkzOW7QuWbZn01sntVrUT2/Ua6S2IR6QH9F5hVVtnVVues8jFJL8EmrzOCWQkQOAGq9q9G8qezO53uN0EHJPxvp+UseyvgMc3vH4PcC+SeatF9jWXkNyxOUV62/CdG4pnmk9/TXIbeONyK0nuJmqaVa07zWet6CDO+rifYT6dUY6yqq3NmNYUkm04ZR7ldHq+B3rFTxr/B/zBK/5YDQqJ7HWZ+TSdUmxXPvWkz4fNqM/3S+AxmK1oURubY7Ycs3Utqm23Ph8W9vnG492YHZH+6j/LTcAx6UDMZFl9PjA7HXg48NSWDQpleyfJc/ZEpPV+TfKMhGxmayf99QDcXz8xKASkz7WJnpcwk+sYczN9PpuN3fqy2DTfYc0sff3cvmw6Vd9kWd+3Z2cuuTdpR+MzM0Sk9R6UzmjU6Ckk123b6SckfbYprGq9wKNb8QJWteXp1PetMJvrl+PxWV/HSK8VfIjkjp3plj0YeDrJI1mmW/bRwFD6eIDpvJN9sC+rgaGpriOZsxVILopZ1V4D/FuwfG38YLKqFa1qzwY+GCx7BfDY9A6k8fqPSB86BoBX/HKSi44fmHyhLZ1L8RTgM3N6V8lzGD5tVbvvpDoPIJm27n0Z80E+3ar2oknLriTZ+T8SzB3ZSi8HPtXwS3Csave3qv0wvfjajI8B/6BN0+FNx6r2FJIv7DdZ1aKHbH4deJZV7ch0nUUkc1l+IGPZjwJnpstgVTsKeCoNt5enI+hnA++d1JbHAzu94lc1LHstye2gp0wqfi/w6YaHuYnsKz4AvMuqNvFQ7nRQ6Gx2/zXgjPJp2rH4vVXtjPG8n+bSL5D9cMa5uJQkn810itHQHI/7meTTjzKDHAXcG/iuVe2I8YL0RwIvBj47i7ciInvXB4B3YbvyaToolJVPXw58CrOTppSa3R+zH2Jpny8ZRHoP8C3MDp+0XAmzp2P25Za/i4jZIaT9OMye0oIavw48C0v6fFhun29cfu733ft8WNLnw6f2+TD7KMk86c/BfWxS+aOwFj1X1GwVZv8BFHD/dEvqFJGpkuenLcbsjdiu6w2YHYXZt5j6Y6UaZodOWmYtZv8JPDSo/QrgsQ31HpEObDSrZX1ZPOnLYrv3Zac8d2mqGfdl0/ycbNPsvuzMzT33PpFoykARaaV+4Jx0gAGA9Lk0T2fu12Vn6gfAsVa150967RUk12SL4VozlF6HHL8m2bK+7AyvX46bVe63qh0DfJvk2kTuzQrpTGBfAl7oFY+mm8aq1mVVewXJM6NeOk2dq6ya9GW9su/1ZS0+R3aedAf+d+AIkluGDfgusBx4LPAVr/hZk5a/B/BxkjuHuknmM7yZ5Ivuq7zi/9tQ/0uBU9M/u0l+ufIZr/gvG5b7f8DzSKbP6QZ+BlS84jvT+JnAC0l+FfMkr/iIVW0j8AWv+L9Z1R5E8oXwHV7xL6frHAG8DzgqrXcH8B6v+IVpvBv4FnA8yS89X0wySDacLn+GV/z7DdvqHHbdHngPYPy5Gw68ziv+x3TZ40nm4LSMZXcCTxl/b+nyh5Pc4n7XtJ0lkl/hf8Qr/neaYFV7E8kDOH/iFX9sk3UdQjJ3ZYlkH1kGjD/z4gPpbY+N65xEMmq9CbifVzzzFnSr2tEk26wv/XeGV/z8YNnHAG8gOUmMkOx7jc9FIR2NfwPJrwy6SeZzfnl6K2XjskuBs0hux18CnO8Vf2/jciL7CqvagSQD+3ciyWGbgQpJ3iwC7/WKX5Aum5tPG+p9HUneHyLJpxWSuW7f4xVf32SbzwdOJsn1TU95Otvjfqb5dBY56q4kuX9V+vrXAa/1it+UU/dzgeeTnFcmzomT4m8BHpX+Ofncc5tXPLpDV0SaYdPnUzzJp+lAT2afD2/o8yUDSKeT5Ij+tK6fAh/DfUu6zGEkz+QsMfWYB/gAvnvfbJbvbQ3wG2A/4Am4/6yp+pI6d+vz4dl9vnT5idyPB7nfsvt8eEOfz2yQqdto3BHAvfFJ+dfifIo35FOzU0m+Dw2TfFYfacm2EpFY8tyb04EnkHzHHiSZQu1M3C+ftNx4zllEMtvJTuDzwEtI8uq7dzteLfs6Bj71OsYc2jx9Pptdfbv1ZfGc77C2qy+L51wbsN37snhDX9byrw1MOf/MJvdOfY2vA6dOGUwSkZZJf+z/CpLn05xL8tzMHpJc+TvgdK/4tknLvwB4TvrncqYe93/yyq5pH61q5wCr2b1/+mOv+BkN7egmuTvlkcD4j/M/SZLbngKc7RWf03OOrDq1L+uV5vtns7l+mS4/7XUMq9pZwAkk11uuB6rpj1kblyuRTDdXJrn55WKSH+zuNt1ber3hcyTXZgD+B/hs1g9hrbp7X7YV22o+WrADQ2ZWAF5NMrJ3GMmvEL8BvMPdB/Zi00REFjzl2Paxqp0LvMQrvmlvt0VE9h7lWRGR9lKeFRFpH+VYkYVvIU8l9xHgw8BfgFcC3wReBZyfJicREZk75dg2SKdHK2hQSERQnhURaTflWRGR9lGOFVngFuQdQ2Z2N5JpJr7t7k+eVP5KkjkKT3X3r+XVsWrVKj/kkOxHvCzEbSIyH/3pT3/a6O5r9nY7ZHZakWMByl3d3t2zODNWz29AZnEhp29ZyOl2Fgvxq5WL8YrRuaBej+vzhtjoujGGThwCc7wAxS0F+n7Ri41OfY95z9w14lipVMosz3tf5WI8NXEpdxvHMQter9AVT5O+czB+zm4xp415MQvamPe9pFCIt+/wcPQcZhgbi2fxKJfj910qZbc/78mbtVotjP396muUZxegVuTZRT09vnxx8OjFvGe5BrktNw/lxOo5/ebcJ8oGddbG4v3dco7XvGM5r2s/h02V+76iPJRUmLNiXp1RI3PbHr9Y3nksL7dF54FC7v4Rv1be+S3vs85rf7Q/Fgs50/LnbMdbN25Ujl2gWpFnFy9Z5KtWr8yM1et5x1h2Hit6nN/yHhzhQX8PYOdI+AgFlvQuyywv59Q3MLg1jI3Ucm4AsHIYKhfjflG53J1ZXir0xC+Vs7Xyzlf5Zp+g8/Js7jXx3PWyy/PybN55J//cHq+Xd273YP/Ok7et/vq3vyvPLkCtumawctUqP/jg7GuzoznfgTzoX+T1LeaNPZemFoa87dGG97xnN2POq80hlHeKKwV93ZtvupHNmzeHa8Y9gvntmSS7zkcbyj8LvB94NpCbgA455BB+9rPs6QHzvhDNvaMhsnDldeTyLtKuWrXq+jAo81nTORagu2cxx514cmZssJZzob6U/QWxt7c3sxygL/7uyNKenWHsgBV9YWx0aDSzfGAwrm9keLepbCH9Dm310WSrnrT7It3l+Mu0FeJT9eqVqzPLD1ixNFxn/8WL4vq6swfyAJb0xNuqtCT7A+g75PDMcoA/XLXbY4YmLFsWXOwGli5bEca6urPb2NMd7zu9PfG2v/a6a8LYhjs2hrED1x0UxtasXJVZbjnTxffv2B7GHnby45RnF6am8+zyxUt46SlPyIxFg8YQ93O7urJzL+QPdg4NxYO8eQPKxWL2sbdly5Zwna7u+HjtyzkR1Go5gx05A+m1seyLDoWcvJy3HXN/fJYTKndlv++87Zv3nnfs2O3xkhM2b94cxhb1ZZ8/uspxX3AkZ4A9bzCvpyfO2/1D8Xl453D2/rh0aXxezPt+967Pf045duFqOs+uWr2S0yuvzowNDMUXLId2Zh9jS2rbMssBltXiJDC2Nru/B3DZdVmPqkmcdPfsx+YcuGK/cJ3fXfWdMLZ++yVhrFSKr+vvt/TQMLZuvyMzy1f33Tl+Lcse8ALo7onPV9GAHUA9GLTLu/wzNhrX153T9xwbzf6OAdAbnF56yvF5pzvo/wIUc36kVcrp2w8HuRRgdCDj+w6QdyIbHInPBQ946COVZxemllwzOPjgQ/jhT3+eGbt9c/wdaGQse1C8kDfMntPvaLW83JF/M1XeoGxObAZtapW5XhYPB+1yKszvO89te9SCnynnrZPXV8xro+cMbpL3Q6dggrdSzveWlcF1nic99p/jNrBwp5K7L8kPzqf0TNx9CLg8jYuIyNwox4qItJfyrIhIeynPioi0j3KsyD5goQ4MrQM2unvWzw5uBlabWfzTCBERyaMcKyLSXsqzIiLtpTwrItI+yrEi+4CFOjDUB0T3og5NWmYKM3uJmV1qZpdu3BhPASMi0uHmlGNhap4dHY2nIBAR6XBN92UHcqZwExGR5vNs/45oyiwRkY7XkmsGmzbp2qzI3rRQB4Z2AtEE3j2TlpnC3T/j7vdx9/usXh3P0ysi0uHmlGNhap4tl3Me/CMi0tma7ssu6lGOFRHJ0XSeXbwkfvaiiEiHa8k1g1WrdG1WZG9aqANDt5DclpiVhA4kuZ1xZA+3SURkX6EcKyLSXsqzIiLtpTwrItI+yrEi+4DS3m7AHP0eeBRwAnDReKGZ9QD3BH45XQXFYpEVK1a0q30iIgtZ0zkWoKtQ56Du7L7gbbXMu8oBGC0XM8t7yzvCddb2DIaxe9zpoDB2+MGHhLF/XHtLZvn1Nw2E6wzXLIwt6Yt/dbp0yZIw1tUTb6sdA9nve8uOzeE6vV0expYvjdtY6ouniC4Vy5nlozvjz6VQHwtjXq+FMSNuf6mY/XuXUjH+XPLqK+TEysFrTbcenv3exkaimRhgyxZNsbAPakGedajVs0OFoBwoF7NzrEd1ATXi47U2mhPLORa8mP16vV1xrikW4uNudDC+9mAW5wDit02B7PXKFrdjJCfv5SmX4q9lA4PZddZqObmyFLexpyf6gS8sWbwojI0Gn3XN8nJeHKvX4tjgQHyuHdyZ+QNkAErl7O1oY/EHPTKi61b7qKbzbK0+wtahmzNjBY/7TOUgv42Mxef6kZH4eFiV04dct3T/MFb0+FiP7Lcsru+GO7LPHwDd5TgfLe6K+7J9xey7BQqF+FyQl9Ld42BOyqRez97+pZzcPDYWn/+6u+McXCrFn0vUZ+3KaUfeZb1Sd7ztS93xncf9A3GetSDP1obi/btYiPcdWbBacs1grOZs3DaaGbv61m3hesO17CmVCznHQyEnd7RaXp4i6F9Ox3P6VOR9/wxeL7+Nee2Y23rR6+X106PcnLRjbg2J+q05pw8s5zPL3fL1uP9ZzInVyc6ZhZxttW1Zdmw4pw8MC/eOoa+TbPvXNJS/mGQOy6/u6QaJiOxDlGNFRNpLeVZEpL2UZ0VE2kc5VmQfsCDvGHL3K83sE8ArzOxbwA+AY4BXAb8AvrY32ycispApx4qItJfyrIhIeynPioi0j3KsyL5hQQ4MpV4DrAdeAjwW2Ah8HHiHu+ffJyUiItN5DcqxIiLt9BqUZ0VE2uk1KM+KiLTLa1COFVnQFuzAkLvXgLPSfyIi0kLKsSIi7aU8KyLSXsqzIiLtoxwrsvAt1GcMiYiIiIiIiIiIiIiIyCxpYEhERERERERERERERKRDLNip5NqpXo+nwjSzPdgSkflPx4REygXj4MXZvz8oDu4I1xvyrZnliyzOzavLXWFsZVcxjB20ZkkY276tJ7N8cKg3XGdJ38owduD+q8IY1MLI4OBgGNtYHsss37w9Xuf27dvDWG9vdxhbsiSOLSZ7G48OxJ8zI8NhaGx0JI7VRsNYbSx7vbFi/DuYcjHedwrxrkO5HNdZMA9jXs/+zEZz3vPAQH/cEOlghhWyz8FjtTindHVl7/NDQ/E+CHGsXotzc6kcf9Ww4BDq68vOvQAeH1qMjWYfWwCFYtyOcrA9ktfLfsG8PERetyjnDeQd58PD2du/FuQTgMVL4/NbbSxuf955oLc3+7MZy3mMQHdpUdyOnP1069atcZ1BOwCWLc5+3z098Tr1vB1LOlqtPkr/ztsyY72FNeF6faXs/bAQ9JcA6j4UxhZ1LQ9jxf5yGLvjxg2Z5QesiPurSxcvDWNdOT8rXr18RRhbviyus7sr+9jsKse5iJztmPvdNKd/FiXvcs53jHpODi6W4rzoOe0vlrNzZjGnHaWeeB/oWxpv+7HR+FwQ9S8ACpbd/rwHyhSLOZ1q6Wg1r7F9aFtmrL8Wf6etF7P3uEI93nfzr1y1uC+QU9186XXkpsQcc25/sGJeO3JfKy/d56xWmEM76rkNiYP1nD5yXv+5FmRUy+mzbh/Kfte1etzfBt0xJCIiIiIiIiIiIiIi0jE0MCQiIiIiIiIiIiIiItIhNDAkIiIiIiIiIiIiIiLSITQwJCIiIiIiIiIiIiIi0iE0MCQiIiIiIiIiIiIiItIhSnu7AfORmc0pJiIiuxRwehjLjK0q9ofrDVn2OtmliZ39Q2HMR7bE622+NowVhrZnlh++pi9cZ+WqZWGs5vE7uOb6m8NYyTyMLe7qzSzf6rVwnW3bd4ax6+q3hzGvj4SxI9eszCzvGY23R1/O9th0+21hbHB4MIytWrVfZvmK5avCdbq6imGsVovbWLB4G4+OxW0c2JndjxgejNfJa4d0MANK2ftvuRR38euenVO6envider1MDY4GOffvp64znI5u+21sXh/H9gZHyflUncYK3XFsS074vNRV3c5s3z//deE62zatDGMjQ3H28pyclHJsj/P3nL2OQCgK9g3APD48yzkfNfxYN/J29/K3fG2HxkeDmNLliwOY71d8X4Vtd6K8e8hSwX9VlIiddyzc8RYfXW4Vv9Y9jrLcna1Qld8HI3m5OCBoYEwdvPNf8gsP+CgteE6a9fdM4wdfXCc34o9cb+obAeEsVJxUWZ5wbLzL0DO5gDifnPB8j6A7GIrzO3aUF5WsVL8Bqwr2I7BOROgZ3H83aQr5/w3NhZ/ZnlpsVjLft9jOdujWMw5J0mHc5zR7EjO961CcMYvebwf1i0+9jznO3fcu5ibhX5VOa/9lpODo4jl1Jj3WnP9xKKPOv9zifedej2nJTl9bnKu2RD0ufMaaXmvlUO9YBERERERERERERERkQ6hgSEREREREREREREREZEOoYEhERERERERERERERGRDqGBIRERERERERERERERkQ6hgSEREREREREREREREZEOoYEhERERERERERERERGRDlHa2w0QEZF9k3ud0aGBzNhobTBc77btmzPLt+zcGa6zbtWKMFYcPTCMDWzaFsa6CmOZ5UsWd4fr+PDWMPaP628LY3/62/VhbM3ypWHsXsfeKbN8v6Xx6f3mjfF2vP2O7M8LoH/H1jA2NpJd5xFrLVynp1wMYztvvyOM3brh9jC2dXX253n44fVwnXI5/o3M2NhIGBsajvfh0Y3Z+w7A9lJXZrnh4Trucfulc5kVKHVl56PaaLwPWrCrLVnSF67j8aFMX19vGOsql8NYrZ7dECvEuWERcaxYjHPz+htuDWNX/v3vYewRJz8ys/z4BzwkXOdnP/xBGBvYvj2M9fbF7S+VsmPmcf4qF+PzQFc5jg0Px3mvFKxX7o7bPlqP89dYzo7VFbxnALN4vd6enlmvIxIrQDE7N/aPxX2mEtnr9NTic315bDSMjdXi/bdv6dowdsst2fntG+d/L1znTic/KYytXJedEwH2H1sfxsq1nPwW5G6zON/X6/E5rhivlq+WnasKtXiVRV3Z+QZgSd+iMFbI6XsWytn9xJ6e+BzdnZODo/cFYGPx/lj0nFiQT8dq8cbKO+9Ih3PD6tn7R8Fz+n1BXiyPxfvaaDE+HjzqIAM5X9MWhvAUEr8xi1fC6zmxQhwrkL39PfhOAGCFOF/m9ewseC2AerRmToWec1+NF3Lan9MPLtby7tXJbkzebloIjqO8zxJ0x5CIiIiIiIiIiIiIiEjH0MCQiIiIiIiIiIiIiIhIh9DAkIiIiIiIiIiIiIiISIfQwJCIiIiIiIiIiIiIiEiH0MCQiIiIiIiIiIiIiIhIh9DAkIiIiIiIiIiIiIiISIco7e0GSKt5G+q0ub1czmqt5nN437lN97jxuW9rD75nkfmuXhujf/vGzNjiVX3heof0rcwsXzW8OFxnv+VxrLunHMb6B0bCWLkn+7cTpXotXGfDxi1h7Op/3BjG1t+UvZ0ANm3cGsZKjGaWH7ju4HgdGwtjW7fF7b95Q7yt7rh9Q2b5hgOyywFWLsv+nBNdYaRciBPt9q2bM8vXXxtn/GIhJ2bxa5WKxTBWr8d1umfHcl6Kcjneh6VzmRldXdnHymg9Z8Vadg6zYN8E8Jx9OqoPoBi0L09tLK6vpys+Fm7Pyb8XXfLbMHbX+x4fxu71gPtnlv/tH/8I1xncORDGusvxV6/Fvd1hbCzYJsVCvH2X9C0KYwMD/WFs50Dc/sWLl2SWez3e4Uo5Obu7Oye35STFsbH4PGbBesPDw7NeR8SsQLGQ3Wd14lxVC74UjuTk2dFafBzdtmFHGBsaivvUy1Yekll++7bs/iPAj6+Ic+nS+x0Xxp564OowduCW9WHMLLs/Vc/ZVnnqOfmomFNluRTk55x+/y133B7GhkbinJN3il66bHlm+Z2OOipcp3dRnO8h7q9aXu7O2f6FoMpaPd6visXeMCYS5QHz+F6GevAdbqyQc4RZ3tGXkyAWeD/Bg/dds/g9l+pxH60757t6/0j293GAQn1ndn1dy8J1RsjLHTk5LOeahwX3yHjOvTOWs3/kX4/OWS/nVh0PLy7PpR3551PdMSQiIiIiIiIiIiIiItIhNDAkIiIiIiIiIiIiIiLSITQwJCIiIiIiIiIiIiIi0iE0MCQiIiIiIiIiIiIiItIhNDAkIiIiIiIiIiIiIiLSITQwJCIiIiIiIiIiIiIi0iFKe7sBMv953eNYHMLM5vJqOZF6Tiy3IUF5zioU42DOS+Way+YQWcDqXmN4pD8ztrrcG6532AGrM8t7Fy8J1+npjeur55zp6mNxsCs4aMvFOD/09ZbD2OoVi8LYISMr4zp74joP2G9VZrnVBsN1dmzfGMa2bt0cxrYPDoexoYHs35n0WvbnD1Aux/X1LVkTxor1rjBWC85XoyPx9th4x61hbNGSvjCWtx9YKY4VS9mfZzHnnOll/Y5Hdler1dixbWtmrLe7J1yv3JW9D9ZrtXCdej3ug42OjISxvHb0BMfJ2MBYuM7A4FAY29q/NYytXBvn2FNPOy2MHXnk0Znll992R7jOku74fJTTlWX5kvgc55694shw/Jlt27E9bkbO51ksx+ecWtAOy+sc57xWd04erdXj9zY8MhrGBsbi9SKjo3F90tmMAmWy+wK9HuejUnDeHhmO+yP1clyflW8JY6tWxTlzRRDb8n9xX/DmP/4tjF1jB4Wxu/7TujC2Luf8UhoN8kdX3C8qFOJ+UV5sZCw+X918U/Y2vv76G8J17ti0JYxZIc5vBYvbaMXs7XHp5X8I17nn3e8dxh544oPCWDFO95jF2wrL/v5kFp8LSjn5Xjqc5Vw7zLmG5sH+5oWca4o5+2j+hb65XgScH0pB/62ek6dGcrb9xr//JozddtX/hrFCIbvS/Q6/V7jO2qPjGH1x/37M4zcQRWyO15xz+8F517jz9u/gM8sTHhPTrKcrDSIiIiIiIiIiIiIiIh1CA0MiIiIiIiIiIiIiIiIdQgNDIiIiIiIiIiIiIiIiHUIDQyIiIiIiIiIiIiIiIh1CA0MiIiIiIiIiIiIiIiIdQgNDIiIiIiIiIiIiIiIiHaK0txsgrWZzWqter8c1Wjx+WMgZWnSPyoMAUCjE7TeK8YvNRU476h5vj3it/GAh+mxsbp+ZyHxnZpR7ujJjvb3d4XqrVyzNLF+8LLscYHgsbsdgTrA2NhLGij29meU9PT3hOgctyn6/AEsW94Wxu/cPh7FSOQxx4OolmeVbd+wI19mwZWMYq40NhrGhnXHMR7Pz845FOTm9GJ9Axsbi7bFla/ze+kezy3v643VuvePWMHbAAfuHsbWrV4exvkWLw1ihkH2i8Hq8n3oteGPS0dzrjI1kHyvDOR2SejH7eC0V4mRTDNYB6CrH6+X1L0dqtcxyz+kXDQ7nHAvlOP8edNChYew3P7skjv30j5nlK0rx9igH+RBgJKd/uTMnx3Z3Zb+3sbG4voGBgTA2Fmx7AM/5zLq6s8/dI6M5+StnXyyX4q+ioyNxnXn7VTH4bEZH4n0nb/+WzmZAd7B7jOR8hRtmKHudsfi47CnFsdWr4vzQ5/H+e+ONt2WWr1sbv9a6G+P+2VW3xn3I224/KIwNL8vuUwN0BduqkHNOKlj8PWLH9vi9/fayP4SxW2+9PbO8ZPH2LXXF7SjkdODHanF+KwXXKLZu3Bau89MLfh7GhgbjPvVDHnCPMOYW59mgK5ubS0vF+Bwtnc7Ca2J5V8pyr8vJFDaWvSVLY3F/8PabrwhjV/zoE2Fsv7Hs8w5Ab2/2d+TrbvpruI4N3xHGDrrPP4exkWL8Xd08OwcXiPPenPfGBbAT644hERERERERERERERGRDqGBIRERERERERERERERkQ6hgSEREREREREREREREZEOoYEhERERERERERERERGRDqGBIRERERERERERERERkQ5R2tsNkD2n7h7GrBCPEdbi1RjaORjGRkZGs9tRr4fr1Ou1MFYsxbtrd3d3GCsXstfr7o7rM7Mw5sQbpEC8HmS/b8/5XMipL6+NIvOBWYFiV19mrNC7LFyv3rM8s7xWXpTzWmNhz87JNgABAABJREFUrDgS56lyOc59fYsXZ5Z39cXt6CrFx3Nvb5yn9l8V577R4W1hrFzIzrMH7LcqXOfwA3eGsb/ftCWM3bEtXi9610PD8edy2+3xay1eGobYsXMkjN2yaUdm+UBOO7p7esPYpm3Z9QGMHpG97QHWHbB/GOvtyd4PCjkpvZAXlI5VLpXYb3V0rMf7zOhY9vFgcfeMseH4uCuVy2FsOKefODiaXeftm+KcN7AzPpb7a/ExuX1wIIxdt/7nYWz1moMzy+9397uG63SVi2GsMNITxuoW90u90JVdXzmnb9ybff4FGNq+NW5HTj9987bs9YZH4s9l+bLlYYz6cBiynP5xLef7Qk/wfaGQ811HJFKgzqKxII95fPzdvmNDZnmtFufSWlecO7Zs2RyvV4yPh/6h7PXKS+JjdtkBcR+94HFeuX1rdp4CKC4ZiussZh/rO0e3h+vccG329gX465/Xh7Et2+N+Xc+i7P5gb2/c7y8U47yS9x3fPT5HF4JLdIVifK4dHYu37+9+d0kYO/zgFWFs3fJ4PxgeDa5r5Fw4Ul9WQu540PeY67UymSrqIY9svSNcx6+/NIwdtKg/jG3ZFueq2s7s9brZFNd39a/C2IqDjgpjxYPi6yH1vN0qkH/5NSeYuw+3uh1zox6yiIiIiIiIiIiIiIhIh9DAkIiIiIiIiIiIiIiISIfQwJCIiIiIiIiIiIiIiEiH0MCQiIiIiIiIiIiIiIhIh9DAkIiIiIiIiIiIiIiISIfQwJCIiIiIiIiIiIiIiEiHKO3tBkjM3XOiFq0UrlHLiW3aujWM/fVvfwtjG267PYwNDQ1llo+OjYXrFIvFMDYah+jp7Q1jyxctySzff+3acJ0D164JY4sX9YQxr9fDWE93d2Z5V7krXCf4lAGo1WphrFCY25ivWd4risxOHWPIsw/czaPxvlbbOppZXtzeH64zPJydbwDqtTjn7L9qaRhbVl6cWW5d2TkFoFTKydu1gTDkNhjGukpxfou2YrlnUbjOujUr4tiq+L3duGFTGOvrzu5OLOqJ2z42mv05A9TG4lg5p+fS3ZWd+7YPxrl5+0C87QuFrWHs79deF8a6uuJGrttvdfZrlXPOf7W8/oB0qkKhQG9v9rGe14e00ZHM8sGdw+E6XT1x36c756AcrWW/FsCmLVszy2/bnl0OYKW+MDaWc9wt6l0Wxo47/sgwtqM/u/0bBzeG6yzZL86xPaX4OC/PIQfUcnqK3X3xtuoeiT/rvL5g1PesF+Lz7FBOv7+U81qlQrw9arX4HBH1B/KOiULOa0ln83qdsZ07M2M9hXj/XTyWnTtGS+X4xSzeRzfv2BzGRizuX46Vs4/1pUvi/LBi/ziHLb4p7ouPrP9rGBusx9cTrh/Izqd/3xh/n71x/S1hbGwo/o7cuzh+30tXLM8s7+qOv6vnfR8v5nwfr9VzrtmMZfdZaznfZyznXDDQvy2MXfLr34axxz3iYWHMPft9j47E+2Ktln0ciUB8jtY3oNbwII31rcj+XgpQ2v9OYWzopjh3bNwR9/23DWTnjgMWx5/0ItsexvpvuyaMrTzgXmFszHLOxR1IdwyJiIiIiIiIiIiIiIh0CA0MiYiIiIiIiIiIiIiIdAgNDImIiIiIiIiIiIiIiHQIDQyJiIiIiIiIiIiIiIh0iHkzMGRmbzazb5rZtWbmZrZ+muXvbGbnmdkWMxsws4vM7OF7qLkiIguO8qyISPsox4qItJfyrIhIeynPinSW0t5uwCTvAzYDlwHL8xY0syOBXwNjwAeBbcCLgR+b2WPc/YL2NlVEZEFSnhURaR/lWBGR9lKeFRFpL+VZkQ4ynwaGjnT3awHM7M/A4pxlzyBJUMe7++XpOl8G/g/4hJndxd29vc1tjTk3M1ivXo9XueW228LYby69NIzdcNNNYax/x0AY2759R3b5tm3hOne56zFh7JCj7xTGbrttQxy75Y7M8ptvvDVc5+aVy8PYmlUrwtiI18JY75LsXfqgAw4I11nW2xvGFi1aFMZEAns0z47W69w2kJ0jbrrm2nC94k3Zx3Ox2B2uM7BzZxjbOTIUxg5duyqMPahumeXdXfFxWVpcDmPm2fUB1HOS96K+pXGdwY2/VohvCF61PP7YjzhodRi7ddPmMDYyPJZZvqwv3h5LFsefZ6kY71rxWtDXXcwsL5dytn120wHwnM9l85btYWzb9v4wdtD+azPLly1ZHq4zOpbTSJlP9miOrdXq7OgfzIzlrWiWfTyUenvCdTxnHywV43zTPzoaxmpBnlp3yKHhOstX7xfG1h1yWBgbHBwJY7fdfEsY27nj9szyI4++S7hOISfXl7vjbbVt29YwBsFnlrPtR0aH43aUu8JY3vmoVsuOlcvZuRdgaCh7HwUYqcV7arwVwSxeb2Q0O1bMOS/29vXlvJrMM3s0z/bvGOQXF/05M7Zmddwj2bQ9+zvh2sP3D9cZWRwfe8PE37nLvfHR0tuTfaxbfFgydseWMLZ8y2VhrHvz1jC2cXRJGPv937O/E2wox9+5C4X4PS9bsSyM9XTHua9cyr40Njwcf48YHY3PjdG5FmBwKK6zZNn5tJR7Yo+DvT1x7rv++vg6z223/j2MHbwm+zrEcC3ed7asj6/XyLyzx6/NxkfLXK6XLohLwXtU3bL742N9cZ4dWHR4GLvmtvjay8pi3P9cdkj2ObCvFPfTl+ZcX6kPxdcn6kPZ16MBrG9lZvnCGEWIWbDv5/WpYR5NJTeeeKZjZouAU4ALxxNPun4/8DngaOC+7WijiMhCpjwrItI+yrEiIu2lPCsi0l7KsyKdZd4MDM3C3Ul+MPybjNhv0/8q+YiIzJ3yrIhI+yjHioi0l/KsiEh7Kc+K7AMW4sDQuvS/N2fExssO3ENtERHZFynPioi0j3KsiEh7Kc+KiLSX8qzIPmAhDgyNTwKdNXHhUMMyU5jZS8zsUjO79I47sp87IyIircmzIznzbouIdLCW5NiBwZyHRIiIdLaW5Nnhkfj5sSIiHa4leXbrlvg5MSLSfgtxYGj8KVdZT3vsaVhmCnf/jLvfx93vs2bNmrY0TkRkH9CSPNtVzn6Iq4hIh2tJjl3U29uWxomI7ANakme7u4ptaZyIyD6gJXl2+YqVbWmciMzMQhwYuiX9b9YtieNlWbcyiojIzCjPioi0j3KsiEh7Kc+KiLSX8qzIPmAh/pz7SpJbFe+fETsx/e+le645e0e97pnlmzZuCdf53e9+H8bW33RjGOsfyhzkB2DH9h1hbPuO7NjAzri+YineJY854ugwtrJnWRj7x1V/zSy/+a/XhuvcWo+nDVi+YmkY61u5PIyVVyzJLN8xEG+PI/ZfG8ZWjsXTdPX1Zd6xC0BXV1cYM7Mgkr2/pWvlxGSBakmerTlsq2XvO5s3xdN5buu/LqgvZz/M2Q1LpXIYKxMfR9ffkv3rpb7u+DcVO5fHv+Bf0h2/1qLuOOe4x3UWylk/0IKx0YFwnXI53liHrFsVxrb1x1NE33Lrxszyvq54W+WdWwqj8Wdthfg8UR8bzSyvjWbNcDC+Uvxr4EIh3vbDYyNhrH8g3v5Y9ustW7Y8XKU2Vo/rk4WoJTnWCgXKwTk9Pp/HurvjY2t4Zzxt3c6cqZaKvXH/7G7H3imzfPu2ocxygH9ctz6M1Yfi9m/YtCmM3bE5O38B3Ou4u2aW77csfl9bNtwSxwa3hbGhnP7gfqtWZ5ZbznnRi/E+0NMT57a8fWfr1q2Z5Xk5qrc77nfWa/F65ZzvBHl3JEfNz6tP9kktybP1Ooz0Z+9U/R73cQZGsvsjA/1xfit3xf3V7YNxv2JpMe7HLAn6HDsG4rYvz8lTS26Lv/tvKcSx9SuzcxjEuWr1yjjP9i7O/l4NsDjnbtq8nDMSfGa1nO/cw8Nx/7JWy1lvNN4PuovZn01Pznf4xYvi7/5YfJ4oEe9zf/3r38PYwG3Z7602GveNb7klPg/LgtWiPFujvz87f4zlHGPdfdnfg/OvXe05c22FtaH9RcveVltu/lu4zu8vODuMbdpwWxg79M77hbGjDsq+vlLMyW9Fi3NpcUVPGBsqxvnIg228569s5lzzmGU5QCEn3+dZcHcMuXs/cD5wkpndY7zczBYDLwKuBi7ZS80TEVnwlGdFRNpHOVZEpL2UZ0VE2kt5VmTfMG9+OmVmpwGHpn+uAbrM7G3p39e7+1cmLf5m4BHA/5rZR4DtwItJbld8rHvez8pFRDqT8qyISPsox4qItJfyrIhIeynPinSWeTMwBLwQeGhD2bvT//4CmEg+7n6NmT0QeD9wOtAFXAY82t0v2ANtFRFZiJRnRUTaRzlWRKS9lGdFRNpLeVakg8ybgSF3P2mWy18FPL49rRER2fcoz4qItI9yrIhIeynPioi0l/KsSGdZcM8YEhERERERERERERERkbnRwJCIiIiIiIiIiIiIiEiHmDdTyS0U0aPTzHKeqZbzvLW8R7E5FsYu/vWvM8sv+d2l4TrbB/rDWC2n/aVyOYwdcsABYazn8MMzy9fuH69zeLAOQHchHsdcsXRZGDsgaGP/xg3hOtdd+vswdseG28NYd293GFtx73tmlheoh+usXrokjI3W4/WWjY2Gsa7uuI3Ll2S/XjFn/zArhjHpbFYoUOxbnBlbSrxPDY+OZJZv798Rv1Yxzg+lUk8Yy3Pbxs3ZAa+F62xZ3hvGDl4Txw7ab1HckIGdYai7J3s7jgzF22pkZDiMWT3OHYu742N91ZLsbTw8HG+rwfilKBXj806hnrPvBO9tNOc9F8rx/lEu5p2k4xxcLsXrFSzYJjn7VaEQ9weks5ll7xtROUAh6E8VLM6jxVJXGBvM6XOMjMbt2LYhO8f+47obwnWu/ce1YWz4j38KY8tXrgxj97rn3cPYIWvXZpbvuOO2cJ2d/dvCGMX4OO/tjbcx9bHM4qWLs8+xAFsHsteB/Jw4NDQYxqJUtGJJ3A7L2a9GRrLP9wDFYnzO6e2J83Yh2Pc9p99Rz+lTS2crlYssW5f9/WiRx8dsl2Xvo56TL4s5FwaK9fhY6RmN+0wEx1hP0D8HWHdA/L7WX7k+jN2yPeg3A5f3xPmor5j93bTcFedSK8bnlqHBOIcVC3FeGd6Zvd7oSPyZeS2OFXL6iaNjcQ72ruw29navCNcp5WyP0cH4vFPsiT/rGzcMhbG/X5V9nu7v3xSus3FzHJPONjo6xobbsvtVQ/W4D9GzKMizOV/fci6xtlzeS+U1Me86cO5by+lvjQV9u1/+4FvhOjdfdmEYu9Pq+LxTH41zTjlqYiHnemMtrm9Jd7ythsfiHEZ33pacHzzqz+Z8x6sF12ane7dNDwyZWRewChh297g3ICIiIiIiIiIiIiIiInvVnKeSM7PnmdmlwABwE3DmpNhTzOxrZhbf/iEiIiIiIiIiIiIiIiJ71JwGhszsK8DngXsDg+x+l9wNwDOApzbVOhEREREREREREREREWmZWQ8MmdkLgVOBPwLHu/vSxmXc/RLgFuAxTbdQREREREREREREREREWmIuzxh6EbAdeJy735qz3DXAYXNplIiIiIiIiIiIiIiIiLTeXKaSuxvw22kGhQBuBdbOoX4RERERERERERERERFpg7ncMVQEds5gudXAyBzqX5C87mHMGp/ANMNg3ePYHy7/U2b5ry75XbjOySefHMbueswxYezggw8OY9RqYWh0bCyzfN2BcX0jo6NhbOPmTWGsf3gojHUvW5xZ/tgn/Uu4ztgJdw9jf/ifb4axq664PIxde+UVmeWHnXDfcJ2exUvCmHu8z23YtCWMjYzGh+VhBx+UWb5mefY2BLC5PapMOoBjjAWnmVJXT7heT19vZvnQ6GD8Yjm5tKtUDGPDOTln0/Zt2YF6nPdsLD5Wuovxek4c27rpxjB22CHZv7/oLsX1bduxI4zdtCHOHdt2DISxrq5yZvn2gXj7DtfjLki9HoYYHY5z2PbB4czy7LNRoqcY57B6LV6zVIhz8KLe7jgW7N89vdnlAIVSXJ90MHdqQT+snnMQFYvZObFei9fJO/5LvXHeGx6Jc8DOwew691+zMlxndDT+CjIwFPcFDzv80DC2tC/OAZtuuyGzvFDLyW0j8blqzX4rwtjYSJzbNmy4JbN827b4XNrdE8eKpTj/5vXqli9fnlneW45z1Pbt28PY0kWLwliNOMcWCzmtjL6TxdXRVcw+h4lYqUTXmv0yY33Llofr1TbcnFm+aWvczxpbFOeAUiE+Zkf645yztCf72LScjlH3QNyOw0txX+Wvg3EOvm7DxjC2ZtFuTyYAoDQUt6O8La5vZCTuA5fLXWGsK9hWeefT7pw+ZG0sPk/Uc77HL16yKrN8ydLs7QRQyzknjeach3u7+8LYypXxuXjlgWsyy2+6+R/hOitWZa8DwP9eGcdkn2cGxeD7eqGW1yuJjqO8C7B7Us414py1asTXLjxnza6cfPTnP/4+s/z/fveLcJ1D4nTPoriJFHO+P48MZ39XX9Qb5+ali+L+bKEen3cKI3GsHnQ/c7qKbWG5r5j9edZzeuq1cIgn/5iYyxXd9cA98hYwsy7gOOBvc6hfRERERERERERERERE2mAuA0PfAw4zs1fkLPNaYA3wnTm1SkRERERERERERERERFpuLlPJnQk8F/h3M7sH8K20fIWZPQx4CvBS4CbgEy1ppYiIiIiIiIiIiIiIiDRt1gND7n6HmT0GOA94IfACkqn4Tkn/Gcmg0OPcPXhAg4iIiIiIiIiIiIiIiOxpc7ljCHf/o5kdQzIwdDJwGMm0dDcCPwI+6+79rWqkiIiIiIiIiIiIiIiING/WA0Nmdgow6u4/BD6e/tvH2BxWidep56w2VvMwNjgyEsYefNLDMsuPu+e9w3WOvtPRYWzZ8uVhrFQshrEr/vSnMLZ06dLM8rF6vEW2bYtvMrttw4Ywtmhx9msB7LffqszyZX1d4TorDjwojK3OifX+8sIwdsUtd2TXd8Ah4TrDI/H+8YPvfz+MbdmyOYzd8173CmOFQvZjx5b2HR6u09tdDmPS6QwPTjP1nEfcdXV1Z5YvXbQoXKdeH4tb4bUwNjQ4EMb6i9nHX6k2Gq7TW8hrx3AY+8eNQ2Fs86bs3AHQ1xccs4uytyHArXdsDWM33LYxjG3ZEbe/XMrOA9uH4m1vvfHnOTQSb8eBwXhbDdeyzy/dOXlqUc626urO6SblnMvGRuN9pFDIPqcuXbYyXKfcHW8r6VxWKNDb05MZy+leMjySfSzfsXFLuE6hlNNnCvp7AOWhOG8s784+9sZycuyOvvhYXrG8N4wt7oo3SH1waxjz7uw6o/4SQE63mZLH3xe6e+L29/dmxwYHB8N1yt3xZ9bXFceWLl4cxupBjh0eitvRVY7z6OKc8/r2/h1hbHQ053xUzH69oaH43NGTs+2ls40Bm8ey88fAcLwfdgV5dmQ43g+9FicPL8S5r27xNYMoV/UVVsTrFOPXOnRJGKJYiPPKjh3xb4Y9OGEtWdQXrtM1Fp8n8o71cjluY3dP9jmpXI63R7kvbmO9ntMHDvqCAEsWZ2/k3pzz8LaBePuO5rQjmfgnW29w3gFYsyb7PDE8HLfjqKPuktOOb+bEpCMEu+JIzjVRC67b5nSBF4S89pfj7ifbbr8pjP3yR+dmlo9ty7vGmv0dA2BpX06fe1FOzixlf2bLl8cnl2VxM9hpcR+zkBOrz5OdxOcw9lDIubZV8uxrKDbNUZGzW4W+DbxmDuuJiIiIiIiIiIiIiIjIXjSXgaGN6T8RERERERERERERERFZQOYyMPQbIJ6vTEREREREREREREREROaluQwMvQs4wsze1urGiIiIiIiIiIiIiIiISPvkPFU5dCzwFaBqZs8AvgPcAGQ+ddTdvzz35omIiIiIiIiIiIiIiEirzGVg6IuAAwbcFThmmuU1MCQiIiIiIiIiIiIiIjIPzGVg6MskA0P7LPfZv73RsVoYG6vXw9jA0P9n777jJKnK/Y9/nu6ePJt3WXIOoqAiiiCKmFB/XjHrVcScror5Egy0bQIVlGuO14R6VVAUw1VRURC8iIigiILkzOadPN39/P6omtmZ3npqQs9s6u/79doXzDl1Tp2urnrqVJ2uUyNh3tBINczbZbc9M9OXLBsOy2wcjPM29N8Tt2N4KMz75823hXl77blHZnq8NeCC758f5v3u0kvDvAceckiY95KXvCQzfeniXcIyt61ZH+atyvleBlfGda6++d7M9H/+46awzL13x9/LvavWhnn33JO9LoBR/0uY1z80kJm+204rwjJdO/WEedLizCiU2jOzSoU4znbUs+PpAiuGZWqjcSyt5YR0szivrZ5d0Efida1f3xfmrdkQ563bGOftvLgtzLPgdDwyNBqWqdfiDz0ahzfuX7cxzBsOVte1cFlYpqeYvW8A9Odsj4Gcc1mkuzPu7ixd1B3mFQvxjLujo/E2Hq3G+4gHO117R1dcZofudclsFczobO/MzFu1YUNYrm84e//sXbokLNPeFseh+nB23wFgaUd8nI949jF0++pVYZnu9viYrOf0MJf3xMd5dzGus62YHTu8Fq9rcU9vTn3x9ujrj+NeRyn7e+5cFMeNUnu8rtHR+LrFa3GMteC8WCjF23BwML6OGK3GJ53RYD8FGPW4XKEtu69QCr5LgP7B/jBPWlt9dJSB++7KzKttjOOAjWQfK+3tcR+so31BmNfWHsfg6kjcHxmpZh+bSzrjddV74mu7fVfGHZLDaruGef934x1hXi041odL8TFby4nB1Zy4UqvlxD4P6szphA3l9BMLOXntOfGos5D9XQ/lXEd4zv2JruBaDPK3R14/NzgVsHRpfM+gu1f3DCTm4S3mHfMiyInPBYWc+xOMxn3uy37+gzDvzn/+OTN93xXxcbnPnvF1weKe+HtZsWJxXG5hdh+5vRR/6GJbHEu9Fp8bKebFnKjOvLvVsbx7StG1P+TvBwTnpFrOdde6dXdnpldz7pXBLAaG3P1lMy0jIiIiIiIiIiIiIiIiW1889CYiIiIiIiIiIiIiIiI7lNlMJTeJmXUBO5M843evuw823SoRERERERERERERERGZc7N+YsjMnm9mlwPrgRuBfwEbzOwyM3veXDVQRERERERERERERERE5sasBobM7NPAt4FHkjx1tCH9VwSOBP4nXUZERERERERERERERES2ETMeGDKz5wP/AawB3g4sc/cl7r4EWAq8DVgNvE5PDomIiIiIiIiIiIiIiGw7ZvOOodcBI8Dj3f3aiRnuvg44x8x+BVyZLvu9Zhu5LVm/fn1m+ob++NVKXb0Lwrzb7rwnXtfG/jBvYHAoM31d0D6A/v64vpHh4ThvtBrmre/bGOb1DWZvkw1r7g/LfOPcb4R5/UPZnxng1ttvCfMWLOjJTH/hi18SlrnjrvvCvH/denOY94c/XhHm/fOa6zPTb/vXrWGZlbvvHOYtWLgwzNt1z73CvJHR+Lv+vyv/nJl+2AMPite108owT1qbGRSKxcy8jrbusNyS3t7M9C6P1zW0MY7BtepomNfRmd0+gJ4F2afIwcE47q3ZGOetHx4J89pKFuY9YO9dw7yFPdnxrWBxfW398fYYrcXlNgzG5YZr2duxp9gZlunri89J6zduCPPqtfic1NnenpneXoq/546cvGJO3shIfE6q1+M21mrZ23E0Jzabxe2Q1jVarXLPquz+ynC1FpZr78g+Lgse77fFWhyAuzrj47xE3I6B4exjqDs4jgE6ujrCvHvuvTfM85H4s3UsXhTmRbG0sydu4+hIHCtz++KjcTkLzqW1erx9rV6P88IcGM3Zd7q7uoKceP8olOLLzZGc/aqtK/v8BuA55/V169ZmpkfXAwCWc86U1lYqGEu6s/fhRUvawnIdln38VdfG/cSSx8dKsRb/nne0Fsfgrs7s+xCjo3G/onNlfG23eG3cl3300kPDvD/dcEeYZ6PZMWd0KO4XVdvjOFUsxJ/NPY45UV6tFq9rMLjfAdAVxkvo7cm+1gGoVbPPV8ND8boKxTiGxa2HQs62as85F7e1Z5+L2/LO393xtZ+0tmKxyOJFizPz+m0gLBcfz/NxTs+5ERGK2+Ee5+Vdt177xyvDvIt/9qMwb3FH9vp2XhHHosUL4xi2ZGHcxoWL4vvfbe3Z57nunHsyeVt+0OL2j7bH90vrln1OLXhOxMz5zmqed96Jq8yL0B1Bl+D2f90Ylll3V/a96uHB+PoDZjeV3EOBixsHhSZK834NPGwW9YuIiIiIiIiIiIiIiMg8mM3AUBfJNHJTWQvEP18RERERERERERERERGRLWo2A0O3A0dZzrwmZlYCjgLiZ4ZFRERERERERERERERki5rNwNBPgD2Bz5jZZhOFpmmfTZe5sLnmiYiIiIiIiIiIiIiIyFyJ33AYOwN4PvAq4FlmdgEw9oajfYBnAsuAu9NlRUREREREREREREREZBsw44Ehd7/PzB4HfBM4nGSAyNNsS//7J+BF7n7/nLRSREREREREREREREREmjabJ4Zw938CjzCzxwDHALuRDArdAfzO3S+ZuyZueYMDg2He5z73+cz01Rv6wjKPe9JTwry/Xf/PMG/t+o1h3shoNTt9ZCQsU6vVwjx3j/PMwrzhalxnNVjfny7P2T0K8boecPADwrz+vvVh3u9/n72+PQ84OCyzcWgozLvnrjvDvMH1G+K8/uw2rivWwzK+Kt4eA8MDYV7vggVhXq0ef9f3r1qTmX7f6rVhGZGYgWXPWOrFeCZTa2vLTO9p32z20nFLupeFeV4dDfO6e+PT4Ij3Z6ZvGMw5zkfj80d7KT729tx1SZh3wD47hXk9vZ2Z6bV6HDv6hleFefeui2PphsH4/NLWlR1zhkbjMmvXrg7zRmvDYV57KXv/ACgW2oMy4WsRqea00SxeV3U03q+KpXj7FwrZ58ZaPY7pxVJHmCety8wotmfvozstXhyWq1az+5D10fi4oxr3i4YH4mNhMKefWCxmH6/Lly0Py1hOP3FkIG7jurXrwrwli+P4G3WZ1qyJ66vV4n7daDWON/WcvnipmP25uzrj82LeNcFgTj+3WIzjZdRPHx6O62vLidlu8WfeMBCfa9uDfQegJ9gm7vG+Y8H2FbEidC7I7rNWc26llNqyj7+ehXH/t1DIjs0AVouPo7acvsrQUHZcr4/Ex1fHgjh2DOy8MMwr9sXnkFJwPQBQD+4Z1HP6WW1tcZzKi2GdHXF/Kjq/1OtxTB8ejj9zd3ccnxcsiPMGh7K/m7zt0dPZFebVc679886phZztWGzLLlfIqc8t3r+ltdXrzlDQj6jX434kszh1e04hIz7Wjfg4itQ9L97Hcbt/XXytfvHPfxrmrVkV37Pbec/sa/UOiz9zIadv1NPbG+YVS3EfbZjsGDw4Gvcj67YozBvt3TfM8444zo4G32d7Xl/c422Vs+tQtziW1uvxOeSuW/6RmX7frdeHZQbWZ+8D1Zz7YTDLgaEx6QDQdj0IJCIiIiIiIiIiIiIi0iriIUwRERERERERERERERHZocx4YMjMnmVmV5nZE3OWeWK6zPHNNU9ERERERERERERERETmymyeGHopsDf5U8hdCuyTLisiIiIiIiIiIiIiIiLbgNkMDD0UuMbdw7ckufsQ8BfgYbNsl4iIiIiIiIiIiIiIiMyx2QwM7QzcOY3l7gRWzqJ+ERERERERERERERERmQelWZTpY3oDPiuBwVnUv9X99W9/DfO+8Y1zM9OHPR5j6xuuh3nD1VqYNxoXo1hqy0yvu4dlLK4uNzevzlHivFVr1mSm335nPK649z77hHk7rYx3u1tv7g/z7rv33sz0y/5weVimtKAnzBvtj9fVVoj3g87ezuyM9rAII6Phg3msWTca5q3bsDau1Iph1uBA9vo29sWfWSTiQD2IjbWc3yWs6tuYmb6umh1TAHraguMLKOUEv2JOfO4f3pCZvqEvPr6KpTgm7rwsjiv77LIozOtoiz9ALWh+NSemrxkYCPPW9sV5Xsw+7wC0tWcHsrvvvycs0z+Q/T0DtJXiOFXKibOF4GOXinGZusf7wOBQHIOLOXW2F+Pu1ehQdtdo7arscxVAnXh7SOsqWIEF7dmxr2Q5caOa3X8YGYjP9YM5caO7d0GYNzJaDfM6urKPoc5afPy05RwLXZ3xeeDu++4L8+5ftTrM6+jIjm3rVsfngY72OFZicbwZyok3PT3Z549iW7yuocH4Mqxajb8Xy4mxfYPZ+4HlnNMLHl/rLFnUHebt0hXvV3fdcXeY1xZsk6HRkbBMqRjvO9LarAqlNdn7sHXE12LtS7P3qWJ3XKbN4j4kQ/Ex2zc8FOZt6M+OKwty+nTFobgd63PuT4zk3Fpa3BvH7vs3ZG+Tai0+jxVG4uO5Ledc0J2TF33qetTZBnwkJ263xZ/ZavF+MBDca+hsj7dH0TridnTG30tPR/xdl4g/W3WwL7sdHfG6Rvrj70xam7szOpJ9TNTrOXFxijuc2SXi+jzvnmjuMxVBuZy+eEcpru/qa/4c5l33l6vCvLacJhaD88vSJQvDMl1dcVwZrsdxsbcUl3PPjotrBuOboiML9grzSgv3DvMKOftOWzG7/R2FuM+6+rYbwjxG4uukXXfbPcy7/Z74+v/KSy/KTF/S2xuWaevM/j4t5x4wzO6JoauBo80s/HRmtgfwaOCaWdQvIiIiIiIiIiIiIiIi82A2A0NfAzqAH5rZno2Z6aDQD4C2dFkRERERERERERERERHZBsxmKrlzgROA44AbzOw3wD9Jnr49CDiWZHKsn6OBIRERERERERERERERkW3GjAeG3N3N7BnAx4FXkgwQHTdhkVHg08A73HNeTiMiIiIiIiIiIiIiIiJb1GyeGMLdh4HXm1kFeBwwNqXcrcBv3D1+w6uIiIiIiIiIiIiIiIhsFbMaGBrj7vcC/zP2t5ktAA40M0vztkvX3/jPMG+n3XYPctrDMqtXrQ7z2nt7wrzhei3MozacmVzA4jK5D3DF5eo55bwQl+vbMJiZXsxpxcjQSJhXLHWEeQt6l4Z5d9+RvSuuue/usMxCXxnmed7XYvGnW7Isu86BoYGcddXDvEIhXlcxdyvH2gvZ27+tlLNfiUQc6vXs+FHPecVdvZB9ahqqx8fKho3rw7wC8XHU3hbv26Vidp61x6fOUs6b+9rb4nIdxbYwb2gor/3Z6QO1OFD1D1XDvFGPP4BbnLexP/u7Wb1ubVjGLD63lIrxtioU4naUgi+gvT2OiVEZgIHBoTBv+aKFYd6Crvh8VQ3Oc+vXrAvLxHuAtDSvUxvK7g+uuT/+jVYhOqfX4z1ttBrHlPUb+8I8D+I5wPqhNZnppZw+aSknDq1eG8ebO+6+K6dcdjsAVixbnpm+oKc3LFPL2Y6lnFi0ICemFIvZn7t/oD8s0z8QnzOr1fg8sLirM8wbGsje3yzne2lv6wrzdl6+JMzbf8+4L76wI95HVq3P/twbBkbDMsM19XMlW6lgLO3MPqePDMfXraW+IPZ1xf09OuJjpb8a93Or9ezjEqC9lr2+jpw+aTtx/yw8fwALO+L49uADdgvzfnnlDdnryrlWsJE4hvlgfL6qFeNyUb+0kHO/o2RxXnew3wBYLd7GtWr2OcRydp09lsX3lA7eZXGY11mKt1W9Ht/OG7ozezuuzYmzqwfjPGl1Tt2D/T7nGMurbzZ59Zx7efXc+2vZdbblXMHVBzeEeddd/ad4TbX4vGPBNkzygjYWcuJ9Nb4Ojq5nAUaGF4R5PR3Zcb3PdgrLjC5/aJg31BWfWyynr1u9/1+Z6bfceVNY5p/XXR3m+Wj2vW+AnVZkX0sArFkX7wd77LwiM71aj8ce+oayt697/nGUcwsrm5k9zsw+Y2YPbUh/JXAvcAVwh5mdMdO6RUREREREREREREREZP7MeGAIeBXwCuCWsQQz2x/4HNAB3AjUgJPN7LisCkRERERERERERERERGTLm83A0MOBq9193YS0l5DMEPZmdz8IeATJ4NDrm26hiIiIiIiIiIiIiIiIzInZDAztBNzekPZ4YAD4AoC7Xwv8HnhwU60TERERERERERERERGROTObgaE2JrwH2cw6SJ4iutzdJ76B6k5g5+lWamYHmtn7zOwPZna/mW00s6vN7F1mttnb9MzsIDO7wMzWmlm/mV1iZo+fxecREdnhKcaKiMwvxVkRkfmjGCsiMr8UZ0Vaz2wGhu4ADp7w92OBduB3Dct1A30zqPcVwFuBfwHvA/4T+AfwAeAyM+saW9DM9gMuA44CPpIu2wv83MyeOJMPIyLSIhRjRUTml+KsiMj8UYwVEZlfirMiLaY0izKXAK8ws7cCvyIJFg78pGG5Q0gGkabrPOAMd18/Ie1zZnYD8C7glcCn0vQzgMXA4e5+NYCZfR34G/BpM3uAu/tUK4wW2Ni/MSxTam/PTO/pXhKWWb9+Q5jXZWEW1Zxhu0IhO7NkcaGoDIBZ3JC8TVnIWd/o6GhmeqkU73ZLly4N89rasrc9wG677RHm3XLTvzLT+zeuz0wHWL58RZi3as26MG/16tVhXt/G7P1qcHAgLFOtjYR5HR2dYd7ChQvDvELOPrfzztnb/+AHHBQXku3FFo+xiXqQWgxLtHdl77+dXV2Z6QBejY+jIrV4XaX4Y5QK2Xkjw/1hmcG+tWHe6vVxG9curYZ5S0biOOuD2Z9t1ca4jWs2DoZ5g0PZcRugfzCOR1XP/p5rQTpAKee809YWnye6OtvCvM6u7LxSW7y/tRXjvMXd8Xlnz52XhXm77xI/ML1g0aLM9GLOOS7YFWXbs0Xj7Gi1yj1r78vMW7t+XVhuUW9vZnrR42OyI+j/AgznHOeDI3EsivqQfYPDYZncTWJx3tKli8O8Yk4MwILzRz2Oh0XiGNVRirdjsRTH+nrwubs6O8IyhZwYu2ZtfK4q5WyPjvbsz1avx+uynN8hrl8V98X/vnZNmDc4HG//0WA/tvbusExHW5wn25St0Je18JgoFONj3WvZ/anaQBzf1vfHeaO1OK9Qj49Zq2XHnGLOcdnRFh/P7UEMABgaiuP9YQfvF+Zdf3t2HLjrvjgGtHXEn7lWi+/lDPQPhXmFQvA959xDKRRz7qHU4779yGh8TVALvusVi+Pr+yMO3S3M23/x4jCvPhrH0qHh+HphzbrsbZwXS+uluD7ZpmzxOFsoFOjp3uxhJAD6BuJ9lKBqI+eGV15rcvpNeUrBvYb2ehy3/3LlZWHe9X+7JswbHY3va+T1xdb0Z8ejtRviNu69Mr7W7cmJwcVifJ+yf9EBmem15fFbaO5dF+8DpbXXhnl9t94c5t36r6sy070tPsfttMteYV6hM/vaCqA6Ep93Bu+L+8Gd9ey23HLn/WGZRx2dPR7b0RnfR4PZPTH0EWAQOAv4M3AE8L/uPr5lzWx/YH/g/6Zbqbtf2RB8xnwn/e8had09wPHAxWPBJy3fB3wJOBB4xAw+j4jIDk8xVkRkfinOiojMH8VYEZH5pTgr0npmPDDk7jcARwNfB35G8sTQ8xoWexLwF+DCZhsI7J7+9970vw8GOoDLM5b9Q/pfBSARkelRjBURmV+KsyIi80cxVkRkfinOiuygZjOVHO7+F+DlOfmfBT4720aNMbMicDpQBb6VJu+a/vfOjCJjafGztCIiAijGiojMN8VZEZH5oxgrIjK/FGdFdmyzmUpuSzoHOBI43d3/kaaNTVyaNRniUMMyk5jZa8zsSjO78v7743n5RERaxDnMYYyFyXF2dCRnTmARkdZwDvPUlx0YjuesFhFpEecwj33ZwSH1ZUWk5Z3DPMbZDevWzVU7RWQWttmBITN7P/BG4AvufsaErLE39WW9bbWzYZlJ3P0L7v5wd3/4ihUr5q6xIiLbmfmIsTA5zrblvKxcRGRHN9992e6O+OWuIiI7ui3Rl+3qVF9WRFrXloizCxcvnpO2isjsbJMDQ2b2XuDdwFeA1zVk35X+N+uxxLG0rMcZRUQExVgRkfmmOCsiMn8UY0VE5pfirEhrmNU7huaTmZWBMvB14FXu7g2LXEvyuOJRGcWPTP975XTWVfd6ZnqpFG+Wnt7ezPQVK1aGZe6+L562zgrFMK+jLW6HFbPH9Eo5Y33FoExaY5jjNH4Fm+Q0n3pQzkrxuqpeDfNKxbjc2rXrwrz1G9Znpg/fFE8NcN/d94R5q+5bFeZtCNYFUCxmb6zunp6wTF/fxjAv52uhpyd8apf9DzggzDv20Y/JTN93r73jlcl2ZUvGWAwsCDseZQAUs354BIW2rriIxft8oT4alyOOAwXLjkdtOQffwEBfmLemb12Yd/3td4d5aweyntBP9HZnb5NV6zeEZe5evTbMq1v2eRGgoy2OwUXPzmsrxb+0LeZsx862MIv2tnjfKUXnxpzz38Ke+KmLnRbvFObttsvOYd6inF++jdSy0zeuj/edzY5S2aZtqTjr1BmuZseHYnvch+wfHMzOqAU7J7CwuDDMM4tjQ2cp7ij29C7ITB/pjONyvR7HqNHRONb3Loj7WrWcOqO+eG9n9nkKoF6Nt2N7Wxzc+gfCH9YyMNCfmb5s2bKwzOJF2dcsAN05QTbvOoha9jauVuMgNRLtb8BAd7wd1w3F26OWExPr7dkx3XO+s2JBT99tT7ZkX9ZKhi3J7mvZaHysr9mYfb3YljPN8sr2OE6tJV7XwHAc+4aCvGWL4n0+r+82OBj3Sdva42OslNOHfNjB2a8hGanF/aLBwfieQc5tDTxnOxaCvGJOhe3FnCfKqjkxLOoMAnvtlF3nvz3+oWGZfVcuDfPaPF5Xf8622jgQ76vVQna/euO6+8IyOy9dHK9Mtjlb9J4BRiHYp0ZyYmZPPFPdrORdbxUszuwK7idcd+WlYZn/+e8vhHl333NvvK7eRWHeQQdnfRWJFcuWZKZvrK4Oy6wajQPEaCHuOxf64ri49ODDMtNHCsvDMldf/PUwzwbieyht1fje0UBwb/awIx4bltnjgOy2A1SJP7MHfWeAnfZ4UJjXH5znluwd74sHP/jBmemdwT2jMdvUE0NmdjrwXuAbwMvdNx+5cfc+4ELgWDN7yISyvcCrgBuAK7ZIg0VEtiOKsSIi80txVkRk/ijGiojML8VZkdayzTwxZGZvACrAbcBFwIsafoF4r7v/Mv3/04AnAL8ws48DG4BXkzyy+LSM0WwRkZamGCsiMr8UZ0VE5o9irIjI/FKcFWk928zAEPCI9L97Al/LyP8t8EsAd7/RzI4GzgROBdqBq4CnuPtFW6CtIiLbG8VYEZH5pTgrIjJ/FGNFROaX4qxIi9lmBobc/WXAy2aw/N+BZ8xXe0REdiSKsSIi80txVkRk/ijGiojML8VZkdazTb1jSEREREREREREREREROaPBoZERERERERERERERERaxDYzldzWULDscbHu7u6wzMjwcGb60PBgWGZ4ZCjMK3bEX0FenQSvcbOc97vV6/UwrzD5hXKTlNriNlZro2He0GBfZnrfxg1hmY699wzz+jfE5SzaIECtXs1MX33fvWGZdfHmoJizrZYt7Anz6p69/TduWDOrdeW+y686Ema98bWvDvOefvzxmemlgsaQZebcnVq9lp05Gu+jtWJbdkZ7R1im2N4Z5lk9jlNei+Oskx3vC6XsmALQ1RmfP6yeXR/AaC2Oz/esXh/mta0fyEzvG47PO8PV4DsBOtrb47zga4H4HFIsxbGjPefc0t0Vf9ftbXFeZ7D9VyxdGpbZa5clYd7SBQvDPLO4/XmfbfGi7PW1dS6Y1bqkdRUKRXp7ejPzFgR9XACC/kMt6KdA3GcGWJDTby7kdFU29G/MTO9dENeX1/cZHIzj+fr12etKxJ+t2JEdEwvFYlgmr7/d2xP3Ezva4vjbG2zjvO3RkdPGUk6sr9bic0Rb0C3tyDlB1Ijz+kbjbTVajGN9W0e8j4wSnI+KcT+hWMg5wUlLc3dGq9l9Kq/H12ldwfFcyIk3gyNx/3K4Gh8r9Vp8rPtwdh94aCDuJw50xcfKUE4bO3POEzYax+cDd8vuow1X9w/LXHXtDWEeHsewYjFuY1uQVSjE33N3T1dcX3Q9A7TnbKtjj3pwZvqDHvyAsMzAQPy9UMrpbw9l368BGM25z9MZnMqK0UkCGMm7tyUtzev13D7cjOvLzYv30Q7i2OHD8fX4FZdmv07pFz/+SVimZ3F8/fmypz87zNt5j73DvD32iWOmdS7KTF9/321hmfU3XRbm3XTbdWHefTf+K8zbr/bLzPRaLY6lXYX4e9npkEfGebs/LMxr685eX3tvfD0+SHxuJOccbR7H4KW7HhDmLSlkn9uLOftpNbj3lnfrGPTEkIiIiIiIiIiIiIiISMvQwJCIiIiIiIiIiIiIiEiL0MCQiIiIiIiIiIiIiIhIi9DAkIiIiIiIiIiIiIiISIvQwJCIiIiIiIiIiIiIiEiL0MCQiIiIiIiIiIiIiIhIiyht7QZsTRak77brbmGZZcuWZab3b9wQlhkd6gvz1g/3h3lLly0N8wqenV4MSwDFOPfmW28J8278101hXr1WDfMOf/hhmeknvOD5YZkN69eFeevXxNv4vvvWhHkebKzj/+1pYZnXvPLlYV6e3t7eMO/GG27ITD/ttHeFZe686654ZcE+AHDgIYeGecc98Ylh3oKursz0uuesTCRQMGgPfn5Qz9mBR6ujmek+NByWcesM87ras/drgPZSR5jXVsyOb7XhOJbWhuN4XyJuY29XXGfB4rz29gWZ6YuL8el9Q1/cxsGBgbgdYQ6UStnrW7JkcVimGnzPAMPD8Xfd3h5vx9132SMz/aB9s9MBejrqYd6C7oVh3uq18XYcHonPjTt192Sn77JrWKZQag/zpHUVCgV6e7L7HW3BMQkwEhx7ebFheCQ+JhcvjI+TksWRY4Flx69qzvkhr99ZLLaFeTut2CnMayvF5YqF7KuFYjH+XMVCnFcIrz6gOhrHxMULF2WmDw4OhmVGR+L6uru7w7w8tWotM91zzjlWiPMKnfH5uViIvxdy6hwZHslMr+WcS3va476AtDavOz6Yvd8P5fVLR7OPzVIp3g/vWLM+zButxbGjrR7HnM56UK4ex9INA/H9CXKuCYf74pizU3APJa00M7XHso9lgILF26NvKC63MOec1Lswu385mnMZ3N0bf66O7ji+7b40Pm/ut8vy7Hb0x310z+mle855ZyTn3N7RFfe3i569vmU5dxero7M770gLMLDgmI6uMQE8iB15+7zl3DEdWXNnmPe3K34a5t1w3XWZ6Qce/JCwzCOffHyYt8eee4V5eZ+tlhPfap7dp1q+50FhmWXLloR5t95+T5g31BffP179t8sz0xfuGW+rg46M79uu2PuBYZ55vK3cs8/r8V0BcI9z3XLycspRz24HQLUa7N/BtQmAdQTnnbgIoCeGREREREREREREREREWoYGhkRERERERERERERERFqEBoZERERERERERERERERahAaGREREREREREREREREWoQGhkRERERERERERERERFpEaWs3YFu0/wH7h3k7rVyZmX79ddeFZdbcd2eY95xnPyfMO/pRR4V51dGRzPR6rR6WqVXjvN9fdmmYd8e/bgjzCqW2MO9Rhz8iM/0xjzwyLHPe+eeFedf/7W9h3t2r7gvzzLLT9993n7BMe1tHmDdaq4V5Q0PZ3wvA4iXLM9MfdvjD43WN/jHM6+7uDvOe+tR/C/NGRuL2D/YPZqZ3dMbbg2KwgUUAPPv3B7Wc3yVYkGfE+1rObp2b6TlnwUKhmJk+POphmdFqnNdZiD9zb0ccSzva28O8ru4F2etasDQsUw++E4CRkeEwb3RkKC5XrWamu8fbYyCINwBLlywK8/baY68wb589ds9MX9iV/V0CDAysCfPuXr0xzFu7biDMG6zG32f3gnWZ6cVSZ1imWs3bwaVVFQsFerq6MvNGR0bDctFhWQ+OYwCr58S9kbjvc+/a+Phqb8/e53NWRakUB+2enp4wrxjEc4CFvXG57p7s7btuw7qwTD3neK3l9CELUYcVqAV1dnbGcaOeE3+rHq8r71xrQf94MGddnb29YV7O5qCU0xfv7Ij7wJ3ZXxn1Qs6OpRgrAcMo1bL7YfXhuB9QrGUfRyXiODsyFPeLRmtx7BsaiGOwBdeLa/vj/k17PedacSjuJ5aKOX2twbhce9DP3XXlirDMnmv7wrxrboy/l7ZS3Kd+/KMOyUzfZa9lYZl718bfS1t7vD2OPuqwMG/xztmxbyjnGqNUis9jVYu/z9GcWNq+KP7cDAf3olbH972q8eaQFufujI5m91vz7l3h8X4fqdfjGPzPG/4V5t14yx1h3iOOeWJm+gGHHB23o3thmDc4EreRnP6sFeN4VAo/d3xfYLiYfZ8BYKQWX+u25/Sp6pb9ne1z6BFhmaX7HhzmDeYEllI9PjfWCeJpTl/cojKA5+TldKuxnP5zsZBdMEhuip4YEhERERERERERERERaREaGBIREREREREREREREWkRGhgSERERERERERERERFpERoYEhERERERERERERERaREaGBIREREREREREREREWkRGhgSERERERERERERERFpEaWt3YCtqU49M3350qVhmWf+29My0/+29x5hmbaihXn777dfmNfR0RHmjQR1VkdGwzLDPhzmHX7YQ8K8PXfbLczDi2HW0mXZ23HNqlVxOx760DBvj13idgzXq2FeR1d7ZvouK1aEZW65+ZYwr1BqC/Pa2+O8trbsvBe/+MSwzHOf+4Iwr7u7K8zbY494f3TP3u8BzLL3K/ewiEjIMbyYvd8Xip1hOStlH7Nm8fFV8zjODo/G8aE6OhLmjYxmHyuF+BCirT0+LruL8YHU0xF/tq7OuM7oc9dGcmJiZ0+Y17swXhfUwpyhkeztWMuJHfvuvTjM22nFyjBv2ZIlYV6hln0O3LD2nrDM4NBAmFcvxNtqJN4cbByIz7frN2avr61tfVimv78/Xpm0rHrdGR7O3tdKxbiL3xn0LztX7hSWqQ3HsbI9p19UW7w4zButZQfTnu7esMzg4GCYVyjlXNbkxKJaTqAaGcyOKQPr4rhRq8fBoRbEKICu9vi8WKtmb6sNAznbozP+XvqG4hjV1bMwzCsuyI6/3UEfF6CrO46j0f4LUAr6DwCloJ8A0Bnsj8Wc/WPVqvvDPGlt7lAdzY4R1birxehwdpn2nP26K6cvaHEIptYWx45qMbuR96yLr8d7RuN7Ie0d8bracmKYWXz8DQVxtliM74UcvO/u8bpyrgn23nlZmHf88Y/PTN/9oIPDMmvXxV9MRyE+l7V3xm0crUb9xPg33aViHBOH++P+ZVd73Ma6x+uLvs6cUwvFtriNItF9qFotJ9BGcm5exUce7LHfgWHespULwrydds6+9+adi8IytZwTSCGnj1O3+P5r3n0+L2RvExtdG5a569rL4/o23hnmlRbH91nbdsvexu0r9g3LjNbznmfJuTEzC/W8G585ebm3S/PK5eXN4t5sXn159MSQiIiIiIiIiIiIiIhIi9DAkIiIiIiIiIiIiIiISIvQwJCIiIiIiIiIiIiIiEiL0MCQiIiIiIiIiIiIiIhIi9DAkIiIiIiIiIiIiIiISIvQwJCIiIiIiIiIiIiIiEiLKG3tBmxNhWBcrLOtMyxz9JGPyEx/dJAO4O5hXq1WC/PIKRfn5JhlfQWz2VSJz66Vc76usPk59RUK8Zip5WwPyykXbUeznDKFeF158rbVrPaeuf0qpUVYoUCpoy0zr0bevl3PTC1YvCMWC8Uwzz3Oq+f8PmIkaEepGLe9naEwr6M4GuZ1dnSEeW0dvWFedTT7NF6r53yukZEwb8niRWHe3nvuEeYVg1h16x23x2WK8fdSrMfbauPa+8O8gf51mel9G1eHZUrFuCu0aNGCMK+7M3vfBhiuxu1f39efmV7sjNfVP1gN86R1mUEx6nfkdASqQd9zuBrHhmWLl4R5xexQCUDPwoVxO4I23n3PvWGZwcHBuB2lOKYsWhC3oz2nnAVt7GqPY/bIaLwdrbs9zKuNxtcEQ7XsmNKxMI4bQ8E5DKC9FLejd+nyMG+0mr09uru7wzId7fG6urri81upLY7NoyPxthoZzt7+wznnvoUL43OftDiHWi17vx+t5vVls/sIA/Wc/moxvgfhHvcDhnLuJ3QGsWp0KD6+1q8bDvPaOnLiVHvcxn6Pyy3o6clM37BhXVimvbsrzHvIwfuGeQ/YJz7Wly/PjqdDg3Gfrqsn7gt2FheHef1DfWFeR9vSzPTofARQH43rK9Ti76VQz8nz+HwblRvsXx+W8eA4EsmTd6+sXs/u53g9js159/kWLFkR5y2N+yteyO7njOTcg8i5dYHn3J8wj/t2HcT9nL6BdZnpt/z1krDMqmt+E+YtWRCfr1Ye+vQwb+keD8pM71iyc1imFnzPADm3h3JvYUbh1HO2b568e/7ktD//PmuQmdf1CD9Y3nr0xJCIiIiIiIiIiIiIiEjL0MCQiIiIiIiIiIiIiIhIi9DAkIiIiIiIiIiIiIiISIvQwJCIiIiIiIiIiIiIiEiL0MCQiIiIiIiIiIiIiIhIi9DAkIiIiIiIiIiIiIiISIsobe0GbIssJ8/dM9PrQfpUSqX4K8itcZbr25LMsrdktA3zykxVbja25LryuNfDvGp1dtsqT165MG92q5IW515ndHQ4O68Q/y6hWMrOy9vlPSdiOsV4XcX2MK8QFPNafMzmRY5CIf4AxWLcxpFqvL7BajUzvT46GpZZtGBBmLfTyt3DvP0PfHCYt2H9msz0a667PiwzPNwX5lHP/lwApZytXLBadkbOvlModYd5t99/a5g3MDwS5tVzfndz7/r+zPSFq1eHZdpKHWGetC6zAp2dXZl5HR1xbBsJ4sa9a1aFZar1+Lir58REG42PhY7Ozsz0ro7s9KnyFi5aFOZ1d8TH0JIFvWHe+nXrM9OHR4fCMu2d8bo6c9Z1/6rsOArQ0duTmd7WG9fX2Z69bwDUPed8VIivTYqWvR+szWn7kiVL4nbU432nvT3eh0ttcV578F0Pj2T3RwDa2tvCPGlt1WqNNWvWZeYNDA2G5SzoeFRr8b5bLGYf5wAd7XG/iHocj0qF7D5OoSM+9kq98fFQqwX9LMA9bsdAf5wXdYEXLoz7Z4t64zi1Yqc4Lg4PZffBAPqGs/vOixbFsXSkPhDmDQ7dGea1EZ/LqsE5uiPnQqjWf3+YZ6V437F6fL1QrMV5fSPZee09OX2PnH6ztDZ3qNay99OBgfiYXVRfGFSY8/xDTv8Hi6/H8/KCrhGWc5+vltevzmlih+XcF7j/jjDv+v/7eWb6fXfcGJbZeef9wrw9Dj4izFu8d3zPwDuyz3PR9w9gHp938m6+1HNuAET3jvLuKeXdg8+/f5xzTzen1Mxrm2IMIYeeGBIREREREREREREREWkRGhgSERERERERERERERFpERoYEhERERERERERERERaREaGBIREREREREREREREWkRGhgSERERERERERERERFpERoYEhERERERERERERERaRGlrd2AbZGZzTgvr0wed4/XlVdwjttBTjuidcmOJ29/FJkpA4pR/Ghri8sVsvOqebtnrR5mFSw+1VXrcaXFoOklj9fl9VqYV6/nlLP4dxpDIyNhXrWa3ciFCxeGZR5w0EFh3v777RfmFQtxG/sH+jPTB/s2hmUGh/vCPKiGOe2luB1dbe2Z6cVSvL/1DcXrWrVxOMyr552/C3HeaLBNBnO+5/b2jjBPWpcZFIrZx0OtGseizq7OzPRdVuwclhkajvfPUkd2fUk7co7loKe7cuXKsExeP3d4KD5eN2yMY1Ehp04vZZ8/aqViWKZeyo5DACMen48Wrdw1zKsF8TcvfrXnnHO6urrDvMGc7dgdlFu4eGlYZjTn/Hz33XeHeSt3iveDZSt6w7zom7HgWAEYHR0N80Qg+5ze2xvvh2tXr8lM7+6J4+WSpUvCvOGBOIbtsfOyMK+9PTse1WrxOWJocDDMq+f0c0eH4+PI23vCvFLQr1u2YlFYZr/99wrzHvigB4d56+67M8wbXr82O2PR+rBMoR7HFasNhHkjg3eEed6THWdtKI6lNhLvH8XgugrAOuJ9x7vi/dv6VmWmd/TG54+2zq4wT1pbcs8g+1jq7sw732fHN8/p/+Q+G5F3H5ic4yi4JvSwRwIU4v5g22j2dTXAqtv/Hub96+rLw7zB1dmx76AHPDIss9uDjw3zah2Lwzw8ZxsH3VbL2VaWc97B4++snnNHPbydM9vboXn3UXPvsebda8/Oy3u6p+jZ23GqO/p6YkhERERERERERERERKRFaGBIRERERERERERERESkRWhgSEREREREREREREREpEVoYEhERERERERERERERKRFaGBIRERERERERERERESkRWhgSEREREREREREREREpEWUtnYDtkXuvkXKJCzOibOIVpffjlm2MadOy2vkDmr23/W2L/o+8z5zK+4DMgPB7jE6Wg2LFEpt2VWV2uMyFudhxTCrnnc8ey17XbW47bXqaJxXyK4PoBR8ZoDOnPZTqGcm93Z3hEVGBvvCvBv/+dcwrzYaf7ahoM69d10Rlunq2SPMu+Oeu8K8jX39YZ4Xs7ejW9zdGRoeCfOsEP9+pr0Ufy+FQpxXKmW3pa0tb//O2QekZbk7I8H+OzgwEJbrqS/MTO8qdYZlFnb1hnkjZMchAHJiW7WWHRP71m+MqwuOH4DRnBg1knPOGa3H/Zily5Zlpq/YLY5fw9U41hc7FoR51h7HgGpQZ9tovO1rI3Ge1+Pt2NaeE/e6ezLTO3J+ajiQsy8u33mXMK97YfZ+ClCbRb+0mLPvDA0Ph3nS6hwse38rBukAS5dk77+LlywJyxRz+g5tPXEMbmuL922Prv8tjg/dPfG5oDoUHyudOe0YGYrjYl9/dh9yyZKlYZlddlke5i1dGm+rpcsfHObd9pcrM9NrtX+GZRbtcWiY19Eet98sPjdGXdaRoftzyuTc1huN96taIe4De+dgmFcoZu8/3V2LwjJ9g3F90uLMKRSz+3CFUt790uz4VijEfb56IY7bThyncu95BVkFHwqL1PrWhXl33XhFmHfnjdeEeZ7THT/wMU/OTN9pvziGFdric4F5vI3zGNnxyHKeWfG87yyvP5jTDg+uXWyW98y9Prv78J7XymD/tpwvOu/ckkdPDImIiIiIiIiIiIiIiLQIDQyJiIiIiIiIiIiIiIi0CA0MiYiIiIiIiIiIiIiItIhtZmDIzA4ys2+a2d/NbL2ZDZjZ9Wb2MTPbbALqdPkLzGytmfWb2SVm9vit0XYRkW2dYqyIyPxSnBURmT+KsSIi80txVqT15LylbovbHdgF+AFwB1AFDgVeA/y7mT3U3e8DMLP9gMvSZT4CrAdeDfzczJ7q7hdthfaLiGzLFGNFROaX4qyIyPxRjBURmV+KsyItZpsZGHL3XwG/akw3s98B3wVeRhJsAM4AFgOHu/vV6XJfB/4GfNrMHuDuPtu2FArbzINUIbNZlZrrZrQkm93G36614mfe0WyNGFt3Z3h4JDuv2BaWawtCcCHnIdd6PW5H3u5byMms17LTS4X4o5esGubVPKgQsEK8PZYtWhjm3bu2LzP9vtXrwjIb+gfCvEU9XWHe8oW9Yd7OyxdnppfaFoRlBkey9w0Ay3ug2fPiUXa5tvaOsMTyZd1h3mIvhnl9/YNh3uBI/F170MYoPbHt90tkK8RZM4pt2bFj0eLFYbE62dVu2LgxLNPV3RPmeSk+TgqF+HhdvSF7fXntKJXiWJnXV1mweEmY17VgUZg3Wsq+VCoV40uoBQs6wzwvxnn9w0NhXiFoR4H45NdWiONQW/yVUW2LP1s1ONl6NW5HPWc3XrAwPr91dcVxu1bLibHB6qo5ZSxnP5Vtx9boy5oZpVL2OXg455jt6cruWxRzOqzVoM8M0NGed9DG+3ZHZ/Zx1BakA/T1ZfctAYrF9jBvyZI4zt5++51h3sqdd81M33PXvcMy9XVrw7zB+28L8xbuelCYN1zPPr/cdu0/wzKPPuiYMK9Qz7leiL8yaiPrMtP7CqNxfewU5nWX4u96dPTuMK9Qj9c3EOyr6+9fFZYZGtkQ5sm2Y6vE2UKBtuAatC26IAcIYjMWx0uzWV5T5d5QyK5zZG0c9/pvuSrMW3v3v+JVdcbXrQc97Ngwb+meD8xMH875dvL6b3ndpikuXrJT87phOdf+s+29FXwW+0HOB8urre45N6pyPptbtMK4THt39nE0VT93e7jTcGv63yUAZtYDHA9cPBZ8ANy9D/gScCDwiC3cRhGR7ZVirIjI/FKcFRGZP4qxIiLzS3FWZAe1zQ0MmVmnmS03s93N7Djg82nWT9P/PhjoAC7PKP6H9L8KQCIiGRRjRUTml+KsiMj8UYwVEZlfirMirWObGxgCXgXcD9wO/Jzk0cQXu/slaf7Ys8ZZz+WNpe02nw0UEdmOKcaKiMwvxVkRkfmjGCsiMr8UZ0VaxDbzjqEJLgCuB3qBw0geT1wxIX9sUsXhjLJDDctMYmavIXlpGnvuueccNFVEZLtzAfMUY2FynG3vit+lICKyA7uALdCXXbYwfjeOiMgO7AK2UF+2pyt+p46IyA7sArZQnF2+Mn5HlojMv21uYMjd7wDuSP+8wMzOB/5oZl3ufgYw9tbsrLfojd2FzHyztrt/AfgCwMMf/vApX4ImIrKjmc8Ym9Y/Hmd7Fi9SnBWRlrOl+rJ777qrYqyItJwt2ZddvrhHcVZEWs6WjLP7HXSQ4qzIVrQtTiU3ibtfA/wZeH2adFf636zHEsfSsh5nFBGRBoqxIiLzS3FWRGT+KMaKiMwvxVmRHdc298RQoAtYmv7/tSSPKx6VsdyR6X+vnKrCWq3GunXrMvPq9XjA2myqmkVajQ6KHcCcx1hI9oxSMXv/GKxVw3I+OpKZXrS2eGU5P3Mwi2N6MadcsVjLTO9uj/f5To/z6tXs+gA2DmY9hZ/WmfNj1fa27NO45ZysujrjKf6sWAzz1vT1h3kbhocy00vt8boGhuPP3N8X/sAMcvad7s7sfWSvXVdkpgM88JCHhnldC5eHeX+48s9h3nX/vCnM29Cfva1q9XpYJq9fItuNeejL1lm7oS8zb9GCBWG5Ukf21EgjpXgf9JxzvdXicj2dPWHewp2yZxhpXxpPKdLVFc5KwuDgYJjXmVOu2Jb1Y9fE6HD2+aiQcz5y8vLik057R9yOqNRILY6VGzeui9dVitvRvWJpmOee/V0XcvaPjlI8FVd7KedSNFgXQD3nPFAoZtdZyDnhF9ty+heyvZiXvmyxYCzuDvoyPXEfp6urKzO9Pdg/AYLuLwDucT+gYDn7dpDXnhP3enrj42s4p5Hr+zaGeaOF+HPvsd/B2euqxf3m/rXrwrz2Qhw7St29YV5hYfZ3tkt7dvsACjn93PpwfE7y4PoIoFDK/m5KQ/F5rNq3Pl7X0mVh3kg1+zMDeE7fs1rIbn/XoriNvj6nby/bi3mJswWcznr28b7P8sVhud7eIC+oK1lZfOzlXW3l3fHqH8jetwfa4+vqpTvvHOYtyJmOv2Nh3Efe/YDDw7xCR3bsi/p1MF/3vqOtHG/9vPNf7hXybMrllJmt3Cpz8urBPaxizj68PJhmPLpnNGabeWLIzDKPDDN7HHAI8AcAd+8DLgSONbOHTFiul+QFaTcAV8x7g0VEtiOKsSIi80txVkRk/ijGiojML8VZkdazLT0x9Fkz2wX4NXArybyUhwP/DmwE3j5h2dOAJwC/MLOPAxuAV5M8svg0zxtSFBFpTYqxIiLzS3FWRGT+KMaKiMwvxVmRFrMtDQx9G3gpcCKwguShqluBzwMfdffbxhZ09xvN7GjgTOBUoB24CniKu1+0pRsuIrIdUIwVEZlfirMiIvNHMVZEZH4pzoq0mG1mYMjdvwt8dwbL/x14xvy1SERkx6EYKyIyvxRnRUTmj2KsiMj8UpwVaT3bzDuGREREREREREREREREZH5pYEhERERERERERERERKRFWKu+D8zM7ieZK3PMcmDVVmrOtkjbYzJtj8mmuz32cvcV890Y2TY1xFkdQ5Npe0ym7THZTLaH4myLUl92Stoek2l7TKa+rExJfdlc2h6TaXtsTnFWpqQ4m0vbYzJtj8nmJMa27MBQIzO70t0fvrXbsa3Q9phM22MybQ+ZKe0zk2l7TKbtMZm2h8yG9pvJtD0m0/aYTNtDZkr7zGTaHpNpe2xO20RmSvvMZNoek2l7TDZX20NTyYmIiIiIiIiIiIiIiLQIDQyJiIiIiIiIiIiIiIi0CA0MbfKFrd2AbYy2x2TaHpNpe8hMaZ+ZTNtjMm2PybQ9ZDa030ym7TGZtsdk2h4yU9pnJtP2mEzbY3PaJjJT2mcm0/aYTNtjsjnZHnrHkIiIiIiIiIiIiIiISIvQE0MiIiIiIiIiIiIiIiItQgNDIiIiIiIiIiIiIiIiLaJlB4bMrGBmbzWz681syMxuN7Ozzaxna7dtPpnZaWb2PTO7yczczG6ZYvmDzOwCM1trZv1mdomZPX4LNXfemdmBZvY+M/uDmd1vZhvN7Goze1fWvtAC2+MgM/ummf3dzNab2UB6jHzMzHYJlt9ht4c0R3FWcVYxdjLFWJlLirGKsaA420hxVuaS4qzirGLsZIqxMpdaNcaC4uxEirOTbek427LvGDKz/wLeBPwA+BlwMHAScAnwRHevb8XmzRszc2ANcBVwOLDB3fcOlt0PuAKoAucA64FXA4cAT3X3i7ZAk+eVmZ0JvAH4EfAHYBR4HPB84BrgSHcfTJdthe3xBOBdJNviDpLPeijwcmAD8FB3vy9ddoffHtIcxVnFWcXYyRRjZS4pxirGguJsI8VZmUuKs4qzirGTKcbKXGrVGAuKsxMpzk62xeOsu7fcP+BBQB04vyH9JMCBF23tNs7jZ993wv//FbglZ9nvArV0pxtL6wVuBf5BOrC4Pf8DHg4sykj/QLovvLGVtkfOdnpeuj1O1vbQv+n8U5wd//+WjrOKsdPeToqx+jejf4qx4//f0jE2/TyKs9PbToqz+jejf4qz4//f0nFWMXba20kxVv9m9K+VY2z6ORVnN30Wxdnpbad5ibOtOpXcCwEjGU2b6IvAAPDiLd2gLcXdb5rOcunjescDF7v71RPK9wFfAg4EHjEfbdyS3P1Kd1+fkfWd9L+HQOtsjxy3pv9dAtoeMi2Ks1NoheNIMXbaFGNlphRjp9Aqx5Hi7LQpzspMKc5OoRWOI8XYaVOMlZlq2RgLirMTKc5O27zE2VYdGHoEycj0FRMT3X0IuJode0eargcDHcDlGXl/SP+7I2+n3dP/3pv+t6W2h5l1mtlyM9vdzI4DPp9m/TT9b0ttD5kVxdmptfJxpBirGCvNUYydWqsfR4qzirPSHMXZqbXycaQYqxgrzVGMnZ5WPpYUZ7dAnG3VgaFdgVXuPpyRdyew3Mzat3CbtjW7pv+9MyNvLG23LdSWLcrMisDpJHM0fitNbrXt8SrgfuB24OfAYuDF7n5Jmt9q20NmTnF2ai15HCnGAoqx0jzF2Km17HGkOAsozkrzFGen1pLHkWIsoBgrzVOMnZ6WPJYUZ4EtFGdLzbVxu9UNZAUfgKEJy4xsmeZsk7rT/2Ztp6GGZXY05wBHAu9093+kaa22PS4ArieZm/IwkscTV0zIb7XtITOnODu1Vj2OzkEx9gIUY6U5irFTa+Xj6BwUZy9AcVaaozg7tVY9js5BMfYCFGOlOYqx09Oqx9I5KM5ewBaIs606MDQA7BTkdU5YppWNff6OjLwddhuZ2fuBNwJfcPczJmS11PZw9zuAO9I/LzCz84E/mllXul1aanvIrCjOTq3ljiPF2IRirMwBxdipteRxpDibUJyVOaA4O7WWO44UYxOKsTIHFGOnp+WOJcXZxJaKs606ldxdJI8lZm283UgeZ2z1Uem70v9mPXY2lpb1uNp2y8zeC7wb+ArwuobsltseE7n7NcCfgdenSS29PWRaFGen1lLHkWJsTDFWZkExdmotdxwpzsYUZ2UWFGen1lLHkWJsTDFWZkExdnpa6lhSnI3NV5xt1YGhP5J89iMmJppZJ/BQ4Mqt0KZtzbUkj6MdlZF3ZPrfHWY7mVkZKANfB17l7t6wSEttj0AXsDT9f20PmYri7NRa5jhSjJ0WxViZCcXYqbXUcaQ4Oy2KszITirNTa5njSDF2WhRjZSYUY6enZY4lxdlpmfM426oDQ98BHHhLQ/qrSebf++aWbtC2xt37gAuBY83sIWPpZtZL8gKsG4ArtlLz5pSZnQ68F/gG8HJ3rzcu0yrbw8x2DtIfBxwC/AFaZ3tIUxRnp9Aqx5Fi7CaKsTKHFGOn0ErHkeLsJoqzMocUZ6fQKseRYuwmirEyhxRjp6FVjiXF2U22dJy1zQfgWoOZfZJkzsIfAD8FDgbeBPweeHzWTrgjMLMTgb3SP08C2oGz079vdfdvTFh2f5KdaBT4OLCBJEgfCjzN3X++pdo9X8zsDcCngNuA9wCN3/u97v7LdNlW2B4/AHYBfg3cSjIv5eHAv5PMTXmsu1+dLrvDbw9pjuIs0OJxVjF2MsVYmUuKsUCLx1hQnG2kOCtzSXEWaPE4qxg7mWKszKVWjbGgODuR4uxkWzzOuntL/gOKwNuBf5A8enUn8DGgd2u3bZ4/98Uko/JZ/y7OWP5g4IfAunQHvBR44tb+HHO4Pb6asz022yYtsD2eD/wEuB0YAgaB64FPAnu22v6hf839U5xVnFWM3Wx7KMbq35z9U4xVjE0/n+Ls5M+nOKt/c/ZPcVZxVjF2s+2hGKt/c/avVWNs+tkVZzd9NsXZyZ9vi8bZln1iSEREREREREREREREpNW06juGREREREREREREREREWo4GhkRERERERERERERERFqEBoZERERERERERERERERahAaGREREREREREREREREWoQGhkRERERERERERERERFqEBoZERERERERERERERERahAaGREREREREREREREREWkRpazdARERERERkh2a2APg0sC8wBPwvcDbuPkf1Pwf4OPAF3D+Qkf9V4CBgeELq/bg/L2PZhwEVoAeoAr8DzsC91rDc34F7M1qzEveDZ/MxRERERERky9DAkIiIiIiIbH/MXgCM4v79rd2UafgK8E3cfwCA2VnAG4FPNl2zWSfwJuC1wOE5Sz4P9zumqGsX4Gzghbjfk6Y9HXgX8L6GpX+N+xsy2vLDGbReRERERES2Ak0lJyIiIiIi26MuoHtrN2JKZgcD3eODQol3AS/BbC6ux04meRppcA7qegTwo/FBIQD3C4GjNluycVAocRzwqzloh4iIiIiIzCM9MSQiIiIiIvPHzIC3AC8ARkgGMK4FasAXcb8xXa4EnAYcDXSm+auBt0160iV5quVrwJ6AY/aqCWu7Evd3zEGbLyQZ5Hg37h9tsrZjgPMnpbgPp1Ox7QHcOuuazfYAjsT9fZgdO8XSZ2K2O8k1oAHvxP23DctcCrwZs5/jfl06cPUKYL9ptuiZwJnTbb6IiIiIiGwdGhgSEREREZH59DngBuCo8XfqmD0BOA/49oTlHLgY+CjuQ+ly+wOfAY7ftJTfDRyH2cuAKu7nzkOb9wbaSQafmrUC+ENG+s3AbjQzMJQMwpw2jeXOA9bhfikAZiuB72F2Au63jy/lvgaz1wFXYLYGWAr0Ai+acg1mRWBf3P850w8hIiIiIiJblgaGRERERERkfpg9jGQatbMmpbv/CrP3kzwRNJZWAy5pWO5GzLrmv6GbeTjJoM3Nc1BXCRjKSB8lGXyaHbNjSAZ7/jLlsu4/bvj7XszeSfKeo1Mm1NkGfJ7kKaELgDbgkcCfp9GixwC/n1bbRURERERkq9LAkIiIiIiIzJdjSQYYNuf+sUl/J1POPR84EVhAMpVcH/DAeWxfNvdh4KY5qm2EZIClUSdQnVWNyRRv7wWeN+tWwZUk7yea6N+Aiye8D2kEuCQdRPrQFPU9C/hGE+0REREREZEtRANDIiIiIiIyX4pAfZrLvg/oBl6O+/0A6dNCF81P07aY20mmpmu0F3DfLOvcBVgJnI/ZWNpiYBFmt0xzer0lJINvE+0P/F/GsgsxOwT3v+bUdzjub57GekVEREREZCsrbO0GiIiIiIjIDusy4OlhbvKumzGPwv3t44NCAO6DwHBQus58Xc+YdWC2b/oUU7N+Dzyjof5O4DCSdy9lrd/S9Xdk5rvfifuDcD92/B+8BfjyZoNCZivTKeIaPRW4tCHtH8CDM5Y9lOTprWzJlIHTmW5ORERERES2ARoYEhERERGR+eH+e6AXs5MxK46nm+2P2fdJBifG1DDba8IyKzH7LPDYoPZrgKc11LsvZqfOQcuvBP4FfKLpmtxvAqqYHT8h9YPA53H3oNQn0vVf2fT64WHAjzDbdzzF7Ejg1cAXG5b9CfCUNH9s2dcBddxvyVnHs4imDBQRERERkW2OppITEREREZH5dAJwKnAFZgPAIMkUau/D/eoJy70R+CRmPUA7MAB8GTgAs98A78f91+NLu1+N2a+B36TTqXWQPIHzhTlo8y3AQcCdc1AXwCuAszE7ieT9SRfi/smc5e8ARoHbpqw5mW7vfGBXkqnkbsb9m+P57j/D7FbgI5gtS9d/M/A83DdMqsu9htmJwH9htmfahiuBF07RigOBypRtFRERERGRbYLFP1ITERERERERERERERGRHYmmkhMREREREREREREREWkRGhgSERERERERERERERFpERoYEhERERERERERERERaREaGBIREREREREREREREWkRGhgSERERERERERERERFpEaWt3QAREREREdm+WcVOBN4A/NXL/qoZlv0qcKOX/QPz1LavA48BXu5lv3g+1jFbVrEHAJ8kuS6rAmd72f+3yTofBLwT2BsYBjYC7/Ky/zVj2acBbwR602VvAU72sq9pWG5v4HLgHw1VfNTL/pOctjwH+Djwhfn6fkVEREREZOY0MCQiIiIiIk3xsn/DKnYJ8O5ZFB8Ahua4SeO87C+xis2mXfPKKtYLfAN4kZf9BqtYD3ChVexeL/ufm6j6dcD7vOz/SNezEviKVewEL/vaCevfFXgi8EIv+7o07RHA54DnZ9T7k5kM+lnFOoE3Aa8FDp/lZxERERERkXmgqeRERERERGSr8bK/3st+1tZux1ZwIvA9L/sNAF72fuAdwFubqdTLftLYoFD6973AL4GjG5a7y8v+1rFBoTTtj0C7VWxBM21InQx8Ghicg7pERERERGQO6YkhERERERGZM+lUZmcAy4Eu4I/AKROfVkmX+zTwIGAxcF401ZhV7MXAq4BDvOzLrWJHA+8H2oBVJFPErUuXbQfeAzwZGAH6gTmZwswqtoJkOrXlwDO87L9tsspjaHjCyst+VTpt25yxih0IvBp47jSWfQrJd9KfkX24VezHQA+wiGRbvM3LPpxRzx7AkV7291nFjp1960VEREREZD5oYEhERERERObKIcDZwGu87LfB+HtmfmIVe1L6VAwAXvY3pPnHAo+OKvSynwucaxW7yCp2KsmTLyd42e+2ih0K1NN6DPgOcKGX/Yg0bQnweZLBnEub/GxdwM5AN7CiybogadNtGembDbTMhlXsFOA1wO7AaV7263KW/S5wbPrnv3vZ6w2L3A98CfjmhEG4VwFnASdlVHkmcFoz7RcRERERkfmjqeRERERERGSuPAB46digEICX/XzgXOA/mqy7SPKkyvFe9rvTuq/1sm9I858K/M3L/t8T1r0WeCmwV5PrJv1MuwO7e9nPa7Y+wLzso1npc1A3XvYPk3wfzwNWT7Hs84EDSKZ/y8rv97J/umHauS8BBzROO2cVOwZY52X/S3OfQERERERE5osGhkREREREZK5cmr7TptH3gMc2WXfNy36al92D/CcBP2hM9LIPAj9rct1jda3zst81F3UBVatY1vVY2xzVj5d91Mv+I2CdVewFUyy73sv+VeCJM5jO7mrgwLE/0s/zXuD02bRXRERERES2DE0lJyIiIiIicyUatJkqby7kPWkzJ0/hzLE7SZ5kurkhvWse1vVzkmn2vjONZX8HPAv4+DSWXQJUJ/y9C7ASON8q45t8MbDIKnZLOi2giIiIiIhsZRoYEhERERGRufJoq9hOXvb7GtKfC/xqntf9S+DZwJ8mJlrFuoCnkDy11BSr2GKge46eGrqUZADmYxPqP4LNB4omrr8D2A24OefJqSwPB9bNYNk7G9a7u5f9joa0NuAwYPzdRV72O4EHNSx3LPBoDQqJiIiIiGw7NJWciIiIiIjMlT7gPKvYHmMJVrFnAi8AvjDP6/4pcIhV7OUT1r0E+CbJ+4maYhXbE7gDuMMq9txm6yN5eudFVrH90vp7gDOAD+eUuRL4F/CJoI0nWMU+kn7usbRDgU8BH21Y9myr2KvSAZ6xtGeRDFY1Pln0RavYa61ixXS5duAzwNeC9ySJiIiIiMg2zHxGPzQTERERERGZzCr2YuCNwF+B84FTgE6gHfg/4FQv+/oJy78CeEn652JgEXBr+vdfvOxvnrDsecBy4CHAXyas9ude9jMa2tFB8o6bJwJjAxafAfYmeWrpXC/7WbP8jCuAy4GdgGd62X89m3oa6jwQOAvoTv+d4WW/MGf5C4EnA6d72c8Mlnkh8FKSbV8EVgHv8rJf37BcN3ASydNUni57TVr32oZli8BbgONJpuXrBj7vZf9iTlu7SPaFXUm+33d72b8ZLS8iIiIiIluOBoZERERERERERERERERahKaSExERERERERERERERaREaGBIREREREREREREREWkRGhgSERERERERERERERFpERoYEhERERERERERERERaREaGBIREREREREREREREWkRpa3dABERERER2cGY7QmcAywGqoABP8f9rK3Yqm2P2QOAT5Jcl1WBs3H/3zmo953A8cAG4GbgHbhvbFjmq8BBwHBD6YOAo3C/pWH55wOvS/+qAp/F/QdTtOM5wMeBL+D+gZl/EBERERERmQ8aGBIRERERkbn2KeAU3P++tRuyzTLrBb4BvAj3GzDrAS7E7F7c/9xEvScBK0gGdxyz44GvAM9tWPJ24K24r20o/1NgVUPaU4GnAP8P9yHMisB7MevD/ZdBOzqBNwGvBQ6f9ecREREREZE5p6nkRERERERkrnVrUGhKJwLfw/0GANz7gXcAb511jWZG8lTPabh7Wu+PgDbM9p+0rPt7MgaFlgCjuPc11Pwk4JO4D6Vla8DHgJfltOZk4NPA4Ow+jIiIiIiIzBcNDImIiIiIyNww+xpmFwOHY3bxhH+VhuUOxezXmN2C2aMx2wOz/8Hs95j9FrOHNCz/OMwuwuz/MLsSs29htnfG+nsx+wxmV6XL/i9mD8Psr+n6Dmnis63A7EbM1mH22FnXs8kxwPmTUtyvAvZuos4DgavGB3A2+SFw9DTKPx34cUb6D4CTMVsOgNkC4ENA43pI8/cAjsT9u9NrtoiIiIiIbEmaSk5EREREROaG+0sBMLsI9yfmLHct8HjM3gs8meSJlDfifiVmK4EF48sm76l5BXAi7nenaUcA/4PZi3C/KU0rkgxgfBH316dphwLfAhz3xzf56bqAnYFukqnamrUcuC0jvfGdPzOxArg1I/1m4KhplH8G8PrNUt0vwWxn4B7M/gHsD6wHHhPUcyZw2nQaLCIiIiIiW54GhkREREREZGs6Angy7usBcL8XuBcAszaSKcmeMGl6M/crMHsd8GHgeWnqc4DfT3pKxf1azN4IfK3pVrrfhtnuJNPk3dV0fWC4j2amz16J7Kd4RoH2/NZYN7Ag3f6NeXsBbwcehvs1mK0ADsD9HxnLHgOsw/0vM269iIiIiIhsEZpKTkREREREtqb3jw8Kbe7BwJUZ77wB96uBPSakHAP8KKOO35E83dI893VzNCgEUMUs63qsrYk6R4LynUB1irJPBn4R5L0NOBn3awBwvx/4G2ZvmLRU8nneC5w+7RaLiIiIiMgWpyeGRERERERkW+ZzUEczT+HMlzuBvUimeZuoq4k6byf7HUV7AfdNUfaZwPuDvP2BKyaluK/H7KnApyek7gKsBM7Hxjf5YmARZrfgfu4UbRARERERkS1ATwyJiIiIiMi26hrgCMx6N8sxO4xkIGTM74CnZ9TxWGDhnLTGbDFmu85JXXAp8KyG+o9g84GiifkdmO2LWTTQdQdwMGYdDenPBi7JqbcE7I37jcES/wAObSjTSTIQtIn7nbg/CPdjx//BW4Ava1BIRERERGTboYEhERERERHZNiXv4Pkw8B3MNg1CJAMonwVOmbD0+cDRmD1nwnKHAu9h7J1FzTDbk2Tg5Q7Mntt0ffAd4EWY7ZfW3wOcQfJ5I1cC/wI+kZnr7sC5wAcntPsZwADuf8+p97EkA2uRc4CzxgfFkoGnzwPfyikjIiIiIiLbKE0lJyIiIiIizTNbAHyXZCq0h2B28YTcz+P+7QnLvgd4Asm0Z8/AbOwdQPfg/u+T6nU/H7O1wLnpk0NF4Abg33G/ZcJytXRQ6COYvZPkfTu3Ay8DvjIHn3AQuAfYCVjTdG3uA5i9CPg4Zt1AN3AG7lfllLoFOIhkGrrIJ4F3YPYroAO4CXjFFK05Gjgvp623YXYq8E3M2kmm5vsm8JmwjFkXyWDdriRTyd2M+zenaIeIiIiIiGwBlvyoTEREREREZAeUTLv2m3RaMxERERERkZanqeRERERERGRHdhLw863dCBERERERkW2FnhgSEREREZEdh9mbgGcDDnQCP8D9I1u3USIiIiIiItsODQyJiIiIiIiIiIiIiIi0CE0lJyIiIiIiIiIiIiIi0iI0MCQiIiIiIiIiIiIiItIiNDAkIiIiOw6zh23tJojs8Mx2xeyXmK3a2k3ZYZk9HbPLMLsIsx9idsAc1LkAs69jdmla7zsws4zl/o7ZxRn//j4nbTXbGbNz0jp/h9k3mv5sIq3MbCVmv8Bs7dZuyjbJ7AHpOes36X+fMkf1vgGzqzD7LWbnYrZiiuUPw+zbaTsuw+wtGcvsgdlPMPtDWu8Lp6izE7O3Y/brNKZegtnSZj6WiIi0jtLWboCIiMgWZ7YncA6wGKgCBvwc97O2Yqu2PWYPAD5J0l+oAmfj/r9N1vlV4CBgeELq/bg/bxrLkaYdhfstE5Y9DHgpcBSwN7AyZ/0dwLuAxwOjwAbgNNyvm/FnEWlV7ncBT8Lsoq3dlB1SMsD9NuA43Psw2x/4H8weg/tgEzV/Bfgm7j9I13MW8EaSOD/Rr3F/Q0ObOoEfNt1Ws0cCZwDvwv0tTXwWERnjfi9wnGJyBrNe4BvAi3C/AbMe4ELM7sX9z03UexzwKOBI3EcwewhwLmb/D/daxvKvJel7/ifut+XU/GXg3bhfgVkbcA5mQ+Nxe3Kdy4H/IYntT8S9PuvPIyIiLUkDQyIi0oo+BZyCe/avn2X+LqQTz8P9jimWuR14K+6Tf/1q9lOg8SmFfYDvk9yc/MUU9X4B+A3up6f17Ql8HbMTcb99es0XEZlXp5Cco/oAcL8Rs28BLwT+e1Y1mh0MdDfcXHwXcClmn550Q7FxUChxHPCrptpqtgSoAM/AfeOsPoeIyMycCHwP9xsAcO/H7B3AW4GXNFHvG4CX4D6S1vsXzH4CPBv43qQlzR4NHI77C3JrNHsEcA3uV6R1jmL2VuCnwOYDQ/BZ4M24/62JzyEiIi1MU8mJiEgr6tag0JQ2v5CGsQvp+ef+noxBoSXA6PgNyE3Lfh/33035S0mzxUA/7l+dUPY24P3Ay+ag1SKtx+wAzC5Ip7y5ArNTg+X2xex/MLsSs/9Lp/N5bMZyL06nw1mV/n10OkXOJZj9ID2OJy7/5nTdv8HsZ5h9DLPvZNS7K2Zfwez36VRql2L2uuY3AGB2LGbrMbsh/QV3s/YZvzG4yQXAY5qo8xjg/Ekp7sPA34E9plH+mWkbGs2kra8D3qdBIZEmJfHs62nMvQyzb2GWfRybHYHZj9LlLsPs55g9Llj2hDT+XorZ5em0Z/tmLHdWutxF6d+vTJe/HLOPNPnZVmB2I2brMs8RM5cV+64iecK8Gb24r29IOx/4fxnLvpHkx0tT2Rf456SUZODpJsz2mpRudhTwZw0KiYhIM/TEkIiItA6zrwF7AQ/B7OIJOb/FvTxhuUOB/yK5QHsxcCvwUZKbZ1XgTbj/ZcLyjyP55fUCoEhyUffOSdOdJcv1Ah8BjiSZxmwt8E7g68B9ab1/neVnWwFcDiwn+TX2b2dVzybHAO+elOJ+FWZ7N1kvwJmY7U7SDzGSbTWd9j4d+PGs1+q+Dnh9Rs4A0DnrekVaV4HkqZCX4H4zZgXgE5g9G/fvjy+VTC92LnAS7n9M03YFvozZEtwvGF/W/VyS6XguSgeZjgZOwP3uNDbXJ9T7AmBP4Am4V9O0B6brYsJyuwBfA94xHrvNuoDTMDsb97c3uR2Wsyn+dzdZFyQxqdEtwC5N1LkC+ENG+s3AbiTnuWxmRWBf3P+ZkTuTth5JEv/fDDwXGAQ+N2lfEZF8ZsuA84C34355mvZAkli8c8OyTwBeA7wG93vStF2Az2C2EPcfTlj23SQx7Cm4D6VphwHfwOzFuN88vqz7O9L8y9OB+JuBx+E+hNnRTX7CrvRzdJPErWYtB7Kmbmucqnim+jBbmU7jN+alwIGTlkqmg0v6u2afAA4DVpNMF9fY578ReHlD+SUk/d/zmRynnwqcT/K+pLen6/gl8OHMqexEREQyaGBIRERah/tLATC7CPcn5ix3LfB4zN4LPBl4EvBG3K/EbCXJDUDSup4DvAI4Efe707QjSN6x8CLcb0rTiiTTQHwR99enaYcC3wIc98c3+em2lwvp84B1uF8KkG7P72F2wjSmcnsG2QM7s5dcsJ9OMiWIiMyMAy8cnxrSvZ7e+Ho7yfSOY84EXjtpQN39LsyeD1yE2U9wH22ouwgsAo7H3dMy1zYs0wWsGR8USpa5LuPX8GWSGP6PCcsNAqdj9g3M9pl003Om3M9LB7sH0gHoZlU3S0m2bTPXbiVgKCN9FGifouxjgN8HeTNpaxfJ+/1WA48D2oAvYOaZ788QkSynAKePDwrBWNx7M3BNw7InA09riJF3p7H3F4y9Nyx52uiA8X7ypmX/jNkrSH4o9MqMtjwEOAv38yeUiWLF9LjflsbT7vR9ds2yjPNLkt6cjwFfwewEYB3JD8keDDQ+RbScJE5eAPwX7m9Kt/c30wG3TX1t9z9h9gHMnon7BZjtTPL+oPOApQ31riSZ4vNI4AUkPzZ7PXA28JYmP5uIiLQIDQyJiIjkOwJ48vh0EckvA5NfByaDCieT/Fp90/RmyQtjXwd8GHhemvoc4Pe4f3fCctdi9kaSX7I3Z3u5kHb/ccPf92L2TpJpNk6JW2PdwIKGX2Y2J/n+vgF8dnwAT0RmwjPeFzYAdDSk7T5pUGi8tG/E7E/AocBVDbk13E+bYv1fB95G8l6HQZJ3k13O5EEpSG6cfR7LDF+9wMEkv3ifvbmJu+O1bZaSxKvN06dvhGQgplEnWYM7kz2LJFZmmUlbF5BMv/Tm9O8qyQvZf0T2+zNEZHOPJKu/lAwOXT/+t9lOwENJBt+z6lmO2VLc1wBHAUc2PE0/0WCQftmkQaG5kgywr5uj2qqYFTKmG86Kh9Pn/tu0b3oeydOzF5NMw9z4ZPs6kmuBl+H+o7Ts7ZidAryJZJrmiZ4PnEHyHqRVwHtIvp/GKTjXkzyhdHg6LSjApzH7KWaLMqa5ExER2YwGhkRERPK9P+fi6sHAlZu98wbA/eqG+d6PIful4b9j818Xzs72cCGd7UqSAbY8Tyb5devcMOsBvgl8ZfxCXUTmSzMDGjm1eh04CzgrfSpzH+BpwIWY/duE6XSGgWdt9t6ybVfWNdqewP1N1Hk72e/U2ItkKtM8h08YzGk0k7beAHx5Uor7AGbzs3+ItJ6JI0BDwO24HzuNcgPAj+dgWs1t0Z0kca5x8L+r6Zrdfwb8bPzvZOq9mxuWGcTsBuDbDaX/QvYA30aSH0ttkvyAqnEA7nqSJ/Abn+T/K8m58OppfQYREWlpha3dABERke3cXNzQanY6i/kwdiHdqPkL6c0tAaaaD/2ZZL/4fOaSl8NfSPKk0A+nWlxEmnYnZg/ZLNVsAfBwoHGKuOkxO2f8/91ruN+I+38B/yCZ4mjMT0neszF/kpfBL56j2m7D7GENac8BLslZ/+L0vU2R35NMxzmxTCfJ+y5uyKn3YcCf56itFwL/1lB/s09CibSaK4DNp0NO3jN00Pjf7huADZgdOY06fwc8NX2fzdY3dTybiUtJnnqcWP8R5D0lataB2b5Y9qNWQZk2kveRfjoj91dA45TRB+a2YVO9TwGGMp5K/RnwlIwS+5P3zjgREZEJNDAkIiIye9cAR2DWu1lO8qvBie/M+R3Jy2MbPRZYOCet2dYvpM1WphfOjZ6ari+qtwTsjfuNU7Z6KmZ7kdycfDfuP2+6PhGZjlNJpnJ7xHhK8gL07wIfCqatnI5npO+/2MTsQJIpQP8xIfWsdNnXYlaYsOzemH0Vs2Nmuf6xep4L3AHcgdmeTdWVOIfkKaietP79SaYiyp7OLVnn2Pqfm7lMMl1mFbPjJ6R+EPj8+Ducsj2L/EH5mbT1+8Djxl9On5wrPkjy9KaITM+HgfdhdtR4SjIodC6bP6n3BuBzmB07KdXsKMx+lg7Ojw0ifQD4Pmb7TFiuhNkLMPv6nH+KyHTi2cx8B3gRZvul9fcAZ5Bsx8iVwL+AT0xrDWYHk0yH+fmMd+FBMmD0Qcx2S5dfQPLuvc/k1NmeTjf9H8BrN8tP3mt6DWZvm1DmeGDtdvR0rIiIbGWaSk5ERGS23Ecx+zDwHcxelV6kjQ2gfAJ40YSlzwd+htlzxudjNzuUZO7w5t+bk1xIXwd0Y/Z83M9rssbvAL/D7Ie4/2vChfR/5pS5EjgE+BRwUkb+w4A3YfaG8Xf6JL9kfTXJVHGRx5IMrDXH7EHAF4FX4n7dhPQO4Bjcf9n0OkRaQTJt2w+AwzH7FfAfuP8zveH/UWBfzL6I+6sBcL8RsxcBH0oHDmok70v4AO4XN9R9HsnLuh/S8L6Ln+N+RkNLLgMWYvYLkicvi8AakmO8f3wp937MnkQSb/+I2UCacy/wGdybjS+r0s+zmvhdHNOXvPD9o8CP0m09ApyYOW1pYhC4B9iJ5PNHXgGcjdlJJO/7uRD3T07RmgOBypy01b2G2bOA/0rPnR3AD3Fv/j17Iq3CfVU6YPIRzP6L5Im7NcDrSGLsb4AP4n4R7n9Pj7n3YXY2SZwqkTyl+eZ02rKxer+F2V3AZzFbBvSRxNRfAZumkjTbG/hSWk9jnP5wOr1aM6Ybz6Ynma7yRcDHSd4J1A2cgXvje+0muoXk6as7wyWS7XkEyfnsVuBN4fsq3W9h7J2iyZOaJZIfRUx+WjMZ4PsSyTSAAP8DPDNn8P4tJANOf0j/vgF4fc7nEhERmcTyfyAmIiKyg0h+nfddkqnQHkIyt/eYz+P+7QnLvgd4Asn7GNay6R1A9+D+7xl1Px54F8lLzIskF2an4X5LRhs+QnIhOULyRNHbSd5zs/m0IDP7fCtIXrq+E8lF5K+bqi+p80CSX9pPvJC+MGf5C0kGeE7H/cxgmQcC7wOWkdyYvBl4a8YL7CeWOZ3k5uHmL69P8t8JHJf+NfG7nfx9mb0XOIHk5u1E7cBVuL8qbIOIiIiIiIiIyA5CA0MiIiJbUzKVzm+m+XJgERERERERERGRpugdQyIiIlvXSYDedSMiIiIiIiIiIluEnhgSERHZkszeBDybZE74TuAHuH9k6zZKRERERERERERahQaGREREREREREREREREWoSmkhMREREREREREZknVrG9rWLLtnY7RERExpS2dgNERERkG2C2APg0sC8wBPwvcDbNPFpsthR4F3AkMALUgE/hfkHDci8DTgHubahhJfBh3L/asPzTgDcCvcAwcAtwMu5rGpYrAm8AnksydV8d+CVwJu71WX8uEWmO2UrgG8AjcF+ytZuzRcxHjE3qfTpwGjAA9APvwP2GjOUeBLwT2Jskbm4E3oX7X+ekrWbPAV4FtAPdwKm4/3b2H0xEGlnFTiTp1/zVy/6qGZb9KnCjl/0D89S2rwOPAV7uZb94PtYxW1axBwCfJLn/VQXO9rL/7xzU+07geGADcDPwDi/7xoZldgVeATwZ2AN4MXDpNOreLKZ6eVNMtUpm37kKvNLLfuvsP5WIiLQSDQyJiIjMF7MXAKO4f39rN2UavgJ8E/cfAGB2FsngyyebqPMVwM9xf3taZwfwScxW4T7xongV8Fa84SLd7D3AnQ1puwJPBF6I+7o07RHA54DnN6z/ySSDQY/DvZYu+yqSC+kzmvhcItIM93uB4zC7aGs3ZQua+xhr9jDgbcBxuPdhtj/wP5g9BvfBhqVfB7wP93+kZVcCX8HsBNzXzrqtZgXgiySx+nm4983684hILi/7N6xilwDvnkXxAZKB3nnhZX+JVWw27ZpXVrFekh8ivMjLfoNVrAe40Cp2r5f9z03UexKwAjjKy+5WseNJYudzGxbdHbgO+Bhw8jTqnRRTvZwbUz/oZT93Nu0XEREBTSUnIiIyn7pIfuW3bTM7GOgevwmYeBfwkvSm3+y4n4X7Lyb8PQx8Fnhmw3I/3mxQKPE44OKGZe/C/a3jg0JJ2h+B9vRX7hOX/SnunxofFErSvkQysCQismXMV4xNBrlPGR+Mcb8R+Bbwws2WdD9pfFAo+ftekicoj26yracCv8H9dA0KiWy7vOyv97KftbXbsRWcCHzPy8mTlF725MlKeOtsK7SKGclg+2leTp6k9LL/CGiziu0/cVkv+xVe9u972QemWf2pwG+87KdPMSgkIiLSND0xJCIiYmbAW4AXkEx5NghcSzL12RfTm21gViKZsudooDPNXw28Dfc7JtS3C/A1YE/A06dUxlyJ+zvmoM0XAscB78b9o03Wdgxw/qQU92HM/k4y7cXcTElhtoTkBuOvprHsXsBduI9OY9mnAA8imUYpb7kS8J8kTyiJyJaSPOl3JvAAkqlubiEZ1Mhadl/gQ8D+JDF2A/CBzGnJzN5KMi3PcJryCZKB30OAT+L+zSbavD3E2H1wv6Ih7QLgPcB/55Y0OxB4NZv/un36bTXrBA7D/UMzb7qINMMq9iCSp5+Xk/wQ6Y/AKV6e/ASgVezTJH2kxcB50VRyVrEXk0xddoiXfblV7Gjg/UAbSb/p5V5OfpRjFWsniTNPJuk39wNzMkWdVWwFcHn6uZ4xcfq0WTqGhiesvOxXWcX2bqLOA4GrvOyNT2D9kOQa4cbZVGqVJKZ6edox9QSr2MtJ7ustAL7sZf/0bNYtIiKtSQNDIiIiyTRkNwBHjb9DwewJwHnAtycs5yRPsHwUTy8Gk6l7PkMyx3i6lN9NMk3Sy4AqPi/TPOxNMu/4nnNQ1wrgDxnpNwO70ezAkNlxwEeBB5Js0y9No9QzSS6w8+r9LnBs+te/h+8NSm5Kfxc4jOR7/rdprF9E5oLZMpLj/u24X56mPZBk4GLnhmX3B84FTkqfBBw7fr+M2ZJJ7ycz+xDJDctH4l5N1/NN4KHAkbjf0mTL92bbj7FZv0C/BdglLGF2CvAakumNTsP9uoYlZtLWRwGXpoNMHyR5L9z1JE8xNU5PJyJz5xDgbOA1XvbbYPydND+xij0pfSoGAC/7G9L8Y4FHRxWmU5KdaxW7yCp2KskAxwle9rutYoeSTM079rTMd4ALvexHpGlLgM+TDOZM+f6cKXSRnBu6SeJRs5YDt2WkD2ekTdcKsuP2zcBRTdT7KOBSq2weUxsH/IArSc4BP/Cyj1rF2oDPW8We42U/HxERkWnQVHIiItLaknc0dKfTnm16sbb7r0h+Kbl6QloN90vGB4WStBtJLmK3tIcD+wFvmoO6SmTPOz9KcmO0Oe6/wP0hJC8lvoLp9T+eCvxsinqfDxzAVHO2J9PPPZrkF7NfQz+MEdmSTgFOHx8UAtLBiDeTPEE00ZnAa8cHhZJl7yJ5f9hpmLUBY4NFR+D+n7hX0+VWAy8iGSyaC9tDjK1ulpIMkMcxzv3DJNv9eUw8v20yk7auJLlB+hXgvbgfQ/Iuj/MwK07dfBGZpQcALx0bFAJIBwPOBf6jybqLwCLgeC/73Wnd13rZN6T5TwX+5mUffyoxHbR4KbBXk+sm/Uy7A7t72c9rtj7AvJz59Lk1Ued8xfRJMdXLm2KqVSbHVC/7X73s3x37bOl/TwJe28T6RUSkxWhgSEREWt2xJFPvbM79Y7jfPv63mWH2Asx+jNlvMfs1Zj8ieRJmy3Ifxv2mSYNZszdC9s3UTrJuPM6W+x+A/yGZ+iRmthwYntb7KtzX4/5V4InYFNOCJE8Q/BdQ0U1LkS3mkWRNH5kMDl3fkLo77n/JWHYj8Cfg0DTlUcBPM5ZbA1zWVGs31bU9xNjN25YMnuW32X0U9x8B6zB7QUPuTNq6Hngb8DLc/5bWfQlwEcnNYxGZH5d62e/NSP8e8Ngm66552cffnZPhScAPGhO97INM9YOeafKyr/Oy3zUXdQFVq2S+H62ZHxHMV0wfj6leTmKql6cfU9MnxZoZ8BIRkRajgSEREWl1RdLpMabhfcARwMtxfyzujyd5L9Et89S2LeV2kmmTGu0F3Dena0qm2XvQFEs9HbhwhjX/DnjWNNZfB+4GHjzD+kVk7jXewJqLQZht0XzF2Kwng/YE7p9m+Z+TPGU10Uzaej1wKZ681H2Cv5C8I0pE5kderJzvOJo38LAtDkrcSfaTTM087T9fMf16kkG/ZmLqgibWLyIiLUYDQyIi0uouIxmIyGa2csJfj8L97bhvuunmPkg8T3md+TrXmnVgti9mc3ER/nvgGQ31Jy8VT97Jk7V+S9ffMaM1mS2g8b0imzse+NGM6k2mfVo3D8uKSHOuAJ64WWrynqGDGlLvxOwhGcsuIDlur01TLiPr19NmS0meJmre9hFjb0unQ53oOcAl02xXViycflvdbwKWYraooY4DSd61ISLz49FWsZ0y0p9L1hOac+uXwLMbE61iXcBT5mIFVrHFVrFd56IuknceTfrhkFXsCHJilFWswyq2b/o+pSx3AAdbZbP4/GymH3834+UkplolP6ZaxbqsYssy2n0gyY+fREREpkUDQyIi0trcfw/0YnbypOnFzPbH7PtMvvlYw2yvCcusxOyzxNN2XAM8raHefTE7dQ5afiXwL+ATTdeU3NyrYnb8hNQPAp/PmUbpE+n6r8zMNTsQs/PSl8mPpS0nmUru42FbzHqAHtyzf3FpdjZmrxp/10iS9iySi/7vTEgzzC7E7HET0tow+wBwB+66aSmyZXwYeB9mm17InQwKncvmT7acCnwes0dMWHYX4LvAh/D0PRHJe4f+iNkZ4/E1GRT6CtkvGZ+NbTvGJs4BzkrjJmm8fR7JOyk2MTsBs49gtmRC2qHAp4CPNtnWM4EvpINHYHYA8EyypvoTkbnSR/LemT3GEqxizyR5iv0L87zunwKHWMVePmHdS4BvkjyF3xSr2J4kAy93WMWe22x9JH3DF1nF9kvr7yGZ0vjDOWVy4386zd65JLFxrN3PAAa87H9vsr1nAl+wShJTrZIZU5cBP7KKjV9/WMV2Ab5I8n5UERGRabG5mTZbRERkO5YMMpxKcuE1AAySTAVxFu5XT1juQOAsoIfk5bIDwJeB15BcDL8f91831P1a4IT0rw6SX1x/AfffNdnmC4Enk7zU/cym6krqWwicTTI1xgLgQtw/mLP8KSQXn7/E/WnBMo8E3sqmJ4SqJNv0f3PqfRxwCO6fDPK7SV6u+xSS6VKKJANwp+O+tmHZPYD/BB4K1NJlvw98Evda2AYRmVtmuwEfAQ4gOW7XAGXgQyTH5Qdxvyhddt80fX+S43Yj8AHcL86o920k8XWI5MnNMskL0D+QvlOsmTZv+zE2We6pwDtItuMI8CbcG9/dBGYvJNk27emyq4B3BcvOtK0vJXnhuZOcF0/KrFdEmmIVezHwRuCvwPnAKSTvtWkH/g841cu+fsLyrwBekv65GFgE3Jr+/Rcv+5snLHsesBx4CMnUZWN+7mWf9G7I9EmZ95I8DTqaJn+GJGY8FzjXy37WLD/jCuByYCfgmV5u6FfPrs6x/nt3+u8ML3s4ZbFVNsV/L2fH//RponeQ9Ec7gJuAN3jZNzYs9/+Ak9M/9wbWkrxLaBR4hZcnvMt0U5nNYqqXJ8fUdDDufSTfVxtJ/H+Xl/3ScEOIiIg00MCQiIiIiIjsGMzOB16D++qt3RQREREREZFtlaaSExERERGR7Z/ZkUBBg0IiIiIiIiL5Slu7ASIiIiIiIjNmdgxQAYzkuuYfbJo2SURERERERAKaSk5ERERERERERERERKRFaCo5ERERERERERERERGRFqGBIZE5YBVbbBXbd2u3Q0RERERkXpk9bGs3QURkm2W2GNO9ARER2fbpHUMCgFWsA/g+cDjwcC/7HTMouzdwo5c93J+sYi8DXpb+WfWyP3HWjd1GWMU6gZcCzwD2AL4DfGCO6n4A8EmSY7QKnO1l/99g2acDpwEDQD/wDi/7DcGy7wSOBzYAN6fLbsxYbgHwaWBfYAj437QNmntSRLZLVrGHedmv2trtEGk5ZiuBbwCPwH3J1m7ONsc27/Ph2X2+Gda7WZ8P37zPh9kRQBnoBeokfb6zcK81LHcYSb/3KGBvYOUU6z8G+AgwCvQB78b9T018IhGRfJZ9DUuz70+wza+38YbrbZvhvYHpx96/A/dm1LAS94Nn9XlEJJNV7ETgDcBfveyvmmHZr5LcF52Te4IZ9X8deAzwci/7xfOxjtmayf3LGdb7BuCVwEbgduCtXvb7M5ZrB/4LeARJnL4EON3LDfE0WXYP4HPAMmAY+JyX/dvB+jfry3p5x+vL6omhLcQq9gKr2LO3djsiXvZhL/vTSDokM1UH1k1R/1e97Md62Y+dRf3bqkVAjWTA66S5qtQq1ktyA+X1XvbHAc8ETraKHZax7MOAtwHHpYNtbwe+bRXrylj2JGAFcJSX/TjgJ8BXgmZ8BfiBl/3Rab07A29s+sOJbCesYiutYr+wiq3d2m3ZUqxiC6xiX7eKXWoVu8gq9g6rmM1BvU+3il2W1vlDq9gBwXJftYpdbhW7eMK/701Rd8Eq9jur2Kog/zCr2DlWsf8DftbsZxGRWXC/F/fjgB3uQqpptqnPh2/q86WDMM3UO97nS7d9dp/P7MHAB4FX4v5Y4PEkF8lnZtS6D8mPyI4Crp1i/SuADwHPxP0xwInABzHbc5afSES2FrMXYNvufYwGXwF+gPuj8Tm6hrVN19tpnW8Hvo1tdr09/XsDM4u9v8b92En/4CnAbbP+TCKSycv+DeDfZ1l8gGRAel542V8CfHm+6p+tmdy/nGG9xwGPAo70sj8W+ChwrlWsmLH4e0kG8x7uZT8G+DtwVlD1l4GKl/1I4InAo61iz8pY/3hf1sub+rJW2fH6shoY2nK6gO6t3Yj54GW/zcu+fGu3Y0vzst/rZf+Sl/2+Oa76ROB7Y0/9eNmTXyXBWzOWPQU4xcvely57I/At4IUTF0pv7r4OOG3sqR8v+4+ANqvY/g3LHgx0e9l/MCH5XcBLrGKKGdIS0uO71W5kzvmA8EwGr1PPG/sRQfrveVOs4jUkv8i8Osif/o1MEZEt70Tge+O/PPfcPt/02KY+3/iv5D3p82GT+3zA84DX4X5Pupzjfg7wUMzaJi3p/n3cf4d7fRqteBlw5oR6VwEnk/RbRWT7sn3cx7DkGhbf/BoWa+oa9hTgFDy53sazr7fTH0F8CZ/WvYGZxN43ZJQ/DvjVjD6FiMwrL/vrvezRYMSObCb3L2fiDSSDTSNpvX8h+aHTpB8qpPc6j/Kyf3oszct+LrCbVWyXhmUfAVzjZb8iXW40bWdWnH0ZcKaXkzjt5R23L6up5BpYxV4EPJ/kFx9O8sjY+73sl05Y5okknYza2JRoVhmfJmMP4MNe9q+m6bsAXwP2BNwqNvFxxCu97O/IaMPrgJeT/OKkA/g1UPayD6T5Z6X5XyMZQR0lGSF9GbAbsBZ44dgBlJbZl2S0c/+03g3AB7zsv83YDEWr2CnAs9Jt4Oln+mFDO48APgwYcMhcDQ6l9b4bGKtvI8kB+Zs5qPtkkke6f+Zlf0az9c2TY0g+/zgv+1XplH2N9hkLahNcALwH+O8JaQcCV3nZG3/B8EPgaODGhvWf37D+YavY30n271un9zFEZHuRMyB8qVXs016e1o3ALJsNXlvFxi6m/zu35NRtXkJyvn4SyflqM172709YvpnVich0me1K8qvnB5BMJ3EL0UWUZff58Iw+n9kJwKtJrl+Kab3vwv2mhuXOAh4OVHF/ImavBMb635fgfnITn20FcHna3mfgmf3omdisz4f7VVhmn2+6DgSuwqfR53N/T1DHKMl2Hp1lG/ZN17eJ+zVY9hOjIjIHkkHhtwAvAEaAQZIfxdSAL6YDGmBWIpkW7WigM81fDbwNnzCdvE2+j4FNvo+Bb34fYxZtvpBkkOPduH+0ydo2u4bFfTidiq2Za9h98Gldb09f87H3mWQ/XSQic8Qq9iDgDJI+XxfwR5Lr2rUNy30aeBCwGDgvmkrOKvZikv7oIV725Vaxo4H3A23AKpIp4taly7aTxJgnk8TzfubutRWT+rLBPeGZmMn9y5no9bKvb0g7n2Q7TJxVZCfg7ozyPyQ5v3xtQtq+wD8b2jpiFbvJKraXl/3WhmV/2LDsNdHsJ9szDQxt7kbgFV72NTD+WNz5VrF/HwsAXvaLgIusYheNFfKy3wsclx7spQnpd6fpLyN5t865eSu3ip1DcuAf42UfTtNeAvzIKva0dMq3d1jFHg70edmPTAPWn4Gnedl/aRV7DXAC6ZQR6RMh5wInedn/mKbtCnzZKrbEy35BQzM+B/wwfbQOq9gy4KtWsUVe9q9P+GxXAI9Ll7mIOWAVewLJL8BfMzYymw6ufcYqtrBxcGoW9iAJvNvyyyCXk/1o+HBG2kBG2i3ALg1pK8juDN9M8kv6xmX/ECy7W1CPyHYtjYnTupE5k4F2q9hbgRez6fj9BMkjy4cAn/Syf7OJNo9fTHt57i+m52hAeLqD12POtIrtTnIeNeCdOZ3V95H8cKOmQR+RbYTZMuA84O24X56mPZDkeN+5YdnxPt/4r6aTG5GfwWwhPqHPZ/ZuksGgp4wPeCTTrX0DsxfjfvP4smM3K80ux+w7JP2Xx+E+hNnRTX7CrvRzdJP0l5o1kz7fdM2kz7c5sycDt+A+2EQbbgQezMSL72TbPwGzDtyb+Xwiku1zwA0kU0gmTwsmcfY8YOL7Exy4GPjohHi6P/AZkveSpUsl9zGw5D4Gnn8fY5b2BtpJBp+aNV/XsNO93m7OdGOvWRHYF/d/5i4nIs04BDib5L7kbQBWsecAP7GKPSl9KgYALydP9VnFjgUeHVWY3gs+N51e/VSSwfkTvOx3W8UOJXlFx9gTMN8BLvSyH5GmLQE+T9JvvDRzBdO3PfRlAfqsYivTe+1jXkryA6iJVgF7WMWs4Z3oJ5LcJ5/oRpKHLMal2/bpJPdCbm1YdlJfNh3Me4JVrGPsfv2OQNNCNfCyXzE2KJT+3Udy4B0y3+u2ij0E2M3LfvLEnSwdjPkh8NoJi1e97Ken+X8Dfudl/2Wadx2TO1dnAq8dGxRKy9xF8kvr06zS8LgyXO1l/9yEZVeTzLP5pnTkej6dTBIc75mw/rvTtr5lDup/E7AfyS9Jt1WWPtK4WXpGWrUxIf1lf+Ogb4ns+U5HSTrjs11WZLuXDn6fB3zWy36El/1RJL9E2exGZjrQ/i2SFyo+3Mv+SJIOyqlWsWc2LPshYFfgkWmdTyd5svPfgH9vZlAotTdzezEd3UjcrYl6Z3IxfR7Jyx+P9bI/muQx8fenL4icxCp2CLB8Lp4kFZE5dQpw+vigEID7dcCbSQbeJzoZOGF8UChZdvM+n9kewAG4VyY9BeP+Z+AVND5xs8lDgO/ifup4Offfz+5jja/zNmB3YHfcz2uqroTh0+7zTdfs+3Fmx5C8G+NtTawfkl9nviMdFASzh5P86vYCYGmTdYtIo+Q9ON24nzU+KATg/iuSX6SvnpBWw/2Shnh6I8nNwi3t4STX5m+ag7rm6xp2s+vtdErNufuR9cxi72OA5s5lIjKVBwAvHRsUAvCyn0/yg/v/aLLuIskMVcen9zrxsl/rZd+Q5j8V+JuXffxHlOlDCi8F9mpy3aSfaXdgdy/PTV92BvcvZ+JjwFesYkusYmYVO5FkoGbSU0Re9hrwC5L3/5SsYp3pAxfX0tDn9LL/Cdhv7L6NVWxnkns75zUuS9qXtUrSl00fztgh+7J6YqiBVeyRJB2T3Ul+CT4CrAQu2QKrfyLw3SDvO8CXSH5tPh0TD8Ld0/kYJ/Gyb7SK/Qk4FLhqQtb5Gcv2py/vfjBw5TTbMCNWsZ2Ah5I8jZW1yHKr2NKJA3czlY4g3zTlgltX1SpWyJi6qXEAD5JffE2SDvQ1po8E5TvZvLM7k2VFdgSnAKd7edONTC/7dVaxNwPXNCw7NtD+lwnL3mUVez5J7PqJl300fQLpiLHpRtPlVqfTld4wR+1+OMmgzc1TLTgNW+xi2stet4pt1v/wsv+44e97rWLvJHnPUePTW2eSPRewiGxdjyTraUv36zC7fvxv29Tnw7L7fJgtxX0NyVMuR2J2cbDO6NfVl+G+WZ+2ae7rgHVzVFsVs0LGe3uy+mHTNbt+nNm/kbyb6AUZ09DNjPsqzF4KfAiz5SS/unw+8GmS6QJFZG4dS3KzanPuH5v0dzLl3PNJfk29gOSeRx/wwHlsX7bk6cG5ujafr2vYza630/cAbZ4+GzOPvc8ieYWBiMyfSxueVBnzPZIfjzbzLqGal/20nPwnkQxATeJlH7SK/ayJ9U6sax1z2Jedwf3LafOy/9Yq1k0yaFMgedL1RODHGYt/gORHZReTXBf8N/BXksG0Rs8HzrCKvYPkaaP3kFxrTOqfetlXWSXpy1plx+7LamBoAqvYk0l+qXGyl/26NK3Ilp2/Na+DMdvOx0zL5S0/2/dMTMcQcLuX/dh5XMf24E6SXwI03uzN+hVX1jG8J3B/Q9rtJE8XNNoLaHxB5kyWFdkRZN7ITAeHrm9Inu5A+6OAn2Yst8YqdtlcNDp9snS7u5gOBq8jV5I8VTCx/HNI3tGnaS1Fti8TR4CGgNvxafX5BoAf4/72eWnV1jWTPt90zbwfZ/Zykimkntv0oNAY938Az5mwjg5gxfgL3EVkLhWZ/nX6+0imEHo57sk1o1kXMCdTw29F83UNO93r7ZmbXew9HPc3N71uEckzH/dlpyvvSZttcf70+ejLAuBl/xkwPhhmFTssYz1jDwB8PP03tuxbyXiowcu+keSHp0xY9p1kPyAxqS9rlaQvO/b+5B2FppKb7NXAiWODQjD+WFo0GpgVEKJfVteZenv/imTKtiwvZPadtTvTaeomsYotIPnF+bUNWc/JWLY7WHbOpI9ObrCKHTlf60gfQdw3PaC3CqvYrlaxxTmLXErDi9StYkeQ/VTAbVaxhzWkPYfNn3C7Azg443M/O2PZ3wPPaFh/J3AYc/ekg8j2orHzNd8dwa1lW72YXkLyS9aJjgSeZBW7eOwfcLhV7CdbYLpTEcl3BckT8JMlU4odNP63J30+bFp9vt8BT8VsyRy1sTlmizHbdY5q26zPh4V9vrH8Dsz2TX/1n+UO4OB0IGairD4fmJ0KPB543pwNCmV7L9DsFKoiku0ykimLs5mtnPDXo3B/+/igEJC+1yZ6X8J07mPMztTxbCY2u4bFpriGNbN0/Xn3Bm5Lp+qbKOt6e2ZmE3uTdjS+M0NE5t6j0xmNGj2X5L7tfPolSZ9tEqtYF/CUuViBVWxxOsPJXJjJ/cux/I70vuy0Y3/649KPkjyxM9WyewAvIHkly1TLPgUYSl+3MpX3sgP2ZTUwNNnNJHO2AsnNcKvYW4D/DJavjR1MVrGiVezFwEeCZa8BnpY+gTRW/77pS8cA8LJfTTKI8+GJN/DTuRSPB74wq08FpwKft4o9YkKdu5BMW/ehjPkgX2AVe9WEZZeS7PwfD+aOnEtvAD6XvrhtnFXsKKvYz9LBrGZ8AvgX8zQd3lSsYs8luWC/wyoWvRfkO8CLrGL7pWV6SOay/HDGsucAZ6XLjL3/5Hk0PF6ejqCfC3xwQlueAQx42f/esOxNJI+DHj8h+YPA5xte5iayo8i8kZnOJ3tQQ/J0B9ovI5kfuHG5pSRPEzVtNh2qHDMeEJ7mQPu0Bq+tYisz3ncHyTac9IJNL/t/etmPTt9FdGz6lOmfvOxP87KP5LRFRObfh4H3YXbUeEoyKHQumw8IvwH4HGbHTko1Owqzn2Fpny8ZRPoA8H3M9pmwXAmzF2D29Tn/FBGzPUn7cZg9dw5q/A7wIizp82G5fb4xV5L0ZbOnl/bN+3xY0ufDJ/f5MDuHZJ70l+BenZB+HDZHA+1myzD7FFDA/fNzUqeITJa8P60Xs5OxTfcbMNsfs+8zuU9aw2yvCcusxOyzwGOD2q8BntZQ777pwEaz8uPZTHhyDYttfg076b1Lk03n3sA5wFlpfE62acb19ozMPvY+i2jKQBGZS33AeRPfdZu+l+YFzP6+7HT9FDjEKvbyCeteQnJPthiWmqb0PuTYPck568tO8/7lmBnFfqvYwcAPSO5J5j6skM4E9jXglV72aLpprGLtVrE3krwz6rVT1LnMKklf1ss7Xl/W4nNk60l34P8C9iX5lbMBPwIWA08DvuFlP3vC8g8BPknyC/IOkvkM7yS50H2Tl/0XDfW/Fjgh/bOD5GbbF7zsv2tY7j9IXlBeS5f7NVD2sg+k+WcBryS5kfdsL/uIVWwV8BUv+39axR5NckF4upf962mZfYEPAfun9W4EPuBlvzjN7wC+DxxOcoP01SSDZMPp8md42X/SsK3OY9PjgQ8BxqZXcuBtXvY/p8seTjIHp2UsOwA8d+yzpcvvQ/KI+wPTdpZIbrZ+3Mv+T5pgFTuF5AWcv/SyP63JuvYkmbuyRLKPLGLTy9s/nD722FjmWJJR69UkL6TP/NW8VexAkm3Wnf47w8t+YbDsU4F3kJwkRkj2vcbpr0hvHr+D5FcGHSRTUL0hfZSycdmFwNkkTxAsAC70sn+wcTmRHUE6Z+yFJHHr8jRt7EbmLl72XSYsu3+afpKX/Y9p2i4kseDzXvYLJiz7IZK4924vey0dFPoKyRMzz/Ky39Jku68FDgE+5WU/qZm60vrOA77uZf9R+vfZwC1e9k8Gy3+S5DHsv3rZDw2WOYwkljw9fVfd/sC3gcdNfAQ7jWNvIolJN6VpR5I8Dv7kCS/jjNp+0cT3Oc12GRGZA2a7kfxQ6gCSPuEaoEzSDy0CH8T9onTZsM+HN/T5kgGkU4FlJBfsRZJfbX4C97XpMnuTvJOzxOT+JsCH8c37ZjP8bCuAy4GdgGfi/uum6kvq3KzPh2f3+dLlLwSeDJyOe/Z015bd58Mb+nxmg0zeRmP2BR6G+x0Tln0ncFz618Rtew/uk2c8MDuB5HpomOS7+vicbCsRiSXvvTkVeCbJNfYgyVPfZ+F+9YTlxmJOD8lsJwPAl4HXkMTV9292vFr2fQx88n2MWbR56ng2s/o2u4bFc65hbdO9ATzn3oBtfr2NN1xvW/69gUnnn5nE3snr+A5wwqTBJBGZM+mP/d9I8n6a80mmm+8kiZX/B5zqZV8/YflXAC9J/1zM5OP+L17eNO1jeq29nM37pz/3sp/R0I4OkqdTnkjyzl+Az5DEtucC53rZZ/WeI6tM7st6ufn+2UzuX/5/9v483pKrrvf/35/a85l7HtLdmRMCSSAEEGQwDAqKIoKzoqCAfgUVh5+KA02DirNcERX0qgh4rwqCckVRRCCMIUAIU8jYSbqTns98zp7X74+9O3SfrM/q3uecfXrYr+fj0Y9O1qdW1dprV31qVa2u2t3lH8r9YXc893fvRTxBnfvR90rac/w+wZLl8uq8bq6gzsMvH1PnAYiHve6te4/nr/T131b+v5L+MvYP4G3Pw8eyq9FXZ6NzdmLIzDJJP6vOzN5F6vwrxH+U9JoQwvwZbBoAnPMGLcfanlPfyAy7OzcyTzXRvmS9P6/OhXRVnUHFbnV+BPE3V2Fi6JQDqh7X19OE8OlOtPcwef1IdW4Qb+hu/x5JPxd2OxfHnTo/Kukl6gywH/rHEifE3RuZYfeSG5nAGhu0PAsAa408CwD9Q44Fzn3n8sTQ/1LnXxe/R53Zwask/bQ6r6d5VgjhdH98EQCwBDm2f2yPvVvSy8PucPRMtwXAmUOeBYD+Is8CQP+QY4FzX+xHoc96ZvYodZLNP4cQXnhC+T3qvKPw+yX9/RlqHgCc08ix/dN9PVrGpBAw2MizANBf5FkA6B9yLHB+OCefGDKz35T0a5KeFkK48YTysjq/3fKREMK3pdaxYcOGsGvXrmjsXOwT4Gz0hS984UgIYdOZbgd6sxo5VpIKxVIolUeiseQ/HTKLFmeWuVUyP6Rc5m+tkPMreueCdttfX1gSa2xvqvrEqmRBIZNyk5mGPlKRNU7+jOZ8Zkky+bF8Pv7vO1Kfq5Dzf7Myn+xjP2bO9rKi//u5C4tVN5ZLtDEVM6eNlvxcfv/WajU31mz6r3cvFPzPnc/H2++3Qmq1Wm7s9jvuJM+eg1Yjzw6Xy2FiZNTbgF/RyW3JPJSItRPj5tR+7bWx1fT3d0scr6ljOTW0X0ZXJT+Xl4c6K0xUTK3Ta2Sy7f7GUuexVG7zzgNZcv/wt5U6v6W+61T7vf0xlyV+rznRjw8eOUKOPUetRp4dGR0OGzauj8ba7dQxFs9jueDnt9QvigdnvCdJC3X3t7U1WhmPlhcS65tfnHJj9VbizVBWcEOFnD8uKhRK0fJ8VvY3leit1PkqrfcEncqzqbFn6qTkNT+VZ1PnnfS53a+XOrcHZ/9OSfXVbV+7nTx7DlqtewbrN2wIO3fG7802EtdA3sNIqbHFWWPt0tS5IdUfffjMa9uNia0tI5Q6xeWdse7+fffr2LFjbs1z8okhSY9X577iTScWhhCqZnZLN560a9cufehD8d+NSl0QLX+gAZy7UgO51E3aDRs23OsGcTZbcY6VpFJ5RNc88dnR2GIrcaM+H79ArFQqbp0h/9pRY+UFN7Zt3ZAba1Qb0fL5RX999drDfuNQ6l5DW7vRGfTc8PBFSgX/Ytoy/1S9cf3GaPm2dWNuna0jw/76SvGJPEkaLft9lR+NfwFDuy5263z2qw/7maGHjI87N7sljY2vc2PFUryN5ZK/71TKft/ffc+dbuzg4SNu7ILtO9zYpvUbouWW+B3hudkZN/b0Z38HefbctOI8OzEyqp943vOjMW/SWPLHucViPPdK6cnOatWf5E1NKOdy8WNvcnLSrVMs+cfrUOJE0GolJjsSE+mtZvymQ5bIy6l+TP7js0SoUIx/7lT/pj7z7OysGzt27JgbGx6Knz+KBX8sWE9MsKcm88plP2/PVf3z8EItvj+OjfnnxdT13ev+91+RY89dK86zGzau16/s/tlobL7q37CsLsSPsdHWdLRcksZbfhJobomP9yTpc/d8wY3dcG38JyAvWLfZrfPpr/6LG9s7c5Mby+f9+/qbxy50Y9s3Xxot3zh0pb8ti094SVKp7J+vvAk7SWo7k3ap2z/Nhr++UmLs2WzErzEkqeKcXsoF/7xTcsa/kpRL/COtfGJsX3NyqSQ15iPXO5JSJ7LFun8u+MZvehZ59ty0KvcMdu7cpX//7/+Jxg4d86+B6s34pHiWmmZPjDtWWyp3JCeOE8dRSPyDhLWc7FjubXF30i6xwvTYeXn90XL+mXKqTmqsmGpjSExuKvUPnRTfR/KJ65b1zn2eFzw3PT+b2hvPZtslHQkhxM4u+yVtNDP/DAgASCHHAkB/kWcBoL/IswDQP+RY4Dxwrk4MDUny/slB9YRlTmJmLzezm83s5iNH/H/pCwADblk5Vjo5zzYa/r80A4ABt+Kx7HziSR0AwMrz7Nys92QEAAy8VblncPQo92aBM+lcnRhakOS9p6F8wjInCSG8NYTwuBDC4zZu9B/HBoABt6wcK52cZwuFxPvdAGCwrXgsO1wmxwJAworz7Mio/4pdABhwq3LPYMMG7s0CZ9K5OjH0gDqPJcaS0AXqPM5YX+M2AcD5ghwLAP1FngWA/iLPAkD/kGOB88C5OjH0GXXa/oQTC82sLOkxkm4+A20CgPMFORYA+os8CwD9RZ4FgP4hxwLngfyZbsAy/YOkX5X0Kkk3nlD+MnXeYfnOU60gl8tp3bp1fWkcAJzjVpxjJamYtbWjFP9HQgda0dcNS5IahVy0vFKYdetsKS+6sUdfvsONXbxzlxu76+4HouX37pt369Ra5sZGh/zXkYyNjrqxYtnvq9n5+OeenD3m1qkUgxubGPPbmB/yfzs0nytEyxsL/veStZtuLLRbbszktz+fi/97l3zO/15S68sSsYKzrVPVU4h/tmbde0W3NDnJu7fPQ6uQZ4PUasdDmVMuqZCL59jgrUtSS/7x2mokYoljIeTi26sU/VyTy/zjrrHo/6NUMz8HyP/YyhSvVzC/HfVE3ksp5P3LsvnF+DpbrUSuzPttLJe9N79IoyPDbqzhfNctS+U8P9Zu+bHFef9cu7gQfTONJClfiPejNf0vul7nHzSfp1acZ1vtuqaq+6OxLPhjpoKT3+pN/1xfr/vHw4bEGHL72FY3lgv+se7ZPO6v777D8fOHJJUKfj4aKfpj2aFc/DVSWeafC1IpPQQ/mEiZarfj/Z9P5OZm0z//lUp+Ds7n/e/FG7MWE+1I3dbLl/y+z5f8V9LOzft51pw826r6+3cu8/cdnLNW5Z5BsxV0ZLoRjd3x4LRbr9aK/9ZmljgeskTuWG2pPCVnfHkqITGmUur609leuo2pdiyvnre91Djdy82ddiyvId64NXH6kCW+s2TPt/3xZy4RayueM7NEX02Px2O1xBhYOkcnhkIIXzSzN0t6pZn9s6T3S7pK0s9I+oikvz+T7QOAcxk5FgD6izwLAP1FngWA/iHHAueHc3JiqOtVkvZKermk50o6IulNkl4TQkhPhwEATuVVIscCQD+9SuRZAOinV4k8CwD98iqRY4Fz2jk7MRRCaEn6w+4fAMAqIscCQH+RZwGgv8izANA/5Fjg3Oe/+BQAAAAAAAAAAADnFSaGAAAAAAAAAAAABgQTQwAAAAAAAAAAAAPinP2NoX5qt/3fSDOzNWwJcPbjmICnkJl2jsT//UFucdatVw1T0fJh83PzxkLRja0v5tzYjk2jbmxmuhwtX6xW3DqjQ+vd2AVbN7gxqeVGFhcX3diRQjNafmzGr3NoZsaNVSolNzY66sdGFO/jxrz/Patec0PNRt2PtRpurNWM12vm/H8HU8j5+07m7zoqFPx1ZhbcWGjHv7NG4jPPz8/5DcEAM1kWPwc3W35OKRbj+3y16u+Dkh9rt/zcnC/4lxrmHEJDQ/HcK0nBP7TUbMSPLUnKcn47Ck5/dLYX32AqDyk1LEp8gNRxXqvF+7/l5BNJGhnzz2+tpt/+1HmgUol/N83E70uX8sN+OxL76dTUlL9Opx2SND4S/9zlsl+nndqxMNBa7YbmFg5EY5Vsk1tvKB/fDzNnvCRJ7VB1Y8PFCTeWmyu4scP3H4yWb1vnj1fHRsbcWDHxz4o3TqxzYxPj/jpLxfixWSz4uUiJfkxemybGZ17yLiSuMdqJHJzL+3kxJNqfK8RzZi7RjnzZ3weGxvy+bzb8c4E3vpCkzOLt9z+xlMslBtUYaK3Q0kx1Ohqba/nXtO1cfI/L2v6+m75ztcpjgcTqzpZRRzIlJiy7/U7FVDuS20ql+0S1bBntaCcb4gfbiTFyavzccjKqJcasM9X4p261/fG2xBNDAAAAAAAAAAAAA4OJIQAAAAAAAAAAgAHBxBAAAAAAAAAAAMCAYGIIAAAAAAAAAABgQDAxBAAAAAAAAAAAMCDyy61oZhOSHidpk6R7QwifWK1GnWlmtqwYAODrMgWV1YzGNuTm3HpVi9eJl3YszFXdWKhP+vWO3e3GsupMtPziTUNunfUbxt1YK/if4M5797uxvAU3NlKsRMunQsutMz2z4MbuaR9yY6Fdd2OXblofLS83/P4YSvTH0UMH3NhibdGNbdiwOVq+bmKDW6dYzLmxVstvY2Z+HzeafhvnF+LjiNqiXyfVDgwwk5SP77+FvD/Eb4d4TilWyn6ddtuNLS76+Xeo7K+zUIi3vdX09/f5Bf84KeRLbixf9GOTs/75qFgqRMu3bt3k1jl69Igba9b8vrJELspb/PusFOLnAEkqOvuGJCn432eWuNYJzr6T2t8KJb/v67WaGxsdHXFjlaK/X3mtt5z/7yHzGf9WEp62QojniGZ7o1trrhmvM57Y1bKifxw1Ejl4vjrvxvbv/2y0fNuOLW6dLdsf48au2Onnt1zZHxcVbJsby+eGo+WZxfOvJCW6Q5I/bs4s9QXEiy1b3r2hVFaxvP8BrOj0o3POlKTyiH9tUkyc/5pN/ztLpcVcK/65m4n+yOUS5yQMuKCgRjySuN7KnDN+Pvj7Ydv8Yy8krrn90cXynOt3lVPtt0QO9iKWWGNqW8v9xryvOv29+PtOu51oSWLMrcQ9Gzlj7lQjLbWthJ5HwWY2YWZ/K+mgpA9Ieoekl54Q/ykze8DMnrisFgEAAAAAAAAAAKAvepoYMrMRSR+V9COSjkl6vx4+X/XvkrZKesFqNBAAAAAAAAAAAACro9cnhn5J0tWS3ibpkhDCdyxdIIRwj6TbJd2w4tYBAAAAAAAAAABg1fQ6MfTdkvZL+okQgv+Sb+leSTuW3SoAAAAAAAAAAACsul4nhi6W9JkQgv8L1B3HJPm/9AwAAAAAAAAAAIA11+vEUE3S0Gkst1PSdO/NAQAAAAAAAAAAQL/ke1z+K5KuN7PhEMJ8bAEz2yzpMZI+scK2AQDOYSG01ahGTxVqtPy3kR6YORYtn1xYcOts37DOjeUaF7ix+aP+v2EoZs1o+ehIya0TalNu7K57D7ixL3ztXje2aWLMjV139eXR8s1j/ul9/xG/Hw8djn9fkjQ3O+XGmvX4Oi/ZYm6dciHnxhYOHXZjDx485MamNsa/z4svbrt1CgX/38g0m/4D0tWavw83jsT3HUmayRej5abg1gnBbz8Gl1mmfDGej1oNfx80Z1cbHfX/7VfwD2UNDVXcWLFQcGOtdrwhlvm5YVh+LJfzc/Pe+x50Y1+8/XY39sxnPytafv03Ps2t86F/f78bm5+ZcWOVIb/9+Xw8ZsHPX4Wcfx4oFvxYrebnvbxTr1Dy295o+/mrmdixis5nliQzv16lXO65DuDLpFw8N841/TFT3vm3tOWWf64vNBturNny99+hsS1u7IEH4vntH9/3/9w6lz/7BW5s/fZ4TpSkrc29bqzQSuQ3J3eb+fm+3fbPcTm/Wlornquyll9luBjPN5I0OjTsxrLE2DMrxMeJ5bJ/ji4lcrD3uSTJmv7+mAuJmJNPmy2/s1LnHQy4YLJ2fP/IQmLc5+TFQtPf1xo5/3gI3gBZUuIy7dzgnkL8D2Z+JYV2Ipb5sUzx/g/ONYEkWebny9TIzpxtSVLbq5lYYUg8VxOyRPsT4+BcK/WsTrwxqd00c46j1Hcp9f7E0P9R5xVxf2r+mfqPJVUkvaPHdQMAAAAAAAAAAKCPep22f4ukH5L0I5KeYGbH/6nJVWa2R9J3Sbpa0o1iYggAAAAAAAAAAOCs0tPEUAihbmbPkfS/1ZkEuqob+obuH0n6V0k/GnjvCQAAAAAAAAAAwFml5xd9hhCmJL3QzK6W9BxJF6nzSrr7Jf1HCOHzq9lAAAAAAAAAAAAArI6eJobM7I8kTYUQXhdC+JKkL/WnWQAAAAAAAAAAAFhtWY/Lv1LStf1oCAAAAAAAAAAAAPqr11fJPSgp9KMhWC39+HpseZtLVFttYRmfO9n04Dc++bHW8DMDZ7t2q6m5mSPR2MiGIbferqH10fINtRG3zuYJP1YqF9zY3HzdjRXK8X87kW+33DoHj0y6sTvuut+N7d0X7ydJOnpkyo3l1YiWX7B9p1/Hmm5satpv//6Dfl8dPnQwWn5wW7xcktaPx7/njqIbKWR+op2ZOhYt33u3n/FzWSJm/rbyuZwba7f9dYYQjyU2pULB34cxuMxMxWL8WGmkfumzFc9h5uybkhQS+7S3PknKOe1LaTX99ZWL/rFwKJF/b7zpU27skY+/3o1d941PipZ/7a673DqLC/NurFTwL71GKiU31nT6JJf5/Ts6NOzG5ufn3NjCvN/+kZHRaHlo+ztcPpGzS6VEbkskxWbTP4+ZU69Wq/VcBzDLlMviY9YgP1e1nIvCeiLPNlr+cXTg4Kwbq1b9MfX4+l3R8kPT8fGjJH3gVj+Xjn3DNW7sey7Y6MYumNzrxszi46l2oq9S2ol8lEusspB38nNi3P/A4UNurFr3c07qFD02PhEtv/yyy9w6lWE/30v+eNVSuTvR/5mzylbb369yuYobA7w8YMF/lqHtXMM1s8QRZqmjL5EgzvFxQnA+d8v8z5xv+2O0UuJafa4evx6XpKy9EF9fcdytU1cqdyRyWOKehznPyITEszOW2D/S96MT9RKP6gT35vJy2pE+n/b6xNC/S3qqmZHVAQAAAAAAAAAAzjG9Tgy9RlJN0j+Y2QV9aA8AAAAAAAAAAAD6pNdXyf2OpC9K+nZJ32xmn5N0n6TFyLIhhPDjK2wfAAAAAAAAAAAAVkmvE0Mv1tdfTleS9KTun5ggiYkhAAAAAAAAAACAs0SvE0Mv6UsrAAAAAAAAAAAA0Hc9TQyFEN7Wr4YAAAAAAAAAAACgv3p9YggDKLSDH/NDMrPlbC0RaSdiyYY45YkqyvnBxKaSltMdwDmsHVqq1eeisY2Filvvom0bo+WVkVG3Trnir6+dONO1m36w6By0hZyfH4YqBTe2cd2wG9tVX++vs+yvc9vmDdFya8V++q9jduaIG5uaOubGZhZrbqw6n0XLKxb//iWpUPDXNzS6yY3l2kU31nLOV4263x9HDj/oxoZHh9xYaj+wvB/L5ePfZy5xzgyFeP9isLVaLc1OT0VjlVLZrVcoxvfBdqvl1mm3/TFYo153Y6l2lJ3jpDnfdOvML1bd2NTclBtbv8XPsT/0ohe5sUsvvSJafsuBw26d0ZJ/PkoMZTUx6p/jQohXrNf872x6dsZvRuL7zBX8c07LaYelBseJbZUSebTV9j9brd5wY/NNv56n0fDXh8FmylRQfCxQCX4+yjvn7XrNH4+0C/76rPCAG9uwwc+Z65zY5Jf9seD+z3/Njd1pO9zYI795uxvbnji/5BtO/ij646Is88dFqVi96Z+v9u+L9/G9997n1jl8dNKNWebnt8z8Nlou3h833/JZt85jrn2sG3vyE5/ixnJ+upeZ31ey+PWTmX8uyCfyPQacJe4dJu6hBWd/C1ninmJiH03f6FvuTcCzQ94Zv7UTeaqe6Psjt3/SjR346n+6sSyLr3Tzxde5dbZc4cc05I/vm8H/AF7ElnnPOTkOTt3jTu3fzneW4h4Tp6i37IkhMxuT9ERJF3S384CkT4UQ/KsQAAAAAAAAAAAAnDE9TwyZ2bCk35f0YkmlJeG6mf21pF8KIcyvvHkAAAAAAAAAAABYLT1NDJlZWdJ/S3q8Ok9ffVHS3d3wxZKulfSTkh5rZjeEEPz3xAAAAAAAAAAAAGBN9frS+p+R9ARJn5F0fQjh0SGE7+r+eYykx0q6qbvMz6xqSwEAAAAAAAAAALAivU4Mfb+kSUnPCSF8fmkwhHCLpG+TNCXpB1faOAAAAAAAAAAAAKyeXieGrpD0oRDClLdACGFS0v9IunwF7QIAAAAAAAAAAMAq6+k3hiQFSbnTWC7rLos1Z8uq1W63/TWaP3+YJaYWg7MHBC8gKcv89ttp7Xo9SLSjHfz+SO7YiWDmfTe2vO8MONuZmQrlYjRWqZTcehvXjUXLR8bj5ZJUa/rtWEwEW826G8uVK9Hycrns1tkxHP+8kjQ6MuTGrp3zf5IvX3BDumDjaLR8anbWrXNw8ogbazUX3Vh1wY+FRjw/zw4ncnrOP4E0m35/TE75n22uES8vz/l1Hjz8oBvbtm2rG9uycaMbGxoecWNZFj9RhLa/n4aW88Ew0EJoq1mPHyu1xICknYsfr/nMTzY5p44kFQt+vdT4st5qRctDYly0WEscCwU//+7YcaEb++SHbvJj//2wFyRIktbl/f4oOPlQkuqJ8eVCIseWivHP1mz665ufn3djTafvJSkkvrNiKX7urjcS+SuxLxby/qVoo+6vM7Vf5ZzvplH3953U/o3BZpJKzu5RT1zC1VSN12n6x2U578c2bvDzw1Dw99/77z8QLd++xd/W9vv98dlXH/THkAcO7XBjtfH4mFqSik5fZYlzUmb+dcTsjP/ZPvW5z7qxBx88FC3Pm9+/+aLfjiwxgG+2/PyWd+5RTB2Zduv89wf/x41VF/0x9dO+8dFuLJifZ52hbDKX5nP+ORqDztx7Yqk7ZdxwPn3WjPdkvumPBw/tv9WN3fofb3Zjm5vx844kVSrxa+R79t3m1rHaYTe243Hf5sbqOf9a3UI8B2fy896y98ZzYCfu9Ymhr0l6upmt8xYwsw2SntFdFgAAAAAAAAAAAGeJXieG/l7SuKQPmNnjlwbN7AmS/l3SqKR3rrx5AAAAAAAAAAAAWC29vkruTyV9l6QnS/qUmd0l6Z5u7GJJl6rzoNSN3WUBAAAAAAAAAABwlujpiaEQQl3SN0v6I0kLki7r/v83d/97oRt7dgiBF+IDAAAAAAAAAACcRXp9YkghhKqkXzSzX5d0vaQL1HlKaJ+kz3bjAAAAAAAAAAAAOMv0PDF0XHcC6OOr2Bb0WTsEN2aZ//BYy6+m6sKiG6vX4w+Ntdttt0673XJjuby/u5ZKJTdWyOL1SiV/fWbmxoL8Dsnk15Pinzskvhcl1pdqI3A2MMuUKw5FY1ll3K3XLk9Ey1uF4cS2mm4sV/fzVKHg576hkZFoeXHIb0cx7x/PlYqfp7Zu8HNfozbtxgpZPM9u27zBrXPxBQtu7PZ9k27s8LRfz/vU1Zr/vRw45G9rZMwNaXah7sYeODobLZ9PtKNUrrixo9Px9UlS4xL/wejt27a6sUo5vh9kiZSepYIYWIV8Xps3ese6v880mvHjwfzhmZo1/7jLFwpurJYYJy424us8dNTPefML/rE81/KPyZnFeTd2z97/cWMbN+2Mln/DtY906xQLOTeW1cturG3+uDRkxfj6ComxcSV+/pWk6syU347EOP3YdLxere5/LxPjE25M7ZobssT4uJW4Xig71wtZ4loH8GRqa7jp5LHgH3+HZg9Gy1stP5e2in7umJw85tfL+cfDXDVerzDqH7Pj2/wxehb8vHJoKp6nJCk36v/b4SwXP9YXGjNunfvujvevJN32pb1ubHLGH9eVh+PjwUrFH/dnOT+vpK7xQ/DP0Zlziy7L+efaRtPv309/+iY3dvHOdW5s+4S/H9Qazn2NxI0jxrJwhaDgjD2We68MJ/NGyPWpw26dcO/NbmzH8Jwbm5z2c1VrIV6vpKP++u7wpx3W7bjMjeV2+PdD2qndypG+/ZoIJvfh1W7H8vQ0QjazzMzGzMz9ps2s0F2G0TcAAAAAAAAAAMBZpNfJm1dJmpR0Q2KZG7rLvGJZLQIAAAAAAAAAAEBf9Dox9HxJ+0MI/+Ut0I09IOkFK2gXAAAAAAAAAAAAVlmvE0OXS/ryaSz3JUlX9N4cAAAAAAAAAAAA9EuvE0PrJPm/fPh1xyT5v/QEAAAAAAAAAACANdfrxNARnd6TQFfo9CaQAAAAAAAAAAAAsEbyPS7/CUkvNLOnhRA+GlvAzJ4q6XpJ71lp4wZdCCERNa+SW6OViB2dmnJjt33ta27s4IFDbqxarUbLG82mWyeXy7mxhh9SuVJxYxPDo9HyrVu2uHUu2LLJjY0Ml91YaLfdWLlUipYXC0W3jvMtS5JarZYby7Je53y727PUFoHetGWqhviBe6zh72utqUa0PDcz59ap1eL5RpLaLT/nbN0w5sbGCyPRcivGc4ok5fOJvN2ad0PBFt1YMe/nN68XC+Vht872Tev82Ab/s91/8KgbGyrFhxPDZb/tzUb8e5akVtOPFRIjl1IxnvtmFv3cPDPv932WTbmx2+++x40Vi34jt2/eGN9WIXH+a6XGAxhUWZapUokf66kxpDXq0fLFhZpbp1j2xz6lxEHZaMW3JUlHJ6ei5Qdm4uWSZPkhN9ZMHHfDlXE3ds31l7qx2bl4+48sHnHrjG72c2w57x/nhWXkgFZipFga8vuqVPe/69RY0Bt7tjP/PFtNjPvziW3lM78/Wi3/HOGNB1LHRJbYFgZbaLfVXFiIxsqZv/+ONOO5o5Ev+Bszfx89Nuv/m9u6+ePLZiF+rI+N+vlh3VY/h43s88fi9b23ubHFtn8/4d75eD69/Yh/PXv/3gfcWLPqXyNXRvzPPbZuIlpeLPnX6qnr8VzierzVTtyzacbHrK3E9YwlzgXzc9Nu7KZPfMqNfcczn+7GQoh/7kbd3xdbrfhxBEj+OZoroNURnDQ2tC5+XSpJ+a2Xu7HqPj93HJn1x/7T8/HcsW3E/6aHbcaNzR24042t33adG2ta4lw8gHq9e/wmde5D/bOZ/YCZPTSKNrOcmX2/pH9W5/j9k9VrJgAAAAAAAAAAAFaqp4mhEMKNkl4vab2kd0iaMrNbzewLkqYkvVOd3xZ6fQjhI6vcVgAAAAAAAAAAAKxAz++bCiHslvR9kr4iaVjS1ZKu6f73lyR9TwjhtavYRgAAAAAAAAAAAKyCZf0QSQjhn0II10jaLumJ3T/bQgiPDiG8eznrNLNXm9k/mdndZhbMbO8plr/SzN5rZpNmNm9mN5rZM5azbQAYBORZAOgfciwA9Bd5FgD6izwLDJbETzifWgjhgKQDq9SW35Z0TNLnJE2kFjSzSyV9QlJT0u9Jmpb0MkkfMLNvDSF8cJXaBADnE/IsAPQPORYA+os8CwD9RZ4FBsiKJoZOZGbfLOlaSfdJ+ucQQqvHVVwaQri7u64vSRpJLPsGdRLU9SGEW7p1/k7SlyW92cweEUIIPW4fAM535FkA6B9yLAD0F3kWAPqLPAsMkJ4mhszspZJ+XtLLQwgfO6H8byT9yAmLfszMnhVCaJzuuo8nntNow7Ck50n68PHE060/Z2Z/Jel1kh4v6abT3faZtOwc6dRrt/0qDxzwH+765M03u7H79u1zY3Oz825sZmY2Xj497dZ5xCOvcmO7rrjcjR04cNCPPXA4Wr7//gfdOvvXT7ixTRvWubF6Yj60Mho/n+7Yts2tM16puLHh4WE3BsSsdZ5ttNs6MB/PEfvu9JuS2xc/nnO5kltnfmHBjS3Uq27swi0b3NhT2hYtLxX94zI/UnBjFuLrk6R2InkPD43563TeCGuZ/6bYDRP+2P6SHRvd2INHj7mxeq0ZLR8f8vtjdMT/PvM5/9zo15KGSrloeSGf6Pt40yVJIfG9HJuccWPTM3NubMfWLdHy8dEJt06jmWgkzhprnWNbrbZm5xbjbUlvP1qer5TdOiGxD+Zzfr6Za/iXAi0nT23fdaFbZ2LjZje2fddFbmxxse7GDux/wI0tzB6Kll96xSPcOlki1xdKfl9NT0+5Mcn5zhJ9X2/U/HYUim4sdT5qteKxQiGeeyWpWo3vo5JUb/l7qt+Lkplfr96Ix3KJ82JlaCixNZxN1jrPzs0u6iM3fika27TRH5EcnYlfE265eKtbpz7iH3s1+dfchYp/tFTK8WPd/MNSzcOTbmxi8nNurHRsyo0daYy6sc/cHv9KDxb8a+4s8z/z+LpxN1Yu+bmvkI/fGqvV/OuIRsM/N3rnWklarPrrzFs8n+aTJ3Y/WCn7ue/ee/37PAcevN2N7dwUvw9Ra/n7zuRe/34Nzi5n4t6sf7Qs534p81BLtS0+Hm8O+Xl2fvhiN3bnAf/ey/qcP/4c3xU/Bw7l/XH6WOL+Srvq359oV+P3oyXJhtZHy8/1KUxz9v3UmFrq/TeGXiBpi6RPP7QBs6dK+lFJk5L+StLtkp6ikyeKVtO16twX+mQk9qnu34/v07YBYBCQZwGgf8ixANBf5FkA6C/yLHAe6HVi6CpJX1ryJND3qTMl+/0hhJ+Q9ERJs+pMFvXD9u7f+yOx42UX9GnbADAIyLMA0D/kWADoL/IsAPQXeRY4D/Q6MbRZDz/ob5B05PiPioUQpiV9TNKlK25d3PFn/WPPp1WXLHMSM3u5md1sZjcfPhx/vRgAYHXybD3xegUAGGCrkmPnFxPvAgKAwbYqebZW7/VnkwFgYKxKnp2a9F8HBqD/ep0Yqkl66AXkZrZOnaeIblyy3KSk+Ev7Vu74ywxjL/UtL1nmJCGEt4YQHhdCeNymTZv60jgAOA+sSp4tFnr6GTsAGBSrkmOHE79DCAADblXybKno/34WAAy4VcmzE+v6desYwOnodWLofkmPt6//kt63q/M7Rv+zZLkNko6usG2e478QG3sk8XhZ7FFGAMDpIc8CQP+QYwGgv8izANBf5FngPNDrxNC71TnA321mPyPp9yQ1Jb1vyXKPlbR3xa2L+6I6Ty49KRJ7Yvfvm/u0bQAYBORZAOgfciwA9Bd5FgD6izwLnAd6fc/Pn0j6IUnP7/6RpN8OIdx3fAEze7I6v0X0N6vQvocJIcyZ2fskvcDMHh1C+EJ3uyOSXirpDkk39WPbZ5N2O0TLjx6ZdOt8+tOfcWN7993vxuaq0ac/JUmzM7NubGY2Hptf8NeXy/u75FWXXOHG1pfH3dhdX70tWr7/trvdOg+2/fdJT6wbc2ND6yfcWGHdaLR8dt7vj0u2bnFj65v+77cMDUVf5SpJKhaLbuzrDwMuFd/furUSMZyLVivPtoI03YrvO8eO+r/zNj13j7O+xH6Y2A3z+YIbK8g/ju59IP5Y+1DJ/zcVCxP+q51GS/62hkt+zgnBX2dWiD25LzUb826dQsHvrF3bN7ix6Tn/t0MfePBItHyo6PdV6tySNfzv2jL/PNFuNqLlrUbs1dfHK/mvickyv+9rzbobm5v3+18W3974+IRbpdVs++vDOWe1cqxlmQrOOd0/n/tKJf/Yqi34v2e0kPgNjlzFH5896urLo+Uz09VouSTddc9eN9au+u0/eNR/kcHhY/H8JUnXXfPIaPnmcf9zTR58wI8tTruxamI8uHnDxmi5Jc6LIefvA+Wyn9tS+87U1FS0PJWjKiV/3Nlu+fUKiWuC1Ktqvean1ofzz2rl2XZbqs/Fd6q54I9x5uvx8cj8nJ/fCkV/vDqz6I8rxnL+OGbUGXPMzvttn0jkqdED/rX/ZObH9q6P5zDJz1Ub1/t5tjISv66WpJHEa1ZTOafufGetxDV3reaPL1utRL2Gvx+UcvHvppy4hh8Z9q/9Zf55Ii9/n7vtttvd2PyB+GdrNfyx8QMP9OuFQjhTVi/PtjQ3F88fzcQxVhqKXwen712tneW2wvrQ/pzF+2py/9fcOp/54Dvc2NGDB9zYhVdudmOX7YjfX8kl8lvO/FyaW1d2Y9Wcn4+C08drf2czcc+jx3JJyhL5PqWnEXIIYcrMrpP03epM/twcQvjwksU2Sfpfkv5PL+s2sxdJuvCEdRTN7Ne7/39vCOHtJyz+aknPlPSfZvbHkmYkvUydp5meG0Lq7iEADCbyLAD0DzkWAPqLPAsA/UWeBQZLz/90KoSwIOnvEvH3Snrv0nIz+05Jjw4hvM6p+uOSvmlJ2eu7f39E0kPJJ4RwZ/fJpN+R9CuSipI+J+k5IYQPntYHAYDBQ54FgP4hxwJAf5FnAaC/yLPAAFnLZ+qfL+lHJEUnhkIIN/SyshDCVyV954pbBQADgjwLAP1DjgWA/iLPAkB/kWeBweK/XBYAAAAAAAAAAADnFSaGAAAAAAAAAAAABgQTQwAAAAAAAAAAAANiLX9j6LwQQrzczAmkKqVDCjI39rFPfCJaftOnb3brzMzPubFWov35QsGN7dq2zY2VL744Wr5lq1/nYqeOJJUyfx5z3di4G9vmtHHuyEG3zj03f8aNHT54yI2VKiU3tu6xj4mWZ2q7dTaOjbqxRtuvN95suLFiyW/jxGh8e7nE/mGWc2MYbJZlyg2NRGNj8vepWqMeLZ+Zm/W3lfPzQz5fdmMpB44ciwdCy60zOVFxYzs3+bEdm4f9hswvuKFSOd6P9arfV/V6zY1Z288dIyX/WN8wGu/jWs3vq0V/U8rn/PNO1k7sO85nayQ+c1bw949CLnWS9nNwIe/Xy8zpk8R+lWX+eACDzSy+b3jlkpQ546nM/Dyayxfd2GJizFFv+O2YPhjPsXfdc59b5+677nZjtc9/wY1NrF/vxq57zLVubNeWLdHy2cMH3DoLc9NuTDn/OK9U/D5WuxktHhuJn2MlaWo+XkdK58RqddGNealo3ajfDkvsV/V6/HwvSbmcf86plP28nTn7fkiMO9qJMTUGW76Q0/j2+PXRcPCP2aLF99GQyJe5xI2BXNs/VsoNf8wk5xgrO+NzSdq+zf9ce7+41409MOOMmyXdUvbz0VAufm1aKPq51HL+uaW66OewXObnldpCvF6j7n9noeXHssQ4sdH0c3AoxttYKa1z6+QT/dFY9M87ubL/Xd9/sOrGbv9q/Dw9N3fUrXPkmB/DYGs0mjp4ID6uqrb9MUR52Mmzicu3xC3WVZfaVKqJqfvAyY+WGG81nbHdR9//z26d/Z/7sBu7fKN/3mk3/JxT8JqYJe43tvz1jZb8vqo1/RymUqonzw7BG88mrvFazr3ZU31anhgCAAAAAAAAAAAYEEwMAQAAAAAAAAAADAgmhgAAAAAAAAAAAAYEE0MAAAAAAAAAAAADgokhAAAAAAAAAACAAbGWE0O3SfroGm4PAAAAAAAAAAAAJ8iv1YZCCL8r6XfXantrLbSDGzNLVEwE28GPffaWL0TLP37Tp906z372s93YI6+6yo3t3LnTjanVckONZjNavv0Cf331RsONHTl21I3N1apurDQ+Ei1/7gu+3a3TfMK1buyz//ef3NhXb73Fjd39xVuj5Rc94fFunfLIqBsLwd/nDh6ddGP1Rt2NXbRzR7R800S8DyXJePAQjiBT0znN5Itlt155qBItrzYW/Y0lcmkxn3NjtUTOOTozHQ+0/bxnTf9YKeX8ekF+bOro/W7sol1b4tvK++ubnp11Y/sO+rljenbejRWLhWj5zLzfv7W2PwRpt92QGjU/h80s1qLl8bNRRznn57B2y6+Zz/wcPFwp+TFn/y5X4uWSlOX99WGAhaCWMw5rJw6iXC6eE9stv07q+M9X/LxXq/s5YGExvs6tm9a7dRqNBTc2X/XHghddfKEbGxvyc8DRA/dFy7NWIrfV/XPVps3r3Fiz7ue2gwcfiJZPT/vn0lLZj+Xyfv5NjeomJiai5ZWCn6NmZmbc2NjwsBtryc+xuSzRSu+azF+dirn4OQywfF7FTZujsaHxCbde6+D+aPnRKX+c1Rz2c0A+84/Z+pyfc8bK8WPTEgOj0rzfjovz/ljltkU/B99z8Igb2zQ8Fi3PV/12FKb99dXr/hi4UCi6saLTV6nzaSkxhmw1/fNEO3EdPzK6IVo+OhbvJ0lqJc5JjcR5uFIacmPr1/vn4vUXbIqW79t/l1tn3YZ4HUnSf37Rj+G8ZyblnOv1rJUalXjHUeoG7FpK3CNO1GrJv3cREjWLiXz0pc9/Jlr+5U9/xK2zy0/3GvabqFzi+rlei1+rD1f83Dw27I9ns7Z/3snqfqztDD8TQ8W+sOQW499nOzFSb7lTPOljIjkxZGavSdZOCyGE16+gPgAAAAAAAAAAAFbRqZ4Yeq06k2ZLp5dONZFm3WWYGAIAAAAAAAAAADhLnGpiaE+k7BJJL5K0KOk/Je3tll8k6ZslVST9naR7VqWFAAAAAAAAAAAAWBXJiaEQwkkTQ2Z2saSbJb1L0itCCIeXxDdKerOkb5f0hNVtKgAAAAAAAAAAAFai11+N/y1J85J+eOmkkCSFEI6o8zTRQndZAAAAAAAAAAAAnCVO9Sq5pZ4p6UMhhLq3QAihbmYfl/SMFbXsjFr6k0qnU8Wv005Ua7b8n2tarLvdrKfe8PRo+TWPeaxb54rLr3Bj4xMTbiyfy7mxW7/wBTc2NjYWLW+2/R6Znp52YwcOHnRjwyPxbUnS5s0bouXjQ0W3zroLdrixjYlY5aMfdmO3PvCwudTO+rbtcuvU6v7+8f5/+zc3Njl5zI095rrr3FiWxeeKx4YudutUSgU3hkFnCs5ppp34dwnFYilaPjY87NZpt5t+K0LLjVUX593YXC5+/OVbDbdOJUu1o+bG7rq/6saOHY3nDkkaGnKO2eF4H0rSg4en3Nh9B464sclZv/2FfDwPzFT9vreK/31W634/zi/6fVVrxc8vpUSeGk70VbGUGCYlzmXNhr+PZFn8nDo2vt6tUyj5fYXBZVmmSrkcjSWGl6rV48fy4SOTbp0snxgzOeM9SSpU/bwxUYofe81Ejp0d8o/ldRMVNzZS9DukvTjlxkIpvk5vvCRJiWGz8sG/XiiV/fbPVeKxxcVFt06h5H9nQ0U/NjYy4sbaTo6tVf12FAt+Hh1JnNdn5mbdWKOROB/l4turVv1zRznR9xhsTUnHmvH8MV/z98Oik2frNX8/DC0/eYTMz31t8+8ZeLlqKFvn18n527pw1A0pl/l5ZXZ2zo0F54Q1Ojzk1ik2/fNE6lgvFPw2lsrxc1Kh4PdHYchvY7udGAM7Y0FJGh2Jd3IlcR6envf7t5FoR+qnwyvOeUeSNm2KnydqNb8dl132iEQ7/ikRw0BwdsV64p6oOfdtE0Pgc0Kq/YXEox3Th/a5sY/+x7uj5c3p1D3W+DWGJI0NJcbcw4mcmY9/ZxMT/sll3G+GFswfY2aJWPss2UnCMuYessS9rXyI30OxUxwVvT4xNCZp4jSWm5CUGDYAAAAAAAAAAABgrfU6MXS7pKeb2aO8Bbqxp3eXBQAAAAAAAAAAwFmi14mhP5dUlPRhM/sFM9t2PGBmW83s5yV9SFKhuywAAAAAAAAAAADOEj39xlAI4S/M7HpJPy7p9yT9ntlDL7U9/tJTk/SXIYS3rF4zAQAAAAAAAAAAsFK9PjGkEMLLJL1A0kck1SWVun/qkj4s6btCCD+xim0EAAAAAAAAAADAKujpiaHjQgjvlfReM8tJ2tgtPhJCaK1WwwAAAAAAAAAAALC6ljUxdFx3IujgKrXlrBFC6LlOo+nPiTXbbTc2X627sWq96ca2XbArWr5uQ82tM7vox2bmD/jtqFXd2O333OfGLty1M1ru94b03n9+txv76Mc+5sYeefXVbuxHfuRHouXrJ7ZFyyXpvmPTbuxI4ntZ3OKv8+g98UPl9q/d7dY5+KD/vRw8MunGDhzwD8tG+IIbm68uRMsv2LzJrVPZPOzGMODMlOWL0VA+8/NsqR3Pp6OWc+u0Gn4ubSVSupkfK7TjFUPd39b09JwbOzbjx6Zm/djWiYIbM8XbWK823Drtlv+hG3560+GpWTdWczZXGdvg1hnOxfcNSZpP9MdC4lzmGSr7w53140NuLJf5D1Y3Gn4fN5r+PhKcna5Yqvh1eh+WYABkZioXy9HYkZkZt95cLb5/jqxf59YpFvw81K7Fxw6StL7kH+f1ED+G7j96xK0zVPSPyXZihLlx2D/Oh3L+Ogu5eO4ILX9bE8MjifX5/TE37+e9Uj7+PZfH/byRL/rbajT865bQ8nOsOefFLO/34eKifx3RaPonnYazn0pSI/j1skJ8rJB3vktJml+cd2MYbO1GQwuHHojGWrN+HrB6/FgpFv0xWKk46sYKRT8HN+v+eKTejB+b68r+ttrD/rXdJVv8Acl1re1u7NN37nNjLedYr+X9Y7aVyMHNRF5ptRK5LzjrTAzCqolxYpaIFRP5qJzFv+tq4joiJO5PVJxrMSndH6lxrnMq0Pr1/j2DoRHuGcAXnGtaueXntiD/XJAl7k+o4Y+5P/GB97ix/bd/Plp+ySb/uLx4l39dMDHsfy+bNk349cbiY+Ri3v/QuYKfS0PLPzcql8o53jpTd6t9qXtK3rW/lN4P5JyTWonrrqmpB6PlzcS9MmkFE0NmdrWkJ0raJOnLIYR/7ZZnkvIhhPSWAQAAAAAAAAAAsKZ6/o0hM7vIzD4s6QuS3iLpNyU9/4RFXilp0cyetRoNBAAAAAAAAAAAwOroaWLIzDZLulHS0yR9UdKfSQ979ukf1Xn+6vmr0D4AAAAAAAAAAACskl6fGPpVSRdI+i1J14UQfnrpAiGEA5Juk/TklTcPAAAAAAAAAAAAq6XXiaHvkHRXCOE3Qkj+FPJ9kvxfHwQAAAAAAAAAAMCa63Vi6AJJt5zGcrOSxntuDQAAAAAAAAAAAPom3+Py85LWn8ZyF0k61nNrzgHT09PR8pn5RbdOZWTUjd23/4C/rdl5N7awWI2WTzntk6T5eX999VrNjzWabmx6btaNzS3G+2Tm2GG3ztvf8XY3Nl+Nf2ZJuvf+vW5sdHQ4Wv4DP/wjbp19DxxyY3fde48b+9RnbnJjt996W7T8vrvudets2bHVjY2Ojbmx7bsudGP1hv9df/rmz0fLr3vklf62Nm9xYxhsZlKWy0VjpcKQW2/dyEi0vJJ4TrU66+fgVrPhxkrlePskaXg0fopcXPTz3rFZPzZdq7uxQn7pz/V93SMu8h/AHRuO57fM/PUV5v3+aLT8ejOLfr1aK96Pw7myW2duzj8nTc/OuLF2yz8nlYvFaHkx73/PpUQsl4jV6/45qd3229hqxfuxkcjNZn47MLgazaYOHImPV2rNlluvWIofl1nw99tcy0/AlbJ/nOflt2OhFj+GhpzjWJJKlZIbO3DwoBsLdf+zlSb8f8vm5dLysN/GRt3PlcmxeMOvZ865tNX2+9fabT/mRqRGYt8ZqlSciL9/ZHn/crOe2K8Klfj5TZJC4rw+NTUZLfeuByTJEudMDLZ8Zlo3FN+Hx9cV3Holix9/zUl/nJgP/rGSa/n/nrfR8nNwpRy/D9Fo+OOK8hb/2m5i0h/LPmX9NW7ss3fsc2PWiOecRtUfFzWLfp7KZf5nS730xou1Wv62Fp37HZJUcfOlNDIcv9aRpFYzfr6qVf1tZTk/h/mtl7JEXxUT5+JCMX4uLqTO30P+tR8GWy6X08T4RDQ2bwtuPf947sc5PfXCLI/fjhD8WOq69YufudmNffjf/9WNTZTi29u6yc9FE2N+Dls35rdxbNy//10oxs9zQ4l7MqmeXzS//Y2if7+0bfFzahYSGTPxnbVC6rzjrzKVoUvOkOD+u+5060w9EL9XXVv0rz+k3p8Y+oKkx5nZJm8BM7tY0nWSPtPjugEAAAAAAAAAANBHvU4M/a2kUUlvM7OHTb+Z2ZCkt6jzJNJfr7h1AAAAAAAAAAAAWDW9vkru7ZK+R9JzJd1lZh/qlj/ezN4m6TmSNkl6dwjhX1avmQAAAAAAAAAAAFipnp4YCp2XOL5A0h9LGlFnkkiSHiXpRZImJP2JpB9cvSYCAAAAAAAAAABgNfT6xJBCCA1Jv2Bmvy3p6ZIuUmeC6X5JHwoh+L/8CgAAAAAAAAAAgDOm54mh40IIRyW9axXbAgAAAAAAAAAAgD7qaWKo+5tC/xFC+L1TLPeLkr4thPCMlTTuTFlcWHRjf/EXb4mWH52Zc+s8/Zuf48a+fNvtbmxyetaN1RvNeHm97tZptVpurPOWQCdm5sZqTX+dTWd7n/3kjW4dZf62HnHVI9zY/Ny0G/v4x+Pb23X5VW6d2WrVjR14YL8bW5ye8WPz8TZO5dpunXDE74+F2oIbGxkddWOttv9dHz5yLFp+6OikWwfwmWTxN5aGnP8mUysUouXDxSG3zrqhDW4sNBtubGjEPw3Ww3y0fGYxcZw3/PNHMe8fe7u2r3Njl1+82Y0Nj5Sj5a22nzvmakfc2MEpP5fOLPrnl0IlnnOqDb/O5ORRN9Zo1dxYMR/fPyQplxWdOjm3TjPRRjN/W82Gv1/l8n7/Z1n83Nhq+zk9ly+5MQwuM1OuGN9HN09MuPWazfgYst3wjzs1/XFRbcE/FhYT48RcLn68btyw0a1jiXFifcFv49TklBtbN+HnX2/IdOyYv75Wyx/XNZp+vmknxuL5XPxzV8r+eTF1TbCYGOfmcn6+9MbptZq/vkIiZwfzP/PMgn+uLTr7jiQNO30Sgr/vmNO/gOWk8mh8zNpM3ErJF+LH3/CYP/7NsnhuliRr+cdRITFWqVbjeb1d94+v0qifOxa2jrmx3Jx/Dsk71wOS1HbuGbQT46xCwc9TqRxWLvnjKe/80m77Ob1W8z/z0JCfn0dH/dhiNf7dpPpjuFxxY+3EtX/qnJol+jFXiNfLEusL5u/fGGztdlDVGUe02/44Uss4dYdEJZN/rJv848jTDql87+ft+Sn/Wv3DH3i/Gzt2xL9nt3VX/Fq9ZP5nzhJjo+GRETeWy/tjtJriOXix4Y8j2zbuxhojl7ixUPLzbMP5PoupsXjw+yqx66htfi5tt/1zyAN7vxYtP3TvbW6dhen4PtBM3A+Ten9i6AZJe09juSslfVOP6wYAAAAAAAAAAEAf+VOYK1OSlJjaBQAAAAAAAAAAwFpb9YkhM8skXS/Jf/4NAAAAAAAAAAAAa+6Ur5Lr/q7QiZ4TKTtxfZdJ2iLpH1fYNgAAAAAAAAAAAKyi0/mNoRtO+O8gaWv3T8rnJf3yMtsEAAAAAAAAAACAPjidiaGnd/82SR+S9B+SftdZti5pfwjhvlVoGwAAAAAAAAAAAFbRKSeGQggfOf7fZvY2STeeWHY++tKXv+TG3v72d0TLa8H/uaa5WtuN1ZotN9bwqymXL0TL2yG4dcxfXTKaWmdDfuzIsWPR8vv373frXHTxxW5s85Ytbuzee+bd2KGDB6Pln/jUJ906+dFhN9aY97dVyPz9oDxSjgeKbhXVGzU3dmyq4camZib9lVrODS0uxLc3O+d/ZsATJLWd3NhK/MTdkbnZaPlUM55TJGm44BxfkvKJ5JdL5Of52ky0fGbOP75yeT8nbt3g55WLt427sVLB/wAtp/nNRE4/trDgxibn/FjIxc87klQoxhPZg4cPuHXmF+LfsyQV8n6eyifybOZ87HzOr9MO/j6wWPVzcC6xzmLOH141qovR8skj8XOVJLXl9wcGV2aZRovx3Je3RN5oxscP9QX/XL+YyBtDI6NurN5ourFSJX4MlVv+8VNIHAuVsn8eePDQITd2+MhRN1YqxXPb1FH/PFAq+rlS5uebaiLfDA/Hzx+5gr+t6mI810hSs+l/L5bIsXOL8f3AEuf0LPjXOuvGh9zYtoq/Xz2w70E3VnD6pNqou3XyOX/fwWCzppQ/Ft+HreRfixXXx/ep3JBfp2D+GFJV/5idq1Xd2Mx8PK+MJsZ0uarfjunE/Yl64tbSxIifuw/PxPuk2fLPY1ndP54LiXPBUCLmfeq2N9iWFOqJvF3wP7O1/P1gwbnXUC76/ZGzkt+Osv+9DJf87zov/7M1F+fi7Sj526rP+98ZBlsIQY16/JhotxN58RR3OOM1/PWF1D3RxDjHbUdiLF7K++u75dbPu7GvfOFzbqyQaGLOOb+sXzfm1qlU/LxSa/t5cSTv1wshnhePLfo3ReujF7qx/NhFbixL7DuFXLz9pcwfsx697w43prp/nbT9gh1u7P4D/vX/zR/7YLR83ciIW6dQjn+flrgHLJ3eE0MPCSG8pJflAQAAAAAAAAAAcPZITXsCAAAAAAAAAADgPNLTE0PHmdkTJL1Q0hWSxhR/di6EEJ65grYBAAAAAAAAAABgFfU8MWRmb5L0U/r6ZFDQyRNDx/8/9TJIAAAAAAAAAAAArLGeXiVnZi+S9ApJ+yS9XNJ/dkPP7pZ/TJ1Jod+X9IzVayYAAAAAAAAAAABWqtcnhl4qqSnpmSGEO83syZIUQvgvSf8l6c/N7NWS9kh696q2dA3dduftbmzzBTucSNGtc/TIUTdWHBl2Y7V2y42pVYsWZ9G3+nWF1ENcfr12ol7I/HpzM4vR8lyiFfVq3Y3l8iU3Njqy3o09uO9gtPzYoQfdOmNhixsLqa/F/E+3bkN8nQvVhcS22m4sy/xt5ZK97Ctm8f4v5BP7FeAJUrsdzx/txL9LaGfxU1O17R8rM7PTbiyTfxwVC/6+nc/FY1b0T535xD+3KBb8eqVcwY1Vq6n2x8sXWn6imq823Vgj+B8gmB+bnY9/N0enJt06Zv65JZ/z+yrL/HbknS+gWPRzoldHkhYWq25s4/iYGxut+OerpnOemz425dbx9wAMtNBWqxofDx47fMitlnnn9La/pzWafk6Znp1zY8HJ55I0XT0WLc8nxqT5RB46Ounnm30PPpCoF2+HJG3asDFaPjo84tZpJfoxn8hFo4mcksvFP/f8wrxbZ37BP2c2m/55YKJSdmPVhfj+ZonvpViouLGtG9e5sct2+WPxsZK/jxyZjn/umYWGW6fWYpyLuHxmWl+On9PrNf+6NT/n5L6KP95TyT9W5pv+OLfZjh+XklRsxbdXSoxJi4kXv7jnD0ljJT+/XXv5BW7sv26+I76txLWC1f0cFhb981Ur59fzxqVZ4n5H3vzYkLPfSJK1/D5uNePnEEvsOjs3+PeUrto24cbKeb+v2u34PRRJqu6P9+NkIs8eXfRjGHRB7eDs94ljLLW+5cTaiXt57eT9tfg6C4kruPbijBv7yi2f9bfU8s875vRhJ+a0MUvk+6Z/Hexdz0pSvTbqxoZL8bw+Z5vdOo2Nj3Fj1Yp/brHEWLd5+K5o+d79d7t1bv/KLW4sNOL3viVp86b4tYQkHZvy94OdWzdFy5ttf+5hrhrv3xDSx1FPTwxJukbSJ0MIdx5fvyTZCUdrCOENku6W9Gs9rhsAAAAAAAAAAAB91OvEUEXS/hP+//g/T1n6T9w+J+kbl9soAAAAAAAAAAAArL5eJ4YOSNpwwv8ff770iiXLbZLkv4cAAAAAAAAAAAAAa67XiaHbJV16wv9/Sp0fp/nl46+TM7OnSLpB0p0Pqw0AAAAAAAAAAIAzpteJoX+XdImZPbb7/x+UdIek75K038w+K+m/u+t9Sy8rNrMrzOx1ZvYpMztsZrNmdouZ/ZqZPezX9MzsSjN7r5lNmtm8md1oZs/o8fMAwEAgxwJAf5FnAaB/yLEA0F/kWWDw9Dox9E5JL5I0L0khhKak75T0VUlbJV0nKSfpz0MIf9Hjun9M0s9JukvS6yT9/yR9TdJvSvqEmVWOL2hml0r6hKQnSfq97rIjkj5gZs/qcbsAMAjIsQDQX+RZAOgfciwA9Bd5Fhgw+V4WDiEcVmdy6MSy2yRdbWZXSlov6Y4QwpFltOVdkt4QQpg+oewvzOwOSb8m6ccl/Wm3/A2SJiRdH0K4RZLM7O8kfVnSm83sESGEcMrP45TPzs+6dfLFYrR8eGidW2d6esaNVcwNqZmYtsuyeDBvfiWvjiR13wQYlerKLLG9RqMRLc/n/d1u/fr1bqxQiPe9JF1wwU43tvfuu6Ll87PT0XJJ2rhxkxs7cmzKjR09etSNzc3G96vFxQW3TrNVd2Olkv8zXmNjY24sS+xzW7fG+/+qR1zpV8K5Ys1zbEfbKc25NYqV+P5brlSi5ZIUmv5xlFPL31be/xj5LB6r1+bdOotzk27s6LTfxsn1TTe2ru7n2bAY/2xHZv02HptddGOL1XjelqT5RT8fNUP8e2455ZKUT5x3CgX/PFEpF9xYuRKP5Qv+/lbI+bGJIf+8s2vrBje2Y9tWNzY6Ph4tzyXOcc6uiLPPmubZRrOpA5OHorHJ6Sm33vjISLQ8F/xjsuSMfyWpljjOF+t+LvLGkHOLNbdOskvMj61fP+HGcokcIHPOH20/H+bk56hS3u/HXN7P9W3nc1fKJbdOlsixxyb9c1U+0R+lYvyztdv+tizx7xCnj/hj8a9OHnNjizW//xvOfmzFIbdOqeDHcFY5A2NZc4+JLOcf66EVH0+1Fvz8Nj3vxxotP5a1/WPWWvGck0scl6WCfzwXnRwgSdWqn++vu+pSN3bb/fE88MAhPwcUSv5nbrX8ezkL81U3lmXO95y4h5LlEvdQ2v7Yvt7wrwlazne9acK/vn/CNRe4scsmJtxYu+Hn0mrNv144NhXv41Qubef99eGssuZ5NssyDQ897GEkSdLcgr+Pylm1KXHDK9WaxLgpJe/cayi2/bz9hZs/4cZu+/KtbqzR8O9rpMZix+bj+Whyxm/jRVv8a93hRA7O5fz7lPPjl0fLWxuvdescnPL3gfzkF93Y3L33uLF77/pctDwU/HPc5m0XurGsHL+2kqRm3T/vLB7yx8Hldrwte/cfdut845Pj87Glsn8fTer9iSFXCOFrIYRPLnNSSCGEm5ckn+P+ofv31ZLUfXzxeZI+fDz5dOvPSforSVdIevxy2gAA5ytyLAD0F3kWAPqHHAsA/UWeBQbPqk0M9dGO7t8Hu39fK6kk6ZORZT/V/ZsEBACnhxwLAP1FngWA/iHHAkB/kWeB81TyVXJm9poVrDuEEF6/gvoys5yk10hqSvr7bvH27t/7I1WOl0WfpTWzl0t6uSTt2rVrJU0DgHPeaufY7jofyrPFUzyyCgDnu36OZceH46/dAIBB0e+x7Niw/7pGABgE/c6zmzZvWZ2GAliWU/3G0GvVeQtjLy9bPL58kLSiiSFJb5T0REm/GkL4Wrfs+ItLYy9DrC5Z5uSGhfBWSW+VpMc97nG8sR/AoHujVjHHSifn2ZHxCfIsgEH3RvVpLLt9w0ZyLIBB90b1cSy7deMYeRbAoHuj+phnL7vyEeRZ4Aw61cTQnjVpRYSZvV7SKyW9NYTwhhNCx3+pL/bPd8pLlgEARJBjAaC/yLMA0D/kWADoL/IscP5LTgyFEM7IxJCZvVbSr0v6G0k/uST8QPfv2GOJx8tijzMCAESOBYB+I88CQP+QYwGgv8izwGA41RNDa87MdkvaLenvJL00hLD0scIvqvO44pMi1Z/Y/fvm09lWO7Sj5fm83y3DIyPR8k2b/PdiPnjosBuzLOfGSgW/HZbLouV5xcslKefU6a7RjQT5T3Ymmq+2U8/y/raaoenG8jm/3uTklBubnpmOltfurrt1Dj14wI0dOXTEjc0425KkXC7eWUOJ3wiYm5t1Y4mvRcPD7lO7uuzyy93YDU95arT8kgsv8jeGc8pa5liZZE7aCV5AknLx97lnBf83i3Lm7/NZu+HXk58HMovno0Li4FtYmHNjx+am3Nht9z/oxiYXYk/od4wMxfvkyPSMW+fBo5NurG3x86IklQp+Ds6FeKyQL/p1Ev1YLrghFQv+vpP3zo2J89/YcNmNbZ7Y7MYu2LbVjY1PTLixeitePjvt7zsPO0pxVlurPBvUVq0Zzw+5oj+GnF9cjAdazs4paSw35sbM/NxQzvsDxeGR0Wh5vezn5Xbbz1GNhp/rR0b9sVYrsU5vLD5S9n93pN30+7FY8JPb/IL/D2sXFuaj5Rs2bHDrTIzHr1kkaSiRZFPXQWrF+7jZ9JNU3dvfJC0M+f04VfX7o5XIie1iPKeHxHeWy/zzAM4+azmWtbzJ1sXHWtbwj/Vjs/HrxULdz29bin6empS/rYWan/uqTmzDuL/Pp8Zui4v+mLRQ9I+xfGIM+dir4j9DUm/546LFRf+eQepHEEKiHzMnlkussJjz+0rNRA7zBoOSLtwcX+e3P+Mxbp1Ltqx3Y4Xgb2s+0VezC/6+2szi4+rZqUNuna3rJ/yN4ayzpvcMZMqcfaqeyJnD/pvqliV1vZWZH6w49xO+cvPH3Dr/96/f6sYePHDQ39bIuBu78qrYV9GxacO6aPls86hb50jDTxCNzB87Z3N+Xlx/1XXR8nq20a1zy4f/zo3Zgn8PpdD07x0tOPdmr3vCN7l1dl4eb7skNeV/5uCMnSVp885HubF55zy37iJ/X7zq2muj5WXnntFxqZmCNWdmr1Hnd43eLuklITx85iaEMCfpfZJuMLNHn1B3RNJLJd0h6aY1aTAAnEPIsQDQX+RZAOgfciwA9Bd5FhgsPT0x1E0QpyuEEF7fw7pfoc5vGt0n6YOSfnDJv0A8GEL4r+5/v1rSMyX9p5n9saQZSS9T55HF50ZmswFgoJFjAaC/yLMA0D/kWADoL/IsMHh6fZXca9V5gVXsmbITD3rr/v9pTwxJenz3712S3haJf0TSf0lSCOFOM3uypN+R9CuSipI+J+k5IYQP9rBNABgU5FgA6C/yLAD0DzkWAPqLPAsMmF4nhvY45ZmknZJukHSRpL+WdH8vKw4hvFjSi3tY/quSvrOXbQDAoCLHAkB/kWcBoH/IsQDQX+RZYPD0NDEUQvAmhiRJZlaQ9L8kPV/S45bfLAAAAAAAAAAAAKy2bDVXFkJoSPpZSU1Jv72a6wYAAAAAAAAAAMDK9PoquVMKITTM7GZJz1ntda+2zOLzYkNDQ26deq0WLa/WFt06tXrVjeVK/leQWqecn3GzxO+7tdttN5ZZ7GejOvIFv43NVsONVRfnouVzszNundJFu9zY/Ixfz7wOkdRqN6PlRw8ddOtM+d2hXKKvNowNu7F2iPf/7MyxZW0r+Vt+zbobeuVPvMyNfcfznhctz2erOoeMARFCUKvdigcb/j7ayhXigWLJrZMrlt2Ytf08FVp+ng2K5/ssH88pklQp++cPa8fXJ0mNlp+fDxyddmOF6YVo+VzNP+/Ums53IqlULPox52uR/HNILu/njmLi3DJU8b/rYsGPlZ3+37R+vVvnwm3r3Nj60TE3Zua3P/XZJsbj2yuUR5e1LQyuLMtpZHgkGht1xriSJGf80HLGKZI/Zpak0cS4OUsMVWbmZ6PlI6P++lJjn8VFP59PT8e31eF/tlwpnhOzXM6tkxpvjwz748RSwc+/I04fp/qjlGhjPpHrmy3/HFFwhqWlxAmiJT821/D7qpHzc32h5O8jjehP4Uq5nD9OyGWJExwGWghBjWZ8TBXa/nVaxTmes0S+Waz748ta0z9W2i3/WA+1+Bi4uuCPExcq/rFSTbSxnDhPWMPPz1dcEB+j1ZqXuXU+98U73JiCn8NyOb+NBSeUZf73PDRc8dfnXc9IKib66oYnXRstf9S1j3DrLCz434vyifF2NX6/RpIaifs8ZedUlvNOEpLqqXtbGGih3U6O4XpeXzLm76Ml+bkj1Pzr8Zs+Fv85pf/8f//m1hme8K8/X/wdL3BjW3de5MZ2XuznTCuPR8unD93n1pm++xNu7O77vuLGDt15lxu7tPVf0fJWy8+llcz/XjZf/Q1+bMdj3VhhKL694oh/Pb4o/9yoxDnagp+D12+/3I2ty+Ln9lxiP206995St46lVX5i6ATrJMX3PAAAAAAAAAAAAJwRqz4xZGYvkPRUSf40IQAAAAAAAAAAANZcT+8mMbO/ToRHJF0p6eru/795uY0CAAAAAAAAAADA6uv1pfUvPo1l5iW9IYTw5703BwAAAAAAAAAAAP3S68TQSxKxuqQHJH0mhBD/NWwAAAAAAAAAAACcMT1NDIUQ3tavhgAAAAAAAAAAAKC/en1i6LxiTvkF2y9w62zYsCFaPj8749ZpVOfc2HRt3o2t37DejWUhXp5za0jK+dF77t3rxu6862431m413dj1j7suWv5D3/e9bp2Z6Sk3Nn3M7+NDh465seB01vO+/blunZf/eOrhON/IyIgbu/OOO6Llr371r7l19j/wgL8xZx+QpCuuvsaNfcuznuXGRiuVaHk7JDYGODKTilk81k7swI1mI1oeqjW3TrCyG6sU4/u1JBXzJTdWyMXzW6vm59JWzc/3efltHKn468zMjxWLo9HyiZx/ep+Z89u4uOA/8Ot8lZKkfD6+vXXrJtw6Ted7lqRazf+ui0W/H3ds2xktv/KSeLkkDZfabmx0aMyNHZ30+7FW98+Nm4eG4+Xbtrt1snzRjWFwZVmmkeH4uKPgHJOSVHeOvVRuqNX9Y3JizD9O8uZnjlGL569m4vyQGnfmcgU3tnnTZjdWyPv1cln8aiGX8z9XLvNjmXv1ITUbfk6cGBuPli8uLrp1GnV/fUNDQ24spdVsRctD4pxjmR/Lyv75OZf534sS66zX6tHyVuJcOlz0xwIYbKEdFBbj+301NS5txI/NfN7fD/cdm3ZjjZafOwptP+eU2069tp9LZxb8+xNKXBPW5vycs9m5h9JdabR02OLHsiRl5vfHXNWvN5Y4J42MxceXjcRl8NCI/7lKQ35+27HeP29eum1jvB3z/hg9JEbpIXHeqSfO7aWKP97Ohfj2NiTuLjYbyzvvYACYZM4x7V1jSlJwckdqn7fEHdP6sf1u7Ms3vd+N3fGVr0TLr7jq0W6db3j289zYzl0XurHUZ2sl8lsrxMdUG3dd6dbZsGGdG7v3/gNurDrn3z8++uVPRsvHdvl9deUT/fu2my56pBuz4PdVCPHzun9XQArBjwZLxBL11I63Q5KaTWf/dq5NJMlKznnHryIpfZ8HAAAAAAAAAAAA55Genxgys/WSXiHpBknbJXn/xCqEEC5dftMAAAAAAAAAAACwmnqaGDKzKyV9WNJmnfJhpNSLrgAAAAAAAAAAALDWen1i6I8kbVFncuiNku6UlHgJLQAAAAAAAAAAAM4WvU4MPU3SXZKeHULwf10QAAAAAAAAAAAAZ51eJ4Yakj5/vk8KXXb5ZW5s85Yt0fLbvvIVt86xQ/vd2Atf8EI39uRvfJIbazbq0fJ2q+3WaTX92Mc/8TE3tu+uO9xYli+4sW+8/vHR8qd+wxPdOu9697vc2G1f/rIbe/DIITdmzksPL7vkYrdOseD9dJbUaLXcWLUa/14kaWLdxmj5Y69/nL+txmfc2NDQkBv71m/9djdWr/vtX5xfjJaXyn5/KHeqt0pioIUsWtxSvFySzIlZ4g2mid06GQyJs2CW5aLltYb/ptRG04+VM/8zj5T8XFoqFt1YZWg0vq3R9W6dtvOdSFK9XnNjjXrVr9dsRstD8Ptjwck3krR+3bgbu3DnhW7s4p07ouVjlfh3KUkLC8fc2INHZ93Y5NSCG1ts+t/n0OhUtDyXL7t1ms3UDo5BlcsyDVcq0Vij7g/VvcOy7RzHkmTtRN6r+2Ofg5P+8VUsxvf5xKaUz/tJe3h42I3lnHwuSWMjfr2h4Xj/Ts1MuXXaieO1lRhDZt6AVVLLWWe57OeNdiL/NoO/rdS51pzx8WJiW+WRETeW6A7lE2PxcskfA5fjX5naWWLHIsfCYTLlW/FxWLvmjwNyrfhxlJefZ+tVf1zUaPm5r7rg52Bzrhcn5/3xTbGduFas+uPEfC4x1lr06xWdce72LZvcOrsm59zYrXf630sh74+pn/GNV0fLt124wa1zcNL/XgpFvz+e/KTr3NjE1njuqyauMfJ5/zzWNP/7bCRyaXHc/9yqOfeijvr3vZp+d2DAhRDUaMTHral7Vwr+fu9pt/0cfPsdd7mxO/fuc2OPf9qzouWXX/1kvx1DY25sse63UYnxrOX8fJR3P7d/X6CWi99nkKR6y7/WLSbGVG2Lf2cXX/MEt876S65yY4uJxJJv++fGtvfLN4mxuCV+LSekfkkncbvUEuPnXBav6BSviL8XxH1Gkj9rAgAAAAAAAAAAgLNWrxNDr5d0tZl9Tz8aAwAAAAAAAAAAgP7p6VVyIYSPmdn3S3qLmT1X0gcl7ZMUfUdZCOGjK28iAAAAAAAAAAAAVkOvvzEkSWVJVUkv6v7xhGWuHwAAAAAAAAAAAH3Q08RN92mht6vz80lHJO2VNL/6zQIAAAAAAAAAAMBq6/WJnl9R50mgn5D01yGE6CvkAAAAAAAAAAAAcPbpdWLoCkk3hhD+qh+NWWvt+E8jaeP69W6d53/7c6PlX75op1unkDM3dtmll7qxUqnkxurOOpv1hlunFmpu7PrrHu3Gdl1wgRtTyLmh9Rvi/XjsyBG/HY95jBvbuc1vR63ddGOlSjFavm3TJrfO3nv2urEsX3BjxaIfKxTisR/+Yf+NjN/93d/nxoaGKm5s505/f0zN55rF96sQ3CqAK8gUcvH9PsuV3XqWjx+zZv7x1Qp+nq01/PzQbNTdWL0RP1ayxD+JKBT943Io5x9IwyX/s1XK/jq9z92qJ3JiediNjYz525JabqRaj/djK5E7Lrlowo1t3rTFjW1Yt86NZa34OXBm8oBbZ7G64Mbamd9Xdb87NLvgn2+nZ+PbKxSm3Trz8zycjYdrt4Nqtfi+ls/5Q/yyM74sb9ns1mnV/FxZTIyLWhMTbqzRiifT4aERt87i4qIby/KJy5pELmolElV9MZ5TFqb8vNFq+8mh5eQoSaoU/fNiqxnvq5mFRH+U/e9lrurnqMrwmBvLjcbz75AzxpWkypCfR739V5LyzvhBkvLOOEGSys7+mEvsH0eOHHZjGGwhSM1GPEc0/aGWGrV4nWJiv64kxoLmp2C1Cn7uaObijTww5V+PDzf8eyHFkr+tQiKHmfnHX9XJs7mcfy/kqkt2+NtKXBNctHWDG3ve854RLd9x5VVunckp/4spZf65rFj229hoeuPEzK2Tz/k5sTbvjy8rRb+N7eBvz/s6E6cW5Qp+GwHvPlSrlUi0nsTNK//Ik3ZeeoUb27Bl1I1t3hq/9xbK426dVuIEkiXGOG3z77+m7vOFLN4n1ph06zzwxU/665vd78byE/591sIF8T4ubrrErdNo+7lIzj395WqnbnwmYsnbpal6qdgy7s2m1peS6uGYo5L8uysAAAAAAAAAAAA4a/U6MfQ+SU+21D/5AAAAAAAAAAAAwFmp14mhX5e0KOlvzcx/lwsAAAAAAAAAAADOOr0++fMHkr4i6QckPdfMPitpn+Iv9gshhB9fYfsAAAAAAAAAAACwSnqdGHqxOr+rZJLGJcV/oa8jSGJiCAAAAAAAAAAA4CzR68TQS/rSCgAAAAAAAAAAAPRdTxNDIYS39ashZ0Lm/MRSuVB26zz5iY+Plj/FKZekEIIba7VabkyJen4kYZnry8yWs0qF5bVy1bflNj+xvizzf37LEv1hiXpeP5ol6mT+tlJSfbWsvWd1v0oMCMsy5UuFaKyl1L4dezuplJm/I+aynBsLwY+1Ez+1V3fakc/5bS+q6sZKuYYbK5dKbqxQGnFjzUb8NN5qJz5Xve7G1k2Mu7GLdu10YzknV927736/Ts7/XnJtv69mJw+7sYX5qWj53OxRt04+5w+FxsdH3dhQOb5vS1Kt6bd/em4+Wp4r+9uaX2y6MQwuMynnjTsSA4GmM/asNf3csGHC/2nRXDxVSpKGx8b8djhtfPDAQbfO4uKi3468n1PGR/12FBP1zGljpejn7HrD70cbKrqxVsO/Jqi24jmlNObnjapzDpOkYt5vx8j6jW6s0Yz3x9DQkFunVPS3Van457d8wc/NjbrfV/VavP9riXPf2Jh/7sOAC1KrFd/vG83UWDY+RlhoJ8arOf8eRAj+OKCauJ9QdnJVo+ofX9NTNTdWKCXyVNFv43zw640OD0fLZ2am3DrFoYobe/RVl7ixR1zsH+sbN8bzaXXRH9NVhv2xYDk34cbmq3NurFRYHy33zkeS1G7468ta/veStROx4J9vvXqL89NuneAcR0BK6l5Zux0f54S2n5tT9/lG123yY+v98UrI4uOceuIeROLWhULi/oQFf2xXkj/OmVuYipbv/dKNbp0jt/6PG1s36p+vtlzzHW5s/c5HRctL67a6dVrO9yxJidtDyVuYXjoNif5NSd3zV6L96fusTjA19HA/WGo7SuxxAAAAAAAAAAAAOK8wMQQAAAAAAAAAADAgenqVnJn9dQ+LhxDCj/fYHgAAAAAAAAAAAPRJTxNDkl58ivjxN9dZ97+ZGAIAAAAAAAAAADhL9Dox9BKnPJO0U9KzJT1J0p9I+vwK2gUAAAAAAAAAAIBV1tPEUAjhbadY5HVm9quSfkXSE5bdKgAAAAAAAAAAAKy6Xp8YOqUQwm+b2Ysl/ZakF672+teCJWIhhGh52yk/lXze/wqSa1zm9taSWbwnvT5M1TlVveVYy22lhNB2Y83m8voqJVXPjS1vUxhwIbTVaNTisSxz6+Xy8Vhqlw+JjBmU87eVK7qxzKkWWv4xm8ocWeZ/gFzOb2O96W9vsdmMlrcbDbfO+OioG9u8ZYcbu+yKa93YzPSxaPmtX7nNrVOrzbkxteOfS5LyiV7OrBUPJPadLD/kxu4/fK8bW6jV3Vhb/v59cHo+Wj529Khbp5AvuTEMLrNM5XIlGiuV/NxWd/LGwWNH3DrNtn/ctRM50Rr+sVAql6PllVK8/FSxsfFxNzZU8o+hdaMjbmx6ajpaXmtU3TrFsr+tcmJbh4/E86gklUaGo+WFEX995WJ835CkdkicjzL/2iRn8f1gMtH2devW+e1o+/tOsejvw/mCHys633WtHh+PSFKhWHBjGGzNZkvHjk1FYwvVRbeeOQOPZsvfd3O5+HEuSaWiPy5S289H+Sw+xslK/rGXH/GPh1bLGWdJCsFvx8K8H/OGwGNj/vhsfMTPU5s2+3mxVo2PwSRprhYfO4+P+7m03l5wY4vV/W6sIP9c1nTO0aXEhVBr/rAbs7y/71jbv17ItfzYXD0eKw4nxh6JcTMGWwhSsxXfTxcW/GN2vD3mrNAfeyox/pH51+OpmDM0kiXu87VS4+pEE0uWuC9weJ8bu+3TH4iWH9p3p1tn69ZL3djOq/znQCYu8u8ZhFL8POd9/5JkwT/vpG6+tBM3ALx7R6l7Sql78On7x4l7uolava/tFHMICYkjZkW+IOmGPq0bAAAAAAAAAAAAy9CviaEdkvx/WgEAAAAAAAAAAIA1t6oTQ2aWM7Ofk/QNkr68musGAAAAAAAAAADAyvT0G0Nm9qFEeETSJZKOv0j6d5fbKAAAAAAAAAAAAKy+niaGdHq/G7RX0q+HEN7Vc2sAAAAAAAAAAADQN71ODD09EatLeiCEcO8K2gMAAAAAAAAAAIA+6WliKITwkX415GxiZj3HUnVSQgj+tlIVV7kdSrTD2xbOP6n9EeiVScp5+aNQ8Otl8VgztXu22m4oM/9U12z7K805Tc8Hf1uh3XJj7Xainvk/+Vet191Ysxlv5NjYmFvnEVde6cYuu/RSN5bL/DbOL8xHyxfnZt06i7U5NyY13VI+MjUAAQAASURBVEgx77ejUihGy3N5f3+bq/rbOjJbc2Pt1Pk782MNp08WE99zsVhyYxhcZlKWix8Praafi8qVcrR826atbp1qzd8/86X4+jrtSBzLzkh3y5Ytbp3UOLdW9Y/XmVk/F2WJdYZ8/PzRyufcOu18PA9JUj3456PxLdvdWMvJv6n8VUyccyqVITe2mOjHIafe2MR6t04jcX5+8MEH3diWzf5+sGHTiBvzvhlzjhVJajQabgyQ4uf0kRF/P5w8eixaPjTs58t169e5sdqCn8N2bt3gxorFeD5qtfxzRHVx0Y21E+PcRs0/jkJx2I3lnXHdhk3jbp1LL7vQjT3yUde6salD+91YbXoyHhifdutkbT+vWGvBjdUX97mxMBzPs1b1c6nV/f0j51xXSZKV/H0nVPz92+aORMtLI/75o1CuuDEMts49g/ixNFROne/j+S0kxj+Sf8ym7nuaEseRc00Y3BGJpMwfDxYa8etqSTpy/1fd2F23fNKNLR6N574rH/ENbp0Lrr3BjbVKE25MIdHHzrDVEn1lifOOgv+dtRN31N3bOcu9HZq6j5q8x5q61x6PJXpXuRDvx1Pd0U+t8+ErM3usmf2RmT0+scwTuss8upd1AwAAAAAAAAAAoL96mhiS9FOSXiEp9bq4e7vL/H/LbRQAAAAAAAAAAABWX68TQ0+V9PkQwiFvgRDCQUmfl/RNK2kYAAAAAAAAAAAAVlevE0M7JO09jeXulXRBz60BAAAAAAAAAABA3/Q6MdSUdDq/GlfWqX/fCAAAAAAAAAAAAGuo14mh2yU92cyGvAW6sadIunMlDQMAAAAAAAAAAMDqyve4/HslvV7Sn5nZj4cQWicGzSyT9GZJE5LeuArtOyNCCGtSp8N/sMoSz1x5m0u3Y5ltTKzTUo08Ty3/uz77ed9n6jMP4j6AHji7R6PRdKtk+UJ8VfmiX8f8mCznhtqp4/nkU9zXt9Xy295qNvxYFl+fJOWdzyxJ5UT7lbWjxSNDJbdKfXHOjd15+5fcWKvhf7aqs86Ltm9y61SGd7qxfQcecGOzc/NuLOTi/RjMH+5Ua3U3Zpn/72eKef97yTI/ls/H21IopPbvxD6AgRVCUN3ZfxcXFtx6w+2xaHklX3brjFVG3Fhd8TwkSUrktmYrnhPnpmf91TnHjyQ1EjmqnjjnNNr+OGb9hg3R8k0X+Pmr1vRzfa406sas6OeAprPOQsPv+1bdj4W234+FYiLvDQ1Hy0uJf2q4kNgXN27d5saGxuL7qSS1ljEuzSX2nWqt5sYw6IJk8f0t55RL0vp18f13Yt06t04uMXYoDPs5uFDw9+3gXf+bnx+Ghv1zQbPqHyvlRDvqVT8vzs3Hx5Dr1q1362zbttGNrV/v99X6jde6sfu+cHO0vNW63a0zvvMaN1Yq+u0388+N3pC1Xj2cqJO4rdfw96tW5o+BQ3nRjWW5+P4zVBl368wt+uvDgLOgLBcfw2X51P3SeH7LMn/M1878vB3k56nkPS8nlIWqW6U1N+XGHrjzJje2/85b3VhIDMeveOqzo+WbL/VzWFbwzwUW/D5OMcXzkSWeWQmp7yw1Hky0IzjXLrbMe+ahvbz78CHVSmf/tsQXnTq3pPQ6MfQnkn5M0oskPc7M3qHOU0RB0pWSfljSVZLu0Tk8MQQAAAAAAAAAAHA+6mliKIQwa2bfIuk9kq6W9FtLFjFJt0p6QQjB/+d+AAAAAAAAAAAAWHO9PjGkEMJdZvYYSc+X9C2SdnVD90r6T0n/EkLqITYAAAAAAAAAAACcCYk3QvtCCO0Qwj+HEH4yhPBt3T//XwjhPcudFDKzK83snWb2VTObNrMFM7vNzP7IzB72Auru8u81s0kzmzezG83sGcvZNgCc78ixANBf5FkA6B9yLAD0F3kWGDw9PzHURzskbVPnNXX7JDUlXSPp5ZK+38weE0I4JElmdqmkT3SX+T1J05JeJukDZvatIYQPnoH2A8DZjBwLAP1FngWA/iHHAkB/kWeBAXPWTAyFEP5b0n8vLTezj0r6R0kvVifZSNIbJE1Iuj6EcEt3ub+T9GVJbzazR4QQwnLbkmXLepBqTZktq9ZqN2Mg2fI6/5w2iJ/5fHMmcmw7BNVq9XgsV3DrFZwUnCUecm0nnlVN7b5ZIthuxcvzmf/R89Z0Y63grFCSZX5/bBgfc2MHJ+ei5YeOTrl1ZuYX3Nj4cMWNbRwbcWNbN05Ey/OFUbfOYj2+b0iSpR5oDql8FK9XKJbcGhs3DLmxiZBzY3Pzi25sse5/18Fpo1fecfaPS3AG8qyZcoV47hifmHCrtRVf7cys//OglaFhNxby/nGSZf7xenQmvr1UO/J5P1emxiqjE+vcWGV03I018vFLpXzOv4QaHS27sZDzY/O1qhvLnHZk8k9+hczPQwX/K1Oz4H+2pnOyDU2/He3Ebjw65p/fKhU/b7daiRzrbK6ZqGOJ/RRnjzMxljUz5fPxc3AtccwOV+Jji1xiwNp0xsySVCqmDlp/3y6V48dRwSmXpLm5+NhSknK5ohtbt87Ps/ffv9+Nbdm6PVq+a/tFbp321KQbWzx8nxsb236lG6u14+eX+754u1vnKVc+zY1l7cT1gv+VqVWfipbPZQ1/fdrsxoby/nfdaDzoxrK2v70FZ1+dPnzErVOtz7gxnD3OSJ7NMhWca9CCd0EuSU5ulvn50myZ11TJGwrxddYn/bw3v/dzbmzywbv8TZX969YrH3uDG1u/65HR8lri20mN31LDplNcvMRLU8OwxLX/ckdvWVjGfpD4YKm1tVMvVUt8tmDeBv06xaH4cXSqce65cKfh3u7f6yTJzIYlPU/Sh48nH0kKIcxJ+itJV0h6/Bq3EQDOVeRYAOgv8iwA9A85FgD6izwLnKfOuokhMyub2UYz22Fm3yLpLd3Q+7t/XyupJOmTkeqf6v5NAgKACHIsAPQXeRYA+occCwD9RZ4FBsdZNzEk6aWSDku6X9IH1Hk08YdDCDd248efNY49l3e87ILYis3s5WZ2s5ndfPjw4dVrMQCcO/qWY6WT82wz8aowADiPrclYdi7xWkgAOI+t2Vi2WvdfEQwA57E1y7Mz01Or0mAAy3PW/MbQCd4r6TZJI5KuU+fxxE0nxI+/VLEWqVtdssxJQghvlfRWSXrc4x637N8gAoBz2HvVpxwrnZxnhyfGybMABtF7tQZj2Yu2byfHAhhE79UajWU3TgyTZwEMovdqjfLspVdeSZ4FzqCzbmIohLBP0r7u/77XzN4t6TNmVgkhvEHS8X8eGfsVveO/6Mo/oQSACHIsAPQXeRYA+occCwD9RZ4FBsfZ+Cq5k4QQbpX0eUk/1S16oPt37LHE42WxxxkBAEuQYwGgv8izANA/5FgA6C/yLHD+OuueGHJUJK3v/vcX1Xlc8UmR5Z7Y/fvmU62w1WppamoqGmu3/ScZzU61ZmDQcFCcB1Y9x0qdPSOfi+8fiy3/ne2hEf9topwV/I0l/pmDmZ/Tc4l6uVwrWj5U9Pf5cvBj7WZ8fZI0uxh7Cr+7zsRbTIqF+GncEierSrnsxiyXc2PH5ubd2EytGi3PF/1tLdT8zzw/l/gHZol9Z6gc30cu3L4pWi5Jj7z6MW6sMrbRjX3q5s+7sa/cfrcbm5mP91Wr3XbrpMYlOGf0YSzb1uTMXDQ2Pjrq1suXitHyet7fB0PiXG8tv95wediNjW2Ov2GkuH6zW6dScd9KosXFRTdWTtTLFWL/2LWjUYufj7LE+SgoFfNPOsWS3w6vVr3l58rZ2Sl/W3m/HUOb1ruxEOLfdZbYP0r5+P7WaUfiUtTZliS1E+eBLBdfZ5Y44ecKifEFzhV9GcvmMtPEkDOWGfbHOJVKJVpedPZPSXKGv5KkEPxxQGaJfduJFRN5b3jEP75qiUZOz826sUbmf+6dl14V31bLHzfPT065sWLm54780Igby8bi39m2Yrx9kpQlxrntmn9OCs71kSRl+fh3k6/657Hm3LS/rfUb3Fi9Gf/MkhQSY89mFm9/ZdxvY5jm4ZHzQF/ybKagcjt+vF+8ccKtNzLixJx1dTbmH3upq63UHa/5hfi+vVD0r6vXb93qxkYrfl4pjflj5B2XX+/GslI893njOqlf9769XvZ7P3X+S14hL6deos5yJVeZiLWde1i5xD68cWw8Wu7dMzrurHliyMyiR4aZPV3S1ZI+JUkhhDlJ75N0g5k9+oTlRtT5gbQ7JN3U9wYDwDmEHAsA/UWeBYD+IccCQH+RZ4HBczY9MfTnZrZN0ock3avOeymvl/T9kmYl/cIJy75a0jMl/aeZ/bGkGUkvU+eRxeeG1JQiAAwmciwA9Bd5FgD6hxwLAP1FngUGzNk0MfR/JP2opBdJ2qTOQ1X3SnqLpN8PIdx3fMEQwp1m9mRJvyPpVyQVJX1O0nNCCB9c64YDwDmAHAsA/UWeBYD+IccCQH+RZ4EBc9ZMDIUQ/lHSP/aw/FclfWf/WgQA5w9yLAD0F3kWAPqHHAsA/UWeBQbPWfMbQwAAAAAAAAAAAOgvJoYAAAAAAAAAAAAGhA3q74GZ2WF13pV53EZJR85Qc85G9MfJ6I+TnW5/XBhC2NTvxuDstCTPcgydjP44Gf1xsl76gzw7oBjLnhL9cTL642SMZXFKjGWT6I+T0R8PR57FKZFnk+iPk9EfJ1uVHDuwE0NLmdnNIYTHnel2nC3oj5PRHyejP9Ar9pmT0R8noz9ORn9gOdhvTkZ/nIz+OBn9gV6xz5yM/jgZ/fFw9Al6xT5zMvrjZPTHyVarP3iVHAAAAAAAAAAAwIBgYggAAAAAAAAAAGBAMDH0dW890w04y9AfJ6M/TkZ/oFfsMyejP05Gf5yM/sBysN+cjP44Gf1xMvoDvWKfORn9cTL64+HoE/SKfeZk9MfJ6I+TrUp/8BtDAAAAAAAAAAAAA4InhgAAAAAAAAAAAAYEE0MAAAAAAAAAAAADYmAnhswsM7OfM7PbzKxqZveb2R+a2fCZbls/mdmrzeyfzOxuMwtmtvcUy19pZu81s0kzmzezG83sGWvU3L4zsyvM7HVm9ikzO2xms2Z2i5n9WmxfGID+uNLM3mlmXzWzaTNb6B4jf2Rm25zlz9v+wMqQZ8mz5NiTkWOxmsix5FiJPLsUeRariTxLniXHnowci9U0qDlWIs+eiDx7srXOswP7G0Nm9r8k/Yyk90j6d0lXSfppSTdKelYIoX0Gm9c3ZhYkHZP0OUnXS5oJIVzkLHuppJskNSW9UdK0pJdJulrSt4YQPrgGTe4rM/sdSa+Q9K+SPiWpIenpkr5X0q2SnhhCWOwuOwj98UxJv6ZOX+xT57NeI+klkmYkPSaEcKi77HnfH1gZ8ix5lhx7MnIsVhM5lhwrkWeXIs9iNZFnybPk2JORY7GaBjXHSuTZE5FnT7bmeTaEMHB/JD1KUlvSu5eU/7SkIOkHz3Qb+/jZLznhv78kaW9i2X+U1OrudMfLRiTdK+lr6k4snst/JD1O0nik/De7+8IrB6k/Ev30Pd3++CX6gz+n84c8+9B/D3SeJceedj+RY/nT0x9y7EP/PdA5tvt5yLOn10/kWf709Ic8+9B/D3SeJceedj+RY/nT059BzrHdz0me/fpnIc+eXj/1Jc8O6qvkfkCSqTObdqK/lLQg6YfXukFrJYRw9+ks131c73mSPhxCuOWE+nOS/krSFZIe3482rqUQws0hhOlI6B+6f18tDU5/JNzb/XudRH/gtJBnT2EQjiNy7Gkjx6JX5NhTGJTjiDx72siz6BV59hQG4Tgix542cix6NbA5ViLPnog8e9r6kmcHdWLo8erMTN90YmEIoSrpFp3fO9LpulZSSdInI7FPdf8+n/tpR/fvg92/B6o/zKxsZhvNbIeZfYukt3RD7+/+PVD9gWUhz57aIB9H5FhyLFaGHHtqg34ckWfJs1gZ8uypDfJxRI4lx2JlyLGnZ5CPJfLsGuTZQZ0Y2i7pSAihFontl7TRzIpr3Kazzfbu3/sjseNlF6xRW9aUmeUkvUaddzT+fbd40PrjpZIOS7pf0gckTUj64RDCjd34oPUHekeePbWBPI7IsZLIsVg5cuypDexxRJ6VRJ7FypFnT20gjyNyrCRyLFaOHHt6BvJYIs9KWqM8m19ZG89ZQ5JiyUeSqicsU1+b5pyVhrp/x/qpumSZ880bJT1R0q+GEL7WLRu0/nivpNvUeTfldeo8nrjphPig9Qd6R549tUE9jt4ocux7RY7FypBjT22Qj6M3ijz7XpFnsTLk2VMb1OPojSLHvlfkWKwMOfb0DOqx9EaRZ9+rNcizgzoxtCBpsxMrn7DMIDv++UuR2HnbR2b2ekmvlPTWEMIbTggNVH+EEPZJ2tf93/ea2bslfcbMKt1+Gaj+wLKQZ09t4I4jcmwHORargBx7agN5HJFnO8izWAXk2VMbuOOIHNtBjsUqIMeenoE7lsizHWuVZwf1VXIPqPNYYqzzLlDnccZBn5V+oPt37LGz42Wxx9XOWWb2Wkm/LulvJP3kkvDA9ceJQgi3Svq8pJ/qFg10f+C0kGdPbaCOI3KsjxyLZSDHntrAHUfkWR95FstAnj21gTqOyLE+ciyWgRx7egbqWCLP+vqVZwd1Yugz6nz2J5xYaGZlSY+RdPMZaNPZ5ovqPI72pEjsid2/z5t+MrPdknZL+jtJLw0hhCWLDFR/OCqS1nf/m/7AqZBnT21gjiNy7Gkhx6IX5NhTG6jjiDx7Wsiz6AV59tQG5jgix54Wcix6QY49PQNzLJFnT8uq59lBnRj6B0lB0quWlL9MnffvvXOtG3S2CSHMSXqfpBvM7NHHy81sRJ0fwLpD0k1nqHmrysxeI+m1kt4u6SUhhPbSZQalP8xsq1P+dElXS/qUNDj9gRUhz57CoBxH5NivI8diFZFjT2GQjiPy7NeRZ7GKyLOnMCjHETn268ixWEXk2NMwKMcSefbr1jrP2sMn4AaDmb1JnXcWvkfS+yVdJelnJH1c0jNiO+H5wMxeJOnC7v/+tKSipD/s/v+9IYS3n7DsZersRA1JfyxpRp0kfY2k54YQPrBW7e4XM3uFpD+VdJ+k35C09Hs/GEL4r+6yg9Af75G0TdKHJN2rznspr5f0/eq8m/KGEMIt3WXP+/7AypBnJQ14niXHnowci9VEjpU04DlWIs8uRZ7FaiLPShrwPEuOPRk5FqtpUHOsRJ49EXn2ZGueZ0MIA/lHUk7SL0j6mjqPXu2X9EeSRs502/r8uT+szqx87M+HI8tfJelfJE11d8CPSXrWmf4cq9gff5voj4f1yQD0x/dK+jdJ90uqSlqUdJukN0naNWj7B39W9oc8S54lxz6sP8ix/Fm1P+RYcmz385FnT/585Fn+rNof8ix5lhz7sP4gx/Jn1f4Mao7tfnby7Nc/G3n25M+3pnl2YJ8YAgAAAAAAAAAAGDSD+htDAAAAAAAAAAAAA4eJIQAAAAAAAAAAgAHBxBAAAAAAAAAAAMCAYGIIAAAAAAAAAABgQDAxBAAAAAAAAAAAMCCYGAIAAAAAAAAAABgQTAwBAAAAAAAAAAAMiPyZbgAAAAAAnNfMRiW9WdIlkqqS/kPSHyqEsErrf6GkP5b0VoXwm5H430q6UlLthNLDCuF7Iss+VtIeScOSmpI+KukNCqG1ZLmvSjoYac0WhXDVcj4GAAAAgLXBxBAAAACAc4/Z90lqKIR/PtNNOQ1/I+mdCuE9kiSzP5D0SklvWvGazcqSfkbST0i6PrHk9yiEfadY1zZJfyjpBxTCgW7Zd0j6NUmvW7L0hxTCKyJt+ZceWg8AAADgDOBVcgAAAADORRVJQ2e6EadkdpWkoYcmhTp+TdKPyGw1rsd+SZ2nkRZXYV2Pl/SvD00KSVII75P0pIctuXRSqONbJP33KrQDAAAAQB/xxBAAAACA/jEzSa+S9H2S6upMYHxRUkvSXyqEO7vL5SW9WtKTJZW78aOSfv6kJ106T7W8TdIuSUFmLz1hazcrhF9chTa/T51Jjl9XCL+/wrU9TdK7TyoJodZ9FdtOSfcue81mOyU9USG8TmY3nGLp35HZDnWuAU3SryqEjyxZ5mOSflZmH1AIX+lOXP2YpEtPs0XPl/Q7p9t8AAAAAGcGE0MAAAAA+ukvJN0h6UkP/aaO2TMlvUvS/zlhuSDpw5J+XyFUu8tdJunPJD3v60uFByV9i8xeLKmpEN7RhzZfJKmozuTTSm2S9KlI+T2SLtBKJoY6kzCvPo3l3iVpSiF8TJJktkXSP8nshxTC/Q8tFcIxmf2kpJtkdkzSekkjkn7wlFswy0m6RCHc3uuHAAAAALC2mBgCAAAA0B9mj1XnNWp/cFJ5CP8ts9er80TQ8bKWpBuXLHenzCr9b+jDPE6dSZt7VmFdeUnVSHlDncmn5TF7mjqTPV845bIh/L8l/39QZr+qzu8c/fIJ6yxIeos6Twm9V1JB0jdI+vxptOipkj5+Wm0HAAAAcEYxMQQAAACgX25QZ4Lh4UL4o5P+v/PKue+V9CJJo+q8Sm5O0iP72L64EGqS7l6ltdXVmWBZqiypuaw1dl7x9lpJ37PsVkk3q/P7RCf6dkkfPuH3kOqSbuxOIv32Kdb3XZLevoL2AAAAAFgjTAwBAAAA6JecpPZpLvs6SUOSXqIQDktS92mhD/anaWvmfnVeTbfUhZIOLXOd2yRtkfRumR0vm5A0LrO9p/l6vXXqTL6d6DJJn44sOyazqxXClxLru14h/OxpbBcAAADAGZad6QYAAAAAOG99QtJ3uNHOb90c940K4RcemhSSpBAWJdWc2m3163rGrCSzS7pPMa3UxyV955L1lyVdp85vL8W2b93tl6LxEPYrhEcphBse+iO9StL/ftikkNmW7ivilvpWSR9bUvY1SddGlr1Gnae34jqvDDyd180BAAAAOAswMQQAAACgP0L4uKQRmf2SzHIPlZtdJrN/Vmdy4riWzC48YZktMvtzSd/krP1WSc9dst5LZPYrq9DymyXdJelPVrymEO6W1JTZ804o/S1Jb1EIwan1J93t37zi7UuPlfSvMrvkoRKzJ0p6maS/XLLsv0l6Tjd+fNmflNRWCHsT2/guea8MBAAAAHDW4VVyAAAAAPrphyT9iqSbZLYgaVGdV6i9TiHccsJyr5T0JpkNSypKWpD0vyVdLrP/kfR6hfChh5YO4RaZfUjS/3Rfp1ZS5wmct65Cm/dKulLS/lVYlyT9mKQ/lNlPq/P7Se9TCG9KLL9PUkPSfadcc+d1e++WtF2dV8ndoxDe+VA8hH+X2b2Sfk9mG7rbv0fS9yiEmZPWFUJLZi+S9L9ktqvbhpsl/cApWnGFpD2nbCsAAACAs4L5/0gNAAAAAAAAAAAA5xNeJQcAAAAAAAAAADAgmBgCAAAAAAAAAAAYEEwMAQAAAAAAAAAADAgmhgAAAAAAAAAAAAYEE0MAAAAAAAAAAAADIn+mGwAAAADg3GZ77EWSXiHpS2F3eGmPdf9W0p1hd/jNPrXt7yQ9VdJLwu7w4X5sY7lsjz1C0pvUuS5rSvrDsDv8xwrX+ShJvyrpIkk1SbOSfi3sDl+KLPtcSa+UNNJddq+kXwq7w7Ely10k6ZOSvrZkFb8fdod/S7TlhZL+WNJb+/X9AgAAAOgdE0MAAAAAViTsDm+3PXajpF9fRvUFSdVVbtJDwu7wI7bHltOuvrI9NiLp7ZJ+MOwOd9geG5b0PttjB8Pu8PkVrPonJb0u7A5f625ni6S/sT32Q2F3mDxh+9slPUvSD4TdYapb9nhJfyHpeyPr/bdeJv1sj5Ul/Yykn5B0/TI/CwAAAIA+4FVyAAAAAM6YsDv8VNgd/uBMt+MMeJGkfwq7wx2SFHaHeUm/KOnnVrLSsDv89PFJoe7/H5T0X5KevGS5B8Lu8HPHJ4W6ZZ+RVLQ9NrqSNnT9kqQ3S1pchXUBAAAAWEU8MQQAAABg1XRfZfYGSRslVSR9RtIvn/i0Sne5N0t6lKQJSe/yXjVme+yHJb1U0tVhd9hoe+zJkl4vqSDpiDqviJvqLluU9BuSni2pLmle0qq8wsz22CZ1Xqe2UdJ3ht3hIytc5dO05AmrsDt8rvvatlVje+wKSS+T9N2nsexz1PlO5iPh622P/T9Jw5LG1emLnw+7Qy2ynp2Snhh2h9fZHrth+a0HAAAA0A9MDAEAAABYLVdL+kNJLw+7w33SQ78z82+2x765+1SMJCnsDq/oxm+Q9BRvhWF3eIekd9ge+6DtsV9R58mXHwq7w4O2x66R1O6uxyT9g6T3hd3hCd2ydZLeos5kzsdW+NkqkrZKGpK0aYXrkjptui9S/rCJluWwPfbLkl4uaYekV4fd4SuJZf9R0g3d//3+sDu0lyxyWNJfSXrnCZNwL5X0B5J+OrLK35H06pW0HwAAAED/8Co5AAAAAKvlEZJ+9PikkCSF3eHdkt4h6f9b4bpz6jyp8rywOzzYXfcXw+4w041/q6Qvh93hr0/Y9qSkH5V04Qq3re5n2iFpR9gd3rXS9UmysDs0YuWrsG6F3eF31fk+vkfS0VMs+72SLlfn9W+x+HzYHd685LVzfyXp8qWvnbM99jRJU2F3+MLKPgEAAACAfmFiCAAAAMBq+Vj3N22W+idJ37TCdbfC7vDqsDsEJ/7Nkt6ztDDsDouS/n2F2z6+rqmwOzywGuuS1LQ9FrseK6zS+hV2h0bYHf5V0pTtse87xbLTYXf4W0nP6uF1drdIuuL4/3Q/z2slvWY57QUAAACwNniVHAAAAIDV4k3anCq2GlJP2qzKUzirbL86TzLds6S80odtfUCd1+z9w2ks+1FJ3yXpj09j2XWSmif8/zZJWyS92/Y81OUTksZtj+3tvhYQAAAAwBnGxBAAAACA1fIU22Obw+5waEn5d0v67z5v+78kvUDSZ08stD1WkfQcdZ5aWhHbYxOShlbpqaGPqTMB80cnrP8JevhE0YnbL0m6QNI9iSenYh4naaqHZfcv2e6OsDvsW1JWkHSdpId+uyjsDvslPWrJcjdIegqTQgAAAMDZg1fJAQAAAFgtc5LeZXts5/EC22PPl/R9kt7a522/X9LVtsdecsK210l6pzq/T7Qitsd2SdonaZ/tse9e6frUeXrnB22PXdpd/7CkN0j63USdmyXdJelPnDb+kO2x3+t+7uNl10j6U0m/v2TZP7Q99tLuBM/xsu9SZ7Jq6ZNFf2l77Cdsj+W6yxUl/Zmktzm/kwQAAADgLGahp39oBgAAAAAnsz32w5JeKelLkt4t6ZcllSUVJX1a0q+E3WH6hOV/TNKPdP93QtK4pHu7//+FsDv87AnLvkvSRkmPlvSFEzb7gbA7vGFJO0rq/MbNsyQdn7D4M0kXqfPU0jvC7vAHy/yMmyR9UtJmSc8Pu8OHlrOeJeu8QtIfSBrq/nlD2B3el1j+fZKeLek1YXf4HWeZH5D0o+r0fU7SEUm/FnaH25YsNyTpp9V5mip0l721u+7JJcvmJL1K0vPUeS3fkKS3hN3hLxNtraizL2xX5/v99bA7vNNbHgAAAMDaYWIIAAAAAAAAAABgQPAqOQAAAAAAAAAAgAHBxBAAAAAAAAAAAMCAYGIIAAAAAAAAAABgQDAxBAAAAAAAAAAAMCCYGAIAAAAAAAAAABgQ+TPdAAAAAADnGbNdkt4oaUJSU5JJ+oBC+IMz2Kqzj9kjJL1JneuypqQ/VAj/sQrr/VVJz5M0I+keSb+oEGaXLPO3kq6UVFtS+0pJT1IIe5cs/72SfrL7f01Jf64Q3nOKdrxQ0h9LeqtC+M3ePwgAAACAfmBiCAAAAMBq+1NJv6wQvnqmG3LWMhuR9HZJP6gQ7pDZsKT3yeygQvj8Ctb705I2qTO5E2T2PEl/I+m7lyx5v6SfUwiTS+q/X9KRJWXfKuk5kr5NIVRllpP0WpnNKYT/ctpRlvQzkn5C0vXL/jwAAAAAVh2vkgMAAACw2oaYFDqlF0n6J4VwhyQphHlJvyjp55a9RjNT56meVyuE0F3vv0oqyOyyk5YN4Tcik0LrJDUUwtySNX+zpDcphGq3bkvSH0l6caI1vyTpzZIWl/dhAAAAAPQLE0MAAAAAVofZ22T2YUnXy+zDJ/zZs2S5a2T2IZntldlTZLZTZv9XZh+X2Udk9uglyz9dZh+U2adldrPM/l5mF0W2PyKzP5PZ57rL/ofMHiuzL3W3d/UKPtsmmd0psymZfdOy1/N1T5P07pNKQvicpItWsM4rJH3uoQmcr/sXSU8+jfrfIen/RcrfI+mXZLZRkmQ2Kum3JS3djrrxnZKeqBD+8fSaDQAAAGAt8So5AAAAAKsjhB+VJJl9UCE8K7HcFyU9Q2avlfRsdZ5IeaVCuFlmWySNPrRs53dqfkzSixTCg92yJ0j6vzL7QYVwd7csp84Exl8qhJ/qll0j6e8lBYXwjBV+uoqkrZKG1HlV20ptlHRfpHzpb/70YpOkeyPl90h60mnU/05JP/Ww0hBulNlWSQdk9jVJl0malvRUZz2/I+nVp9NgAAAAAGuPiSEAAAAAZ9ITJD1bIUxLkkI4KOmgJMmsoM4ryZ550uvNQrhJZj8p6XclfU+39IWSPn7SUyohfFFmr5T0thW3MoT7ZLZDndfkPbDi9UmmEBrR8uXLK/4UT0NSMd0aG5I02u3/pbELJf2CpMcqhFtltknS5Qrha5FlnyZpSiF8oefWAwAAAFgTvEoOAAAAwJn0+ocmhR7uWkk3R37zRgrhFkk7Tyh5mqR/jazjo+o83bJyIUyt0qSQJDVlFrseK6xgnXWnfllS8xR1ny3pP53Yz0v6JYVwqyQphMOSviyzV5y0VOfzvFbSa067xQAAAADWHE8MAQAAADibhVVYx0qewumX/ZIuVOc1byeqrGCd9yv+G0UXSjp0irrPl/R6J3aZpJtOKglhWmbfKunNJ5Ruk7RF0rtlD3X5hKRxme1VCO84RRsAAAAArAGeGAIAAABwtrpV0hNkNvKwiNl16kyEHPdRSd8RWcc3SRpbldaYTchs+6qsS/qYpO9asv4n6OETRSfGSzK7RGbeRNc+SVfJrLSk/AWSbkysNy/pIoVwp7PE1yRds6ROWZ2JoK8LYb9CeJRCuOGhP9KrJP1vJoUAAACAswcTQwAAAADOTp3f4PldSf8gs69PQnQmUP5c0i+fsPS7JT1ZZi88YblrJP2Gjv9m0UqY7VJn4mWfzL57xeuT/kHSD8rs0u76hyW9QZ3P67lZ0l2S/iQaDSFIeoek3zqh3d8paUEhfDWx3m9SZ2LN80ZJf/DQpFhn4uktkv4+UQcAAADAWYpXyQEAAABYObNRSf+ozqvQHi2zD58QfYtC+D8nLPsbkp6pzmvPvlNmx38D6IBC+P6T1hvCu2U2Kekd3SeHcpLukPT9CmHvCcu1upNCvyezX1Xn93bul/RiSX+zCp9wUdIBSZslHVvx2kJYkNkPSvpjmQ1JGpL0BoXwuUStvZKuVOc1dJ43SfpFmf3/2bvvODuu8v7jn+fWrdKqF0tyNxhMMcWYbjqE3kI1NUASSkggdFiWXhMCPxIgdEwSekuoBgyYZkxvxr1bklW2l9vO74+5K69W5znavXuvJGu/79dLL3vPM2fm3Lkzz5yZc2fmu0AZuBx41kFac3fg84m2Xo3ZK4BPY1YiezTfp4F/d+uYdZMN1m0me5TcFYTw6YO0Q0REREREDgHLflQmIiIiIiJyFMoeu/b95mPNRERERERElj09Sk5ERERERI5mLwS+dbgbISIiIiIicqTQHUMiIiIiInL0MHsR8BggAF3AlwjhHYe3USIiIiIiIkcODQyJiIiIiIiIiIiIiIgsE3qUnIiIiIiIiIiIiIiIyDKhgSERERE5epjd4XA3QURERERERETkSFY43A0QERE55My2Ae8BBoAaYMC3COFdh7FVRx6zWwLvI+sv1IB3E8I3lzjPjwO3AGbmlN5ICI9fwHQ0y+5KCFfOmfZ04OnAXYHjgA2J5ZeBVwP3BarAKPBKQvjToj+LyHJlthn4BHA6Iaw93M05Kpk9HHglMAlMAC8lhEuWOM9+4P3ACcA08E2yvB7mTfdnYEdkDhsI4dQlt9VsI/AK4PZkP1S8ihDOXvTnERERERGRlmlgSERElqP/B7ycEP58uBtyxDLrAz4FPJkQLsGsF/gaZjsI4ddLnPvjCeHag0xzDfCPhLB3Xru+DuyaN+3xwBeBfwK+fZD5fgj4PiG8rjm/bcAnMTubEK5ZWPNFlrkQrgcegNm5h7spR6Xszsd/Ah5ICOOYnQT8D2b3JISpJcz5Y8CnCeFLzeW8C3gB2Q8A5voeITx/Xpu6gK8sua1mdwHeCryaEF68hM8iIiIiIiJLoEfJiYjIctSjQaGDOhv43L5ffYeQ/Qoc/vGQLD2E10YGhVYBVUIYnzftFwnhh4TQSM7TbACYIISPz6l7NfBG4BltaLWISDu8nOzHC1muC+FS4L+AJ7U8R7NTyY59X5pT+mrgaZjtf044f1Ao80Dgu0tqa5bDh4BHEsJPF/8hRERERESkXTQwJCIiy4fZJzA7D7gjZufN+Tc0b7rbYPY9zK7E7B6YbcXsfzD7MWY/wOx286a/D2bnYvZzzC7E7L8wOy6y/D7M/h2zXzWn/SZmd8DsD83lnbaEz7YOs0sxG8bs3i3P5yb3Ar6wX0kIvyJ7VNtSva253s9vrtOFtvfhwP+2vNQQhgnh7yORSaCr5fmKLGdmJ2P25WZuvACzVzjTndDMoxc28993ovu+2VOb+WFX8++7N/PjjzD7UnOAd+70/9Bc9vcx+wZm/4LZZyLz3YzZx5o55/zmv79d+goAzM7CbASzSzBrx6P1jieEC+aVfRm45xLmGcvpM8Cfga0LqP+oZhvmW0xb/xZ4AyGMLWB5IiIiIiLSQXqUnIiILB8hPB0As3MJ4f6J6X4P3Bez1wMPAh4AvIAQLsRsA9C/b1qzxwLPAs4mhBuaZWeQPUrnyYRwebMsD3wJ+M99gxNmtyH7ZXUghPsu8dN1AxuBHmDdEucFsBa4OlI+/50/i/V5YJgQzgdors/PYfaUBTzK7ZFAbGCndWZF4HVA7BfyIpKWAz4KPI0QrmjeefJezB5DCF/cN1X2eLFzgBcSwi+aZZuBj2C2ihC+vG/aEM4BzmkOtr8CuDvwFEK4oZkzG3Pm+wRgG3A/Qqg1y27VXBZzpttE9k6klxLCb5tl3cArMXs3IbxkiethLdlxIU+Wg5dqMlJ2JbBpCfNcB/wsUn4FcAxwlVszO36dQAgXR6KLaeuZZD8M+AfgccAU8IH9thURERERETkkdMeQiIhI2hnAgwjhQgBC2NF8VM7soMLLgCfsGxTKprmA7JfRb58zn8cCPyaEz86Z7vdk73foZ6myR6JtAbYQwueXPD8wQqhGy5cihP/dNyiU/b0DeBXZeki0xnqA/ub07ZF9f58C/mPfAJ6ILEYAnkQIV2R/hQbwXrIB9bneBjxv36BQNu31wF+TDc4UI/POAyuBR+zLryH8nhBG50zTDezZNyiUTfMn4D7z5jVINrj/2znTTTXfNbYes+MX+Hnjspw7m39jA+qLVTugJFu3S/lRXwGYjpRXgdJB6t4T+LETW0xbu4H3kH2v9yEb7H80Zo8+yPJFRERERKTNdMeQiIhI2hsJYcSJ3Ra48IB33gCE8BvM5j6e515kv6yf74eAN//FCWEYGG7LvKCGWS7y3p7YBdylupBsgC3lQcC327ZEs17g08DHCOGrbZuvyPISCOHaeWWTQHle2Zb9BmX21Q5jmP0SuA3wq3nROiG88iDL/yTwT5j9H9ndJ9cAPwXm34FyJvBBLDqu3QecSnbnTOuyga52CQeUZINnB5YvXIV4/u4iNrizv0eTDaLHLKat/UAfIfxD8+8aZs8Dvkp2R62IiIiIiBwiGhgSERFZmqVcqJu1tLtwOuM64FgOvFja3YFlrQLqB5nmUcAb27K07B0gnwXeTgjfass8RSSlHXkyMtfQAN4FvKv5uLPjgYcCX8PsYYQwm1dmgEcTwt6OtKP9Yudo24AblzDPa4i/I+5YYOdB6t5xzmDOfItp6yXAR/YrCWESs85sHyIiIiIi4tKj5ERERFr3O+AMzPoOiJidTnYhbtYPgYdH5nFvYEVbWmM20HxvRzucT/Yr8bnzP4PUr+rNys0XzMcHusw2OI+Mekhzed58C8Bx+x7htxRmxwJfA16jQSGRQ+Y6zG53QKlZP3An4PctzdXsPfv+P4Q6IVxKCP8G/AWYu7yvA89taRkLb8tmzAbaNLerMbvDvLLHAj9KLP9g+f/HZI9um1unCzidbMDGm+8dgF+3qa1fAx42b/5LvRNKRERERERaoIEhERGRVmXv4Hk78Jnmy80z2QDKfwAvnzP1F4C7Y/bYOdPdBngtsPT35phtA64FrsXscUueH3wGeDJmJzbn3wu8lf3fmzTfhcBlZO8YibkD8FXMTthXYnYm8BzgPxPzvTfZwNrSmN0a+G/g2YTwkznlZcwesOT5i4jnFWSPcrvzvpIsZ34WeIvzPrOFeCRmz9qvxOwUsnfD/WVO6bua0z4Ps9ycaY/D7OOY3avF5c/O53HclH+3LWlemfeQ3QXV25z/ScDj8R7ntpD8n71HrYbZI+aUvhn4ICGkBmYeDXy5TW39InAfzO7enNaabfh0Yv4iIiIiItIBepSciIgsD9kv0z9L9ii022F23pzoBwnhv+dM+1rgfmSP3XkkZrPvANpOCE/cb74hfAGzvcA5zTuH8mS/vn4iIVw5Z7p6c1DoHZi9iux9D9cAzwA+1oZPOAVsB9YDe5Y8t+zxPk8G/hWzHqAHeCshzH8PyFxXArcgewxdbJ7fwOwqsnWwhux9E1cAj5/3Qvn57g583o1m6/OBzb/mfrfzv6/HA+uAj85710iJ7P0m30m0QURmZY9t+xJwR8y+C/wdIVzcvOD/TuAEzP6TEJ4DQAiXNvPJW5oDB3VgDHgTIZw3b96fB9ZyYJ7+FiG8dV5LfgKswOzbZI/kzJPlv2cTwsS+qUKYaA7+vhb4BWaTzcgO4N8JYakDz7uan2c3WS5emhB+jdk7yQbS82THi7Oj77PLLDT/Pwt4N2YvJMu/XyOE9x2kNacAQ21pa3YcfDTwb5i9nexdVF8hhE8cpA0iIiIiItJmlv6BmIiIiHRU9ovp7xPCWYe7KSIiIiIiIiIicvTTo+REREQOrxcCeteNiIiIiIiIiIgcErpjSERE5FAyexHwGLKXbXcBXyKEdxzeRomIiIiIiIiIyHKhgSEREREREREREREREZFlQo+SExERERERERERERERWSY0MCQiIiIiIiIiIiIiIrJMaGBIREREwKwfs09idj5m52L2UsxsifNcjdm7MfsxZt9vzvdRkemegdmfMTtv3r8/Y/aMyPQPxewbmP2oOc8PY7Y6Ml0esxdh9kPMftBsw6swU/9H5HAy24DZtzHbe7ibcsh0Isdm8304Zj9pzvMrmJ3sTHdrzD7dzMffa057WtvaavbYZl7+LmY/xezeS/5sIrIwyzGnLobZLTH7TrMf+B3MHtym+T4fs181+5jnYLbuINOfjtl/N9vxE8xeHJlmK2b/h9nPmvN90kHm2YXZS5p5/bxm3/jAPrGIiEhE4XA3QERE5Khl9gSgSghfPNxNWYCPAZ8mhC8BYPYu4AXA+5Ywz2cB3yKElzTnWQbeh9kuQjh/znS7gH8khG/uV9vstcB188o2A/cHnkQIw82yOwMfAP563vIfBDSA+xBCvTnt3wAvB966hM8lIksRwg7ggZide7ibcgi1P8ea3QH4J+CBhDCO2UnA/2B2T0KYmjf13wJvIIS/NOtuAD6G2VMIYf7F5IW3NRto/0+yXP14Qhhv+fOISGuWZ05dGLM+4FPAkwnhEsx6ga9htoMQfr2E+T4QuBtwJiFUMLsdcA5mf7Wvz7n/9M8D7gv8MyFcnZjzR4DXEMIFmBWB92A2vS8f7z/PtcD/kOXs+xNCo+XPIyIiy5KFEA53G0RERI5O2d0uNUI453A3JcnsVODdhPBXc8rKwPnAXdp6oml2OvAUQnjpAqb9HvAgQqguYNovA2cTwtgCpv0uIdzvoNOJSGeZnUsI9z/czei4TuVYs88053vBnLJ/AoYJ4aMLqP+PwCWE8L8tt9XsVcDVR/xxTmQ5WC45dTHM/g7oJ4R3zCm7A/BiQnjaEub7FeBphDAyp+xFwA2E8Ll5096jOe1zDzLPOwNP2K+PbFYCvh79Xs0+B7yeEP7Y8ucQEZFlbUmPUjGzATO7v5k9yczu1q5GiYiIHFJmhtk/Nh/b8EPMvoXZuzB7e/MX2LPTFTB7LWbfbD6u4buYfRazLfPmtwmzbwOvAF7N/o9He1eb2vw1zGYw++c2zO1ewBf2KwlhBvgzsLUN88+YrQJeDVy2gGmPBa5f4KDQg4FbAxMHma6A2SvJ7lASkUPFbHPz0WQXNB+f81+YxXOL2QmY/Q9mF2L28+Zjf+KPJcvy9i+b8/wJZk8ke7TkzzB7yhLbfHPIscfvNyiU+TJwz4PWNDsFeA5w+bzIwttq1gWcrkEhkUNscTn1DMy+OidPfguz+zjTPqXZVz2f7JGQ/43ZCZHp3tWc7tzm389uTv9TzN5xwPSL+2zrMLsUs2E39y9OLKf9CjhuifPt229QKPMF4K8i076A7O7OgzkBuHi/khAqwOXNfvFNzO4K/FqDQiIishQtPUrOzAaA9wBPmjOPTwA/acb/HngN8JgQws+W3EoREZHO+gBwCXBXZm+lNbsf8Hngv+dMF4DzgHcSwnRzupOAfwcecdNU4QayR3o8g87dMXQcUAK2tWFe64DY8foK4BjgqiXNPXvcxjuBW5Gt0w8voNajgK8cZL6fBc5q/vVE91f32ePnPgucTvY9P2wByxeRdjBbQ7bfv4QQftosuxXwUWDjvGlPAs4BXkgIv2iWbQY+gtkqQvjynGnfAhTJ7mKpNZfzaeD2ZI/2uXKJLT+OIz/HTkbKrgQ2uTXMXg48F9gCvJIQ/jRvisW09W7A+c1BpjcDG4CLgJdHHk8nIu2wuJx6P7L9/bmEsL1Ztgn4d8xWEMJX5kz7GiAPPHhOH/d04FOYPZUQrtg37ewdLdlA0GfI8sN9CGEas7sv8RN2Nz9HD1k+Wqq1QOzRbTNLnO84Zhuaj/Gb9XTglP2myh4HVwAMs/eS9UV3kz0u7g/z5nkp8Mx59VcBDycbdJqbfx8CfKH546iXNJfxHeDt0UfZiYiIRCz6jiHLntH6Q+BpwB7g68D8l5F+g+xg/pilNlBERKSjssdJ9BDCu5j7fNUQvgu8kezkbbasTgg/2nfCnJVdSnYSe6jdCTgReFEb5lUApiPlVbILo0sTwrcJ4XZkv2K/gIX1Px5C1p9IzfevgZOBlx1kuusJ4R5kdxV9Ar1jUeRQejnwun0XMIHmYMQ/ALecN+3bgOftGxTKpr2e7P1hr2xeYJsdLDqDEP6ZEGrN6XYDTyYbLGqHm0OOrR1Qkg2Q+zkuhLeTrffHM/f4dpPFtHUD2YXbj5E9zuheZO/y+Dxm+YM3X0RasJic+jKyx/dunzPtDWQ59cX7yrK7jU4mhKF5fdxfk70v8jVOW24HfJYQXrGvXgg/bu1j7Vvm1WQD11sI4fNLmlfGnLvP51/DWqx/IXtP26rmkwfOBm4LzL+LaC1Zrv4ycC4h3BN4Idng3P4/PAjhl8CJmD0qa6FtBP6LbCBw9bz5bgAeSHbn5xPI3l80Arx7iZ9LRESWkVYujLwMOI3swsrfhxCmzGy/X+iGEK4ws4u56Ve8IiIiR6qzyE7WDhTCv+z3t5mRnUyfDfQDdWCc7E6YQyt7tM/8RwC1qkL8YmoXsQuPrQrhZ5hdBbyV1CM1spfpzizoJebZYzw+jtlbMLs8eZdACFdi9m9kJ/LP0i8qRQ6Ju5BdyNxfCH/C7KJ5pVsI4beRaccw+yVwG+BXZHeqfD0y3R7MftKGNt9ccuyBL4vNBs/SL5HNLpJ+FbNHYvYEQvjMnOhi2jpClstvRwiXNOf9o+bjpR4C/C8i0m4Ly6lm68nuoDwXi46BrMVsNSHsAe4KnInZec4yp5zynxDCF5xY60IYBobbNLcaZrnIXeVL+xFBCD/ArIds0CZH9kSBszkw7w2TDcQ/gxC+2qx7TfPuzRcB89+5+dfAWzF7Kdmjj19L9v3Mf4fmCNkdSndsHq8A3o/Z1zFbGXnMnYiIyAFaGRh6HHAd8LyQPe/UcxXZyZuIiMiRLA8s9MXfbyB7tMUzCeFGAMy6gXM707RD5hriz1o/FtjZ1iWFcANmtz7IVA8HvrbIOf8QeDTwrwdZfgOzG8h+1fnrRS5DRNpr/tXK9IDGzVencmzsXG4bcOMC638L+Ezz36zFtPUi4Px9g0I3+S3zH6ckIofC3Jw6DVxDCGctoN4k8L+E8JKOtOrwuo4sf10xr3zpd/uH8A3m3t2ePXrvinnTTGF2Cfs/mhqyPBkb4BsjeyfRTcxexfz3JGX5d3jOoNCsPwDHA79Z0GcQEZFlbdGPkiM7yPziIINCkD1mbk0L8xcRETmUfkI2EBFntmHOX3cjhJfsGxSC7ITPf055g9aOtQdnViZ7SftSH4UB8GPgkfPmn71UPHsnT2z51lx+eVFLMutn/jPwD/QI4KuLmm/22KfhDkwrIktzAXD/A0qzd2LcYl7pdZjdLjJtP9l++/tmyU/I7kiZP91qsruJlu7mkWOvbj4Oda7HAj9aYLtiuXDhbQ3hcmA1ZivnzeMUDrwIKyLtsbCcGsIoMIrZmQuY5w+BhzTfZ3P4mQ00HxnaDueT/XBo7vzPIJWjWsn/2d2a7wTeH4l+l+xRb3MtLE9m7xCabj5Wda5vAA+O1DiJpb4bVERElo1WLlbNkP1a+mC2cuDzVUVERI4s2bPQ+zB72X7vRDA7CbMvsv/Fxzpmx86ZZgNm/wHc25n774CHzpvvCZi9og0tvxC4DHjvkueUXdyrYfaIOaVvBj6433uX9vfe5vIvjEbNTsHs882Xyc+WrQX+h9RdPWa9QC8hxH9Fb/ZuzP5m37tGsrJHk530f2ZOmWH2NczuM6esiNmbgGv3e4myiHTS24E3YHbXfSXZBcxzOPDOllcAH8TsznOm3QR8FnjLvvdEZBfIfoHZW/fl12xQ6GPEXzLeiiM7x2beA7yrmTdp5tvHk73n5yZmT8HsHftd9DW7DfD/yC5kLqWtbwM+1Bw8ArOTgUcRe9SfiLTDYnLq84EPYHbWfqVmd8XsG81B99lBpDcBX8Ts+DnTFTB7AmafbPun8GTv3bkWuBazx7Vhjp8BnozZic3595I90vjtiTqLy/9mpwJfIsuTv49M8U7gzZgd05y+nyx3/ntiniXMXgD8HfC8A+LZu6J+h9k/zanzCGAvIexdULtFRGTZa+VRcn8C7mhmvSGEidgEdtPzbNvzjG8REZHOegrZBckLMJske5b6TuANhPCbOdO9AHhf86SyRPbojY8AJ2P2feCNhPC9fVOH8BvMvgd8v/l89zLZL64/1IY2X0n2y9Dr2jAvyF4u/G7MXkj2/qSvEcL7EtNfS/Yy8vhF2BAuxuydwJvIXp4L2fsp3kUI30zM9wzSj5F7LdlLe7+NWSB7FODvgPsTwuSc5QfM/h74Z8yGyN4HlQe+CAwm5i8i7RTCrubFvXeQveMrkD1Z4G+BtzRz55sJ4VxCuBSzJzfLTyLbb8eANxHCefPm+6rmBbELMJsm+/HaINk7F9rhSo7kHAvZi+GzPPvV5gBZBTj7gPezhfBpsnfC/jdmJbJcuAt4IiHMf8/T4toawuebx8TvNXPyJPC3zsveRWSpFpdT/9z88cwbMHs3WT4tkN19+Q/Nx5bNzve/MLse+A/M1pC9QzNPdrfLP+ybzuw44MPN+dyO/d9L9Pbm49WWYgrYDqxvfq6lCWGyeVz5V7J3AvUAbyWEXyVqXcnB8n+2Ps8gO05dBbyoObAea8OVzUGeTzQH0QtkP3bY/y7MbIDvw2SPAYTsx1SPSvyA4MVkA04/a/59CfD3ic8lIiKyH/OPMU6F7ATh34BPAH8TQqhbdqLx8RDCs5rTfBp4IvDMEMKh+3WJiIiIiIgsX2ZfAJ5LCLsPd1NERERERESOVK3cMfRBsl9WPw04w8z+t1l+qmW/yH00cBrZs63PaUsrRUREREREUrJ3aeQ0KCQiIiIiIpK26DuGAMxsgOzROY92Jvkq8PQQgt4xJCIiIiIi7Wd2L2AIMLIfvP0FePF+j0cSERERERGRA7Q0MLSvstlpwIOB44AccA3wzRDCr9vSOhEREREREREREREREWmbVt4x9C/AcAjhDZ1pkoiIiIiIiIiIiIiIiHRCroU6LwBu2+6GiNyc2ZAN2JCdcLjbISIicTZkdzjcbRAROSqY8qmIyGLZkB1nQ7bmcLdDRERkVqGFOjcArT9/To5INmRl4IvAHYE7hcFw7SLqHgdcGgaDuz3ZkD0DeEbzz1oYDPdvubFHCBuyLuDpwCOBrcBngDe1ad63BN5Hto/WgHeHwfBNZ9qHA68EJoEJ4KVhMFziTPsq4BHAKHBFc9oDnsNvQ9YPvB84AZgGvtlsg/Z9WRZsyDYAnwLuHAbDqsPdnkOhU/v9QnOUDdnHgVsAM3OKbwyD4fGJeeeA84BbhcGwNhI/nSxP35XssbcbWv0cItIiuymfEpZHPl0UO7DPR4j3+RY53wP6fNF3L5mdAQwCfUCDLPe/ixDq86ZbXD7N3v/0DqAKjAOvIYRfLuETiSx7NmRnA88H/hAGw98ssu7Hyc7Z23K+Gpn/J4F7As8Mg+G8TiyjVYs5t17kfA96bm1Dthl4FvAgsmsGTwXOX8C8Hwv8DVACeoBXhMHwgznxZwAvB3bMqVYDnh0Gw1WtfyqR5Us5tjUdzLHPB54NjJG9uuYfw2C4MTJdCfg34M5k1xx+BLwuDM7ry2bTbgU+AKwhu+7wgTAY/ttZ/gF92TB49PVlW7lj6BvAPc2su92NOZrZkD3Bhuwxh7sdnjAYZsJgeCjZyeBiNYDhg8z/42EwnBUGw1ktzP9ItRKokw14vbBdM7Uh6yO7gPL3YTDcB3gU8LLmBc75094B+Cfggc3BtpcA/21DB+6fNmQvBNYBdw2D4YHA/wEfc5rxMeBLYTDcoznfjWR3C4osC2Ew7GjuJ0fdgT+h7fv9YnJU0+NnjxXNf+6gUNNzyQblf+PEjyf70cNdgd8v+gOIyNKFsIOw7PLpwthNfT7CTX2+5iDMUua7r8/XXPfxPp/ZbYE3A88mhHsD9yU7SX5bZK4Lz6dm64C3AI8ihHsCZwNvxmxbi59IRIAwGD4FPLHF6pNkP/zpiDAYngZ8pFPzb9Vizq0XOd+FnltvAf5ENjD08QXMN2dD9hHgdmT94vuFwXDXuYNCc7x5Xr/5/hoUEmmdcuzidTDHPhC4G3BmGAz3Bt4JnGNDlo9M/nqywbw7hcFwL+DPwLucWX8EGAqD4Uzg/sA9bMgeHVn+vr5sGLypL2tDR19ftpWBodeRnTB8xsyOaXN7jmbdZL/0OOqEwXB17JfaR7vmheMPh8Gws82zPhv43Owv6sNgmABeCvxjZNqXAy8Pg2G8Oe2lwH8BT5o7kQ2ZAX8LvHL21/9hMHwVKNqQnTRv2lOBnjAYvjSn+NXA05q/zheRo0wH9/sF5ahW2JCtAv6a7Bc/UWEwfDEMhh+GwdBY6vJERDrgbOBzhOZdlCHZ51sYu6nPx+zLZEPW58P27/MBjwf+lhC2N6cLhPAe4PaYFfebMoQvEsIPCQvKp88A3jZnvruAl5EdE0TkMAiD4e/DYPAulB3NFnNuvSCLObcOg+GCZn90coGzfwXw/TAYXjfbfxaRI59ybPtybNPzyQabKs35/pZsAH6/Gy6a+fiuYTC8f7YsDIZzgGNsyDbNm/bOwO/CYLigOV212c7nR5b/DOBtYTDry4bBo7cv28qj5N5G9iuxhwEPMLNfAVcDU5FpQwjh2Uto3yFnQ/ZksgtNK8kemVcF3hgGw/lzprk/2QWz+uwj0eY8dmgr8PYwGD7eLN8EfALYBgQbsrm3I14YBsNLI234W+CZZHejlIHvAYOznQkbsnc1458gG0Gtko2QPgM4BtgLPGl2B2rWOYFstPOk5nxHgTc5vzzJ25C9HHh0cx2E5mf6yrx2ngG8HTDgtHYNDjXn+xpgdn5jZDvk99sw75eRPe7tG2EwPHKp8+uQe5F9/n3CYPhV85F98x0/m9Tm+DLwWuCjc8pOAX4VBsP8XzB8Bbg7cOm85X9h3vJnbMj+TLZ961dIctRpPubhbcAtyW5/vhLnoL+YfGpD9o9kj4yYfTzae8l+mXIa8L4wGD69hDZ/DXgg2S3N72x1Pk2d2u8XmqNmvc2GbAtZ/8SAVznHKYA3kB2f6zZkLTZPRNrOFp5Pm48xO6DPR4j0+cyeAjyHLD/km/N9NSFcPm+6dwF3AmqEcH/Mnk32OB6AHxHCy5bw2dYBP22295EENz8t1AF9PkL4FRbt8y3UKcCvCAvo84XwWmceVbL1XG2xDSc0l3eTEH6H2cktzk9E5rEhuzXwVrJ81A38guzHOHvnTfd+4NbAAPB57zFHNmRPJcuVp4XBsNaG7O7AG4EisIvs8UXDzWlLZH25BwEVskcFt+uR6vvl2UQ/cKEWc269UIs5t16w5qPqTw+D4S0LrPIUG7JnkuXrfuAjcy+OikjrlGMXrBM5FqAvDIaReWVfIFsPn5tTtp7slTfzfYXsWskn5pSdAFw8r60VG7LLbciOnXfH5QF92TAYfmdDR19ftpWBoWdw0zuGymSPE7irM20gex7gzcmlwLPCYNgD+26L+4IN2RNnE0AYDOcC59qQnTtbKQyGHcADmzt7YU75Dc3yZ5C9W+ec1MJtyN5DtuPfKwyGmWbZ04Cv2pA9tPnIt5fakN0JGA+D4cxmwvo18NAwGL5jQ/Zc4Ck0b2Vu/mrlHOCFYTD8olm2GfiIDdmqMBi+PK8ZHwC+0ry1juYLEj9uQ7YyDIZPzvlsFwD3aU5zLm1gQ3Y/skcDPXd2ZLY5uPbvNmQr5g9OtWArWeI9YYnz6aS1ZIOt881EymK/PLoS2DSvbB3xC7tXcOD+uw74mTPtMc58RG62mjnu88BLwmD4abPsVmQDFxvnTbvgfGpD9hayfHOXMBhqzeV8Grg92S3RVy6x6ceRPXe8Hbczd2q/X2iOguw7GJ79IUbzBxefsyF7ShgM18yd0IbsNGBtO34wICJtZDflU0KWT7F4PsVu6vPtu7PEsj4fZisIc/p8Zq8hGwx68L4Bj+xxa5/C7KmEcMW+aUPzR1dmP8XsM2R57D6EMI3Z3Zf4Cbubn6OHLG8u1WL6fAu1mD7fgcweBFxJCLEf/S3UpcBtmXvyna37+2FWJoSlfD4RyX5g9G6yc+arYd87af7PhuwBzV9sAxAGw/Ob8bOAe3gzbF6nOMeG7FwbsleQDXA8JQyGG2zIbkP2+PjZX2d/BvhaGAxnNMtWAR8ky2kHfX/OQRz9edZ3N+B8G7JTyB7zuQG4iMjFaOBCsn72l8JgqNqQFYEP2pA9NgyGLyAiS6Ecu3CdyLEA4zZkG5rX2mc9nWxgfq5dwFYbMgv7vxv5bLLr5HNdSnaTxT7NdftwskGnq+ZNu19ftjmYdz8bsvLs9fqjQSuPh3km2cvznrmAf89qTzMPneatvnvm/D1OtuOd1ull25DdDjgmDIaXzd3ImoMxXwGeN2fyWhgMr2vG/wj8MAyG7zRjf2L/C4VvA543exGzWed6sjujXtnsRMz1mzAYPjBn2t1kz9l8UXPkupNeRpYct89Z/g3Ntr64DfN/EXAi2S9Jj1TWvKXxgPJIWW1+QfORSfMHfQvEn3daJbuw3Oq0IkeDl5O9nPCnswVhMPwJ+AeyX7zPtaB82hwsOiMMhn8Og6HWnG438GSywaJ2uBNZPntRG+bVqf1+oTmKMBj+d+7duc1O4KuIv+fobWSP2hCRI8vLgdftGxQCCG4+fRnwlH2DQtm0B/b5zLYCJxPC0H53wYTwa7Jzjf3vuLnJ7YDPEsIr9tUL4cetfax9y7ya7H0RWwjh80uaV8YIC+7zLVTr+dzsXmTvzfynJSwfsl9nvrQ5KAhmdyL71e2XgdVLnLeIZPn06bMXLAGagwHnAH+3xHnnyZ6e8ojmeThhMPw+DIbRZvwhwB/DYNh353dz0OLpwLFLXDbNz7QF2BIG25NnF3FuvVCd6jdvILtQ+zHg9SF7V8angM/Pf69GGAx/CIPhs7OfrfnfF7L/NSMRaY1y7MJ1IscC/AvwMRuyVTZkZkN2NtlAzX53EYXBUAe+Tfb+n4INWVfzhovfM6/PGQbDL4ETbcgeBWBDtpHsMfefnz8tzb5s8wfDNG/OOCr7sou+YyiE8ImDT3XzZUN2F7KLbFvIHhFUITtA/+gQLP7+wGed2GeAD5M9hmgh5u6EW0L2PMb9hMEwZkP2S+A2wK/mhA74hUkYDBM2ZD8n2xEvXGAbFsWGbD3ZL+nPdR4LtNaGbPXcgbvFao4gX37QCQ+vmg1ZLhz4TozYxeQwv6B5YXp+ecWp38WBF24XM63I0eAuRB5zFAbDn2zILppXvNB8ejfg65Hp9tiQ/aQdjW7+gKBd+axT+/1Cc5TnQrKLx3PrP5bsUay6e1HkyBPNp4TwJ2xOPrWb+nxYvM+H2WpC2EP26+szMTvPWaZ3Z8tPCB341XQIw8Bwm+ZWwywXeW/PUn5A0Fo+N3sY2TsznhB5DN3ihLALs6cDb8FsLdmvLv8aeD/Z4wJFZGnOn/cr6lmfI7tDcynvuaiHwfDKRPwBZBdH9xMGw5QN2TeWsNy58xqmjXl2EefWC9WpfvMI2cD87cJN7+v4UfPpLA8B/jdVuXnNRs9XFlk65diF60SOJQyGH9iQ9ZAN2uSA88juAorlwTeR/ajsPLLzgo8CfyAbTJvvr4G32pC9lOxuo9eSnWvs1z8Ng2GXDWV9WRs6uvuyrTxK7qhlQ/Ygsl9ZvKz5a3Gav8x42yFsRupi2UIvpC21Xmr6Tr7Aexq4JgyGszq4jJuD68h+CXDFvPLuyLSxfXgbcOO8smvIHjs137HAziVMK3K0m39y1WoePtJ1ar9faI7yrCL7kcZcZwJ3a96uP+t2NmT/Bzw6zHm/nogcUebm02ngGsKC+nyTwP8Swks60qrDazF9voVafD43eybwCOBxSx4UmhXCX4DHzllGGVhH0MvURdqgE9cMFio18HAkDkocGXl2YS4iuyB9ybzy33Lg45M8/UtYvohklGMXrhM5FoAwGL4B7BsMsyE7PbKc2RsA/rX5b3bafyRyU0MYDGPMeyKJDdmriN8gsV9f1oayvmzzyWJHjVYeJbePma0wswea2TPN7BnN/1/RrsYdBs8Bzp4dFIJ9t6V5o4GxhODdOtzg4Ov7u2SPbIt5EtDqe3yuaz6mbj82ZP1kjyL6/bzQYyPT9jjTtk3z1slRG7IzO7WM5i2IJzR36MPChmyzDdlAYpLzgUfPq3MGkQQIXG1Ddod5ZY/lwDvcrgVOjXzux0Sm/THwyHnL7wJOB+Z3UkWOBheQ3bG5n+Ztw7eYV7zQfPoTsl/2zZ9uNdndREtmQ1Zu5rN2dBAXvd8vMJ8uKEfZkG2IPNYUsnW433OUm4/nu3sYDGfN/gN+GQbDQzUoJHLYRfNp85FiN+XTkPX5sAX1+X4IPASzVW1q49KYDWC2uU1zO6DPh7l9vtl4GbMTMDf3Xwuc2hyImSvW5wOzVwD3BR7ftkGhuNeTvWdPRJbuHs2nbcz3OLJrCp30HbJ8sh8bsm7gwe1YgA3ZQPOxzO2wmHPr2fjB+tiLObdesDAYLgdW25CtnBc6ZW57bci6m+8und/uU4i/hF1EFkc5duE6kWNjdYrAO8nu2DnYtFuBJ5C9kuVg0z4YmG6+HuBgXs9R2JdtaWDIzHrN7N+B7WSjdx8GPtL8/x1m9n4z621fMw+ZK4B7zv7RfDbhi4F/dqavz+5MNmR5G7KnAu9wpv0d8NC5z4Zt7gj73pEQBsNvyC46vn1uJ6P5LMVHAB9q6VNl72H4oA3ZnefMcxPZY+veEnke5BNsyP5mzrSryTb+f3WeHdlOzwc+MO+X4NiQ3dWG7BvNi69L8V7gMjr0OLyDsSF7HFlH8lobMu+F8Z8BnmxDdmKzTi/ZsyzfHpn2PcC7mtNgQ3YS8HiyZxHv0xxBP4fsJZazbXkkMBkGw5/nTXs52e2gj5hT/Gbgg/Ne5iZytHg78AYbsn0vi20OCp3DgXe2LCifNjsWv7Ahe+ts3m/m0o8RfzljKy4ky2cLfcSoq8X9fiH59D0sIEcBdwC+akN2wmxB80cCzwH+cxEfRUQOr7cDb8BuyqfNQaFYPn0+8AHMztqv1OyumH0Da/b5skGkNwFfxOz4OdMVMHsCZp9s+6fwmG2j2Y/D7HFtmONngCdjWZ8PS/b5ZqVzfziwz4dlfT7C/n0+zN5D9pz0pxFCbU75A7E2vVfUbA1m/w/IEcIH2zJPERkne+/M1tmC5jsTnkDr1wwW6uvAaTZk+17gbdnLuz9N9u6MJWmeI8+eL7ctzy7w3HpWMs8u5ty6BW8DPtT8gRY2ZCcDj2L/R1SvIes333vO8jeR9ZnfuMTli4hy7GK0PcfOZ0N2KvAlsmsTyZsVmk8C+wTw7DAYvMdNY0NWsiF7Adk7o5LvZrMhW2NDWV82DB59fVkLi7zOa2ZdZM/tuzPZbWy/56Z3HBxP9g6aQPaLwbNCCDPtamynNTfgfwNOIHv8jQFfBQaAhwKfCoPh3XOmvx3wPrLPWyZbL9eRnei+KAyGb8+b//OApzT/LJP9CvtDYTD8cN50fwc8g+zxOWXge8BgGAyTzfi7gGeT/cL7MWEwVGzIdgEfC4Phn23I7kHWUXldGAyfbNY5AXgLcFJzvmPAm8JgOK8ZLwNfBO5I9kvP55ANks00p39rGAz/N29dfZ6bbg+8HdktzjTXxz+FwfDr5rR3JHsGp0WmnQQeN/vZmtMfD7wBuFWznQWy7exfw2C4mCWwIXs5WWfpO2EwPHSJ89pG9uzKAtk2shKYfefF25u3Pc6vcxbZqPVu4C5hMEQfp9T8tc+7gJ7mv7eGwfA1Z9qHAC8lO0hUyLa9+e9FoTka/1KyXxmUyfbb5zdvpZw/7Qrg3WS3yPcDXwuD4c3zpxM5WtiQHUM2sH8yWQ7bAwyS5c088OYwGM5tTpvMp/Pm+09keX+aLJ8Okj3r9k1hMFy5xDZ/DXgQWa5f8iNPF7vfLzSfLiJH3Yos969pLv8K4B/DYLg2Me+nA88kO67sOybOib8KeGDzz7nHnu1hMHh36IrIUtjB8ykhy6fNgZ5on48wr8+XDSC9gixHjDfn9V3gvYSwtznNcWQ/WCuw/z4P8HbCgX2zRX62dcBPgfXAowjhe0uaXzbPA/p8hHifrzn9vtxPcHK/xft8hHl9PrMp9l9Hs04A7kCYk3/Nz6eEefnU7Clk50MzZN/Vv7ZlXYksc80for6A7N0JXyB7p1sX2VNLfg68IgyGkTnTPwt4WvPPAfY/X/1tGAz/MGfazwNrOTB3fisMhrfOa0eZ7JfT9wdmfzj672R9yMcB54TB0NI7OGxo/zwbBpeeOxZzbt2c/qB97IWeW9uQ/RU3vS/zOGAv2buEqsCzwmC4JjLvp5NdqAxk10teOL/v3LxQ/Aay76tI1sd+dRgM5yMiLVGObU2Hcuy7gTPIrrdcBQw1f8w6f7oC2U0qRbKbX84n+8HuAY97a15v+DDZtRmA/wH+M/ZDWBs6sC/bjnV1JGplYOhlZL9iuAD4uxCyi/9z4rcH/oPsC3xFCOGd7WnqAe3IAf9AdsA8juxXiJ8FXhdCmOjEMkVElgvl2M6xIfsC8NwwGHYf7raIyOGjPCsi0lnKsyIinaMcK3Lz18qj5J5I9iuHB88fFAIIIfwG+CtgGHjyUhp3EP8K/AvwJ+CFwOeAFwFfayYnERFpnXJsBzQfj5bToJCIoDwrItJpyrMiIp2jHCtyM1dooc4pwDdCCMPeBCGEvWb2fdr0Yqz5zOzWZEnniyGEx84pv4LsGYVPBP4rNY81a9aEbdvir3hZ7F1UIhL329/+dlcIYd3hbocsTjtyLECxVA7lrr5orJFuQLQ4l+hb5hLdznzOX1ox71f0jgWNhj+/MC9W3Vxj+sxpsEDIQWlvkZ4fdLP63wb2m7n/DnEw/FihED+Mpz5XMe8/mriQXMd+zJzl5Ur+Kyomp/x3nOcTbUzFzGlj6rwkl/PX78yM/zTcWq3mxopF/3MXCvH2p968Wa/X3djFl1yqPHsz1I4829vVFQb6nFcvpt7l6uS2ZB5KxBqJfnPyjbLOPOs1f3u3xP6a2pdTXfsWVlXyc3l5KJthomJqnl4jk233F5Y6jqVym3ccyCW3D39ZqeNb6rtOtd/bHvO5xGP5E+vxhl27lGNvptqRZ/v6e8OataujsUYjtY/F81g++Pkt9eKI4PT3ACYr7isU6O9eGS0vJuY3MTXsxir1xA0AVnRDxbzfLyoWy9HyQq7LX1RibaWOV2mLT9CpPJu8Jp6sFy9P5dnUcSd9bPfrpY7twdm+U1Lr6qK/XKw8ezPUrmsGq9esCVu3xq/NVhPnQMHpX6T6FkeMQ5embh5S66MDn/nQrsbE0loIpQ5xBaeve92117Bnzx63ZisDQ4GFvfAqR+fW95PINp33zCv/T7LH3D2VgySgbdu28b3vxR8PmDohar2jIXLzlerIpS7Srlmz5io3KEeyJedYgHJXH7c580HR2FQ9caG+ED9B7O7ujpYD9PjnjqzomnRjm1b1uLHqdDVaPjHlz68yc8CjbKF5Dm2NarZWzzpwknLRP5m2nH+oXrt6bbR806oVbp2Nfb3+/MrxgTyA/i5/XRX6419Az7bjo+UAv/zzAa8Z2mflSudiN7Bi5So3VirH29hV9red7i5/3V9+xaVubMeNu9zYMZu3uLF1q9dEyy34fY/xsVE3dp8HPVx59uZpyXl2oK+f5z3iUdGYN2gMfj+3VIrnXkgPdk5P+4O8qQHlfD6+7+3du9etUyr7+2tP4kBQrycGOxID6fVa/KJDLpGXU+sx+eOzRKhYin/u1PpNfeaxsQNeL7nPnj173FhvT/z4USr6fcFKYoA9NZjX1eXn7fFp/zg8ORPfHles8I+LqfO7N3zkw8qxN19LzrNr1q7mFYP/EI1NTPsXLKcn4/tYf30kWg6wsu4ngdqGeH8P4FdXxF4TljnrtvFXQB6zar1b5+d//oobu3L0AjdWKPjX9devONaNbV5/YrR8bc8t/GVZfMALoNzlH6+8ATuAhjNol7r8U6v68ysn+p61avwcA6DbObx0Ff3jTtnp/wLkEz/SKiT69jNOLgWoTkTOd4DUgWyq4h8L7nbv+yvP3jy15ZrB1q3b+MZ3vx+N7dzjnwNVavFB8VzqcnWi39FuqdyRvpkqNSibiC2gTe3S6mVxd9AuMcN037m19VF3fqacqpPqK6baGBKDm6R+6OQ84K2QOG9Z7VznecxD/8pvA609Su4vwH3MzL0yY2ZrgPs2p+2EO5P94Hy/nkkIYRr4TTMuIiKtUY4VEeks5VkRkc5SnhUR6RzlWJGjQCsDQ/8FrAS+ZWYH7OhmdgbwDaAf+PTSmufaDOwKIcR+dnAdsNbM/J9GiIhIinKsiEhnKc+KiHSW8qyISOcox4ocBVp5lNz/Ax4N3B34mZldBlzRjB0PnEh2O+GPmtN2Qg/g3Ys6PWeaytyAmT0XeC7Ali3+Y15ERJa5lnIs7J9nS4nHE4iILHNL7suu7PUf/SgiIkvPs6vXDHSqbSIiN3dtuWZwjK7NihxWi75jKIRQAR4A/AswCZzU/PsBzf+fbMYeFELwH566NJOA9wDvrjnT7CeE8KEQwp1CCHdau9Z/Tq+IyDLXUo6F/fNssZh48Y+IyPK25L5sb5dyrIhIwpLzbF+/BuBFRBxtuWawZo2uzYocTq3cMTT7zMiXmtlrgDsCx5DdJXQt8MtmvJOuB25lZuXIbYvHkN3OeMCotIiILIhyrIhIZynPioh0lvKsiEjnKMeKHAVaGhia1RwA+nGb2rIYvwAeCJxB9sg6AMysC7g98MODzSCfz7Nq1apOtU9E5OZsyTkWoJRrsKUc7wtur/uPmasW89Hy7uKYW2dD15Qbu93J/u3px2/d5sYuu/z6aPlV1064dWbq5sb6e/xfna7o73djqUfyjU3EP/fesT1une5ScGMDK/w2Fnr8R0QX8sVoeXXS/15yjZobC426GzP89hfy8RuhC3n/e0nNL5eIFZ1lHaweIf7ZahXvSQywd+8uf35yc9WGPBug3oiHck45UMzHc2zw5gXU8ffXejURS+wLIR9fXnfJzzX5nL/fVaf8aw9mfg7A/9jkiNcrmt+OSiLvpRQL/mnZxFR8nvV6IlcW/DZ2dXk/8IX+vl43VnW+67qlcp4fa9T92NSEf6ydmoz+ABmAQjG+Hq3mf9GViq5bHaWWnGfrjQrD09dFY7ng95mKTn6r1PxjfaXi7w9rEn3IzSs2urF88Pd1z/qV/vyuvjF+/AAoF/181Ffy+7I9+fjdArmcfyxIpfQQ/GAiZdJoxNd/IZGbazX/+Fcu+zm4UPC/F6/PWkq0I3VZr1D2132h7N95PD7h51lz8mx92t++8zl/25GbrbZcM6jVA7tG4g+buuSGEbfeTD1+P0IusT/kErmj3VJ5Cqd/eTAh0acidf7pLC/dxlQ7WqvnLS/VT/dyc9aO1hri9VsThw8s8Z0l13zD73/mE7EG8ZyZS6yrkZXx2EyiDwwtPErOzHJmtsLM4leBsmmKzWkWPf8F+gzZun/xvPLnkD3D8tMdWq6IyHKgHCsi0lnKsyIinaU8KyLSOcqxIkeBVu4YejHwTuDBwHecac4Cvtmc9n0tLCMphPB7M3s/8AIz+yLwdeBU4EXAD4D/avcyRUSWC+VYEZHOUp4VEeks5VkRkc5RjhU5OrQyMPQo4LoQgjcoRAjhO2Z2PfAYOjAw1PRi4ErgucBDgV3NZb0uhJC+T0pERA7mxSjHioh00otRnhUR6aQXozwrItIpL0Y5VuRmrZWBoZOB3yxguj8At21h/gsSQqgD727+ExGRNlKOFRHpLOVZEZHOUp4VEekc5ViRm79W3gG0CvDfan2TPcCaFuYvIiIiIiIiIiIiIiIiHdDKwNAu4JQFTHcKCxtAEhERERERERERERERkUOglUfJ/QR4rJndK4Tww9gEZnZP4I7Al5bSuMOl0fAfhWlmh7AlIkc+7RPiKeaMrX3x3x/kp8bcetNhOFrea35uXlssubHVpbwb27Ku342NjnRFy6emu906/T2r3dgxG1M30dbdyNTUlBvbVaxFy/eM+nV2jo66se7ushvr7/djfcTXcXXC/56pzLihWrXix+pVN1avxevV8v7vYIp5f9vJ+ZsOxaI/z5wFNxYa8e+smvjMExPjfkNkGTMsFz8G1+p+TimV4tv89LS/DYIfa9T93Fwo+qca5uxCPT3x3AsQ/F2LWjW+bwHk8n47is76yJYXX2AqD5HqFiU+QGo/n5mJr/+6k08A+lb4x7d6zW9/6jjQ3R3/bmqJ1wiUC71+OxLb6fDwsD9Ppx0AK/vin7ury6/TSG1YsqzVG1XGJ7dHY925dW69nkJ8O8w5/SWARph2Y72lATeWHy+6sRuv2REt37TK76+u6FvhxkqJnxWvHVjlxgZW+vMsl+L7Zqno5yIS6zF5bpron3nJu5g4x2gkcnC+4OfFkGh/vhjPmflEOwpd/jbQs8Jf97Wqfyzw+hcAOYu3P/VCmXw+0amWZa0e6oxOj0Rj43X/nLaRj29xuYa/7aavXLW5L5CY3ZHS60imxISW2+9UTLUjuaxUuk9Uy7XQjkayIX6wkegjp/rPdSejWqLPOjod/9T1ht/fhtbuGHof2Tr+opk9yeymo4KZ5c3sicAXydbMe1uYv4iIiIiIiIiIiIiIiHTAogeGQgg/At4IrAbOAYbN7Hdm9ltgGPg02buF3hhC+EEb2yoiIiIiIiIiIiIiIiJL0ModQ4QQBoEnAH8CeoHTgNs0//8PwONDCK9vUxtFRERERERERERERESkDVp5xxAAIYTPAZ8zs43AtmbxVSGE+INsRURERERERERERERE5LBqeWBoVghhOxB/I6OIiIiIiIiIiIiIiIgcMZY8MDSXmT0AuC1wNfDFEEK9nfM/VMyspZiIiNwkR6CLWjS2Jj/u1pu2eJ14aWZyfNqNhcpev96ey91Ybno0Wn78uh63zuo1K91YPfif4NKrrnNjBQturK/UHS0fThx+R0Yn3dgVjZ1uLDQqbuzEdauj5V1Vf330JNbH7p3+702mZqbc2Jo166PlqwbWuHVKpbwbq9f9NubMX8fVmt/Gicl4P2Jmyq+TaocsYwYU4ttvseB38RshnlNK3V1+nUbDjU1N+fm3p8ufZ7EYb3u95m/vE5P+flIslN1YoeTH9o75x6NSuRgt37hxnVtn9+5dbqw2468rS+SigsW/z+5i/BgAUHK2DQCC/33mEuc6wdl2Uttbseyv+8rMjBvr7+9zY90lf7vyWm95/wnqhVxLT1eXZaFBCPEcUWusdWuN1+J1ViY2tVzJ34+qiRw8MT3hxq677pfR8k1bNrh1Nmy+vRs7Zauf3/Jdfr+oaJvcWCHfGy3PWTz/AiRWB+D3m3OW+gLixZZr7dpQKqtYwf8AVnLWo3PMBOjq889NSonjX63mf2eptJivxz93LbE+8vnEMUmWuUCgGo8kzrdyzhG/EPztsGH+vhcS59x+76I1N/eryqn2WyIHexFLzDG1rFa/Me+rTn8v/rbTaCRakuhzkxoycfrcqUZaalkJi+4Fm9nfmNmfzOwe88o/BnwTeAfwP8D3zBJHcxERERERERERERERETmkWvl51GOADcDPZwvM7J7A04G9wIeBi4F7AE9rQxtFRERERERERERERESkDVoZGDoV+EMIYe69fk8gu4vriSGE5wFnAmNkg0UiIiIiIiIiIiIiIiJyBGhlYGg9MP9lCGcBu0II5wKEEEaA84ETl9Q6ERERERERERERERERaZtWBoZmgH1v/DSzVWR3Ef1o3nR7gfjbqEVEREREREREREREROSQa2Vg6BrgzmZmzb8fBhjw/XnTrQF2L6FtIiIiIiIiIiIiIiIi0kaFFup8AXg98AUzOw94JVADvjZvujsAly6lcSIicvMVQoPq9EQ0Vq1PufW2j+6Jlu+dnHTrbF6zyo3lq8e4sYndI26slKtFy/v7ym6dMDPsxi67arsb++1frnJj6wZWuLHTTzs5Wr5+hX94v26Xvx533hj/vgDGx4bdWK0Sn+cJGyxaDtBVzLuxyZ03urEbdux0Y8Nr49/n8cc33DrFov8bmVqt4samZ/xtuLorvu0AjBZK0XIjuHVC8Nsvy5dZjkIpno/qVX8bNGdT6+/vcesEf1emp6fbjZWKRTdWb8QbYjk/N/Tix/J5PzdfefUNbuz3F1/sxu73oPtHy+94t3u5db73ja+7sYnRUTfW3eO3v1CIxyz4+auY948DpaIfm5nx817BqVcs+22vNvz8VUtsWCXnMwPc9PvEA3V3dUXLU3VEfDnIx3PjeM3vMxWI1+mq+8f6Yq3qxmp1f/vtWbHBjV1/fTy/ffZr/+vWOflBj3FjqzfHcyLAxtqVbqxYT+Q3J3eb+fm+0fCPcXm/Wlo9nqtydb9KbymebwD6e3rdWC7R98wV4/3Eri7/GF1O5GDvcwFYzd8e8yERc/Jpre6vrNRxR5a5YFgjvn3kQqLf5+TFYs3f1qp5f38IXgcZSJym3Ty4hxD/g5lfidBIxHJ+LEd8/QfnnADAcn6+TPXszFkWQMOrmZhhSNxXE3KJ9if6wfl66l6deGNSm2nO2Y9S3yW0dsfQe4FLgEcB7wE2AO8IIVy9b6Fmdyd7F9H8x8uJiIiIiIiIiIiIiIjIYbLoYfsQwrCZnQ48jmzw58IQwnnzJlsH/Bvw30tuoYiIiIiIiIiIiIiIiLRFS/dzhhAmgU8m4l8Gvjy/3MweCdwuhPCGVpYrIiIiIiIiIiIiIiIirWvlUXJL8Shg8BAvU0RERERERERERERERDj0A0MiIiIiIiIiIiIiIiJymGhgSEREREREREREREREZJlo6R1DciQLHZintba4RLV2Cy187mTTg9/45Mc6hJ9Z5EjXqNcYH90VjfWt6XHrbetZHS1fM9Pn1lk/4MfKXUU3Nj5RcWPFrvhvJwqNultnx669buySy65xY1deG19PALt3DbuxAtVo+TGbt/p1rObGhkf89l+3w19XN+7cES3fsSleDrB6Zfx7zpTcSDHnJ9rR4T3R8isv9zN+PpeImb+sQj7vxhoNf54hxGOJRVEs+tuwLF9mRqkU31eqjUTFejyHmbNtAoTENu3NDyDvtC+lXvPn11Xy94Wdifz7owt+5sZudec7urHT73bXaPlfLrvMrTM1OeHGykX/1Kuvu+zGas46yef89dvf0+vGJibG3djkhN/+vr7+aHlo+BtcIZGzy+VEbkskxVrNP46ZU29mZmbRdUTMcuRz8T5rwM9VdeeksJLIs9W6vx9t3zHmxqan/T71ytXbouU7R+L9R4Bv/c7PpSvuchs39vhj1rqxY/Ze6cbM4v2pRmJdpTQS+SifmGWx4OTnRL//+ht3urHpip9zUofoFSsHouUnn3SSW6e718/34PdXLZW7E+s/58yy3vC3q3y+242JeHnAgn8vQ8M5h6vlEnuYpfa+RIK4mfcTgvO56+Z/5kLD76OVE+fq45X4+ThArjEZn19ppVunQip3JHJY4pqHOffIhMS9M5bYPtLXoxP1ErfqBPficivtSB9PdceQiIiIiIiIiIiIiIjIMqGBIRERERERERERERERkWVCA0MiIiIiIiIiIiIiIiLLhAaGRERERERERERERERElgkNDImIiIiIiIiIiIiIiCwTGhgSERERERERERERERFZJgqHeHkXAT88xMuUJQqN4Mf8EGbWytISkUYilmyIU56oQt4PJhaV1MrqELkZa4Q6M5XxaGxtsdutd9ymtdHy7r5+t05Xtz+/RuJI16j5wZKz0xbzfn7o6S66sbWret3Ytspqf55d/jw3rV8TLbf6lFtnbHSXGxse3uPGRqdm3Nj0RPx3Jt0W//4BikV/fj3969xYvlFyY3XneFWt+Otj1403uLHe/h43ltoOrODH8oX495lPHDNDUb/jkQPV63XGRoajse5yl1uvWIpvg4163a3TaPh9sGql4sZS7ehy9pPaRM2tMzE17caGx4fd2OoNfo59ytlnu7ETTzwlWv6b7Te6dfrL/vEo0ZVloN8/xoUQr1iZ8b+zkbFRvxmJ7zNf9I85dacdluocJ5ZVTuTResP/bDOVqhubqPn1PNWqPz9Z3owcReJ9ge7g56OCc9yuzPj9kUbRn58Vr3dja9b4OXOVE9v7R78veN2v/+LGLrUtbuxWD9jsxjYnji+FqpM/Sn6/KJfz+0WpWKXmH6+uuza+jq+66mq3zo2797oxy/n5LWd+Gy0fXx8X/uaXbp3b3/YObuzuZ97DjeX9dI+Zv66w+PmTmX8sKCTyvSxzlrh2mLiGFpztLeQS1xQT22j6Ql+rFwGPDAWn/9ZI5KlKYt3vuvinbmz7n7/txnK5+EzXH3+6W2fDKX6MHr9/Xwv+B/Ai1uI152Q/OHWNO7V9O99ZirtPHKTeIb3SEEJ4ewjhPodymSIiIiIiIiIiIiIiIpI56B1DZva6Jcw/hBDeuIT6IiIiIiIiIiIiIiIi0iYLeZTc68nuPJp/k9PB7kay5jQaGBIRERERERERERERETkCLGRgaChSdgJwNjAFfBu4sll+HPAAoBv4JHDFklsoIiIiIiIiIiIiIiIibXHQgaEQwn4DQ2Z2PHAh8Hng+SGEG+fF1wLvBx4GnNG+poqIiIiIiIiIiIiIiMhS5Fqo82ZgAnjq/EEhgBDCLrK7iSab04qIiIiIiIiIiIiIiMgRYCGPkpvvfsD3QggVb4IQQsXMfgzct+WWSYvmvwpqYRqNhj9H88cPc4mhxeC8hSp4ASCX89tv5P2FtSLRjkbw10fy5VqJYM77bqy170zkSGdmFLtK0Vh3d9mtt3bVimh538p4OcBMzW/HVCJYr7mHMvJd3dHyrq4ut86W3vjnBejv63Fjtx2fcWOFohvimLX90fLhsTG3zo69u9xYvTblxqYn/VioxvPzWG8ip+f9A0it5q+PvcP+Zxuvxsu7xv06N9x4gxvbtGmjG9uwdq0b6+ntc2O5XPxAERr+dhrqzgeTZS2EBrVKfF+ZSXRIGvn4/lrI+ckm79QBKBX9eqn+ZaVej5aHRL9oaiaxLxT9/Ltly7Fu7Kffu8CPfffX0fJVBX99FJ18CFBJ9C8nEzm2XIp/tlrNn9/ExIQbqznrHiAkvrNSOX7srlQT+SuxLRYL/qloteLPM7Vd5Z3vplrxt53U9i3LmwFlZ/OoJE7hZpiO16n5+2VXwY+tXePnh57gb7/XXLM9Wr55g7+szdf4/bM/3+D3Ibfv3OLGZlbG+9QAJWdd5RLHpJz55xFjo/5n+9mvfunGbrhhZ7S8YP76LZT8duQSHfha3c9vBecaxfCuEbfOd8/9vhubnvL71Pe62+3cWDA/zzpd2WQuLeT9Y7Qsd+ZeE0tdKTvYS+/lJlaLr8lCze8P7rzud27sd998vxtbX4sfdwC6u+PnyFdce5Fbx2YOuB9lny13+is3Vsn75+oW4jk4h5/3Wt4abwYbcSt3DK0ABhYw3QAQv2IlIiIiIiIiIiIiIiIih1wrA0MXA/cxs1t7EzRj92lOKyIiIiIiIiIiIiIiIkeAVgaG/gMoAeeZ2UvMbNNswMw2mtk/Ad8Dis1pRURERERERERERERE5Aiw6HcMhRA+YGZ3BJ4NvAN4h5nNvqRh9sGhBvxnCOGD7WmmiIiIiIiIiIiIiIiILFUrdwwRQngO8BjgB0AFKDf/VYDzgEeHEJ7XpjaKiIiIiIiIiIiIiIhIGyz6jqFZIYQvA182szywtlm8K4RQb0fDpP0aIbgxy/ljhHW/GtOTU26sUqnG29FouHUaDX/zyRf8zbVcLruxYi5er1z252dmbizgr5Acfj2If+6Q+F5IzC/VRpEjgVmOfKknGst1r3TrNboGouX1Ym9iWTU3lq/4eapY9HNfT19ftLzU47ejVPD35+5uP09tXOPnvurMiBsr5uJ5dtP6NW6d44+ZdGMXX7vXjd044tfzPvX0jP+9bN/pL6tvhRtibLLixq7fPRYtn0i0o9zV7cZ2j8TnB1A9Ib7uATZv2ujGurvi20EukdJzqaAsW8VCgfVrvX3d32aqtfj+YH73jNqMv98VikU3NpPoJ05V4/PcudvPeROT/r48Xvf3ydGpCTd2xZXfd2Nr122Nlt/ltrdy65SKeTeWq3S5sYb5/dKQK0XLc8VE37g7fvwFmB4d9tuR6KfvGYnXm6n438vAygE3RmPGDVmif1xPnC90OecLucS5jognR4PempPHgr//7RzbES2v1/1cWi/5uWPv3j1+vby/P4xPx+sV+/19duUmv4+eC35e2Tkcz1MA+f5pf575+L4+WR1161x9eXz9Alz0hyvd2N5Rv1/X1RvvD3Z3+/3+XN7PK6lz/BD8Y3TOuUSXy/vH2mrNX78///kFbuz4ravc2OYBfzuYqTrXNRIXjtSXFVcIBKfv0eq1Mtmf10OuDN/o1glXXejGtvSOu7G9I36uqk/G65XZ7c/vkh+7sVVbTnJj+S3+9ZBGarNypC+/JoLJbbjd7WhNywNDs5oDQf6RWURERERERERERERERI4ISxoYMrPTgDOBdcAfQwhfbZbngEIIwf9JjIiIiIiIiIiIiIiIiBxSLd1Tb2bHmdl5wG+BDwJvAh41Z5IXAFNmdv+lNlBERERERERERERERETaY9EDQ2a2HvgRcC/g98C/c+AD9T5L9kKVRy2xfSIiIiIiIiIiIiIiItImrdwx9CrgGODNwOkhhBfOnyCEsB24CLj70ponIiIiIiIiIiIiIiIi7dLKwNDDgctCCK8NIYTEdFcDm1trloiIiIiIiIiIiIiIiLRboYU6xwBfW8B0Y8DKFuYvTelxt/lP79tXya1RT8R2Dw+7sYv+8hc3tmP7Tjc2PT0dLa/Wam6dfD7vxqp+iK7ubjc20NsfLd+4YYNb55gN69xYX2+XGwuNhhvrKpej5aViya3jfMsA1Ot1N5bLtfT6MMxSSxRZnAbGdIjvuHuq/rZWH65Gy/Oj426dmZl4vgFo1P2cs3HNCje2stgXLbdSPKcAFAqJvF2fcEPBptxYqeDnN28tFrt63Tqb163yY2v8z3bNjt1urKcc7070dvltr1Xj3zNAvebHiomeS7kUz32jU35uHp3w130uN+zGLr78CjdWKvmN3Lx+bXxZxcTxr57qD8hylcvl6O6O7+upPqRVK9HyqckZt06py+/7lBM7ZbUeXxbA7r3D0fLto/FyACv0uLFaYr/r7fZPSW5zxxPd2Nh4vP27pna5dfrX+zm2q+Dv58UWckA90VMs9/jrqlzxv+tUX9DrezZy/nF2OtHvLySWVcj566Ne948RXn8gtU/kEsuS5S00GtQmJ6Oxrpy//fbV4rmjWij6CzN/G90ztseNVczvX9aK8X19Rb+fH1Zt9HNY37V+X7xy5UVubKrhX0+4aiKeTy/e5Z/PXnPl9W6sNu2fI3f3+Z97xaqBaHmp7J+rp87H84nz8Xojcc2mFu+z1hPnM5Y4FkyMj7ixC37yMzf28Pvdx42FEP/c1Yq/Ldbr8f1IBPxjtM6A2iM4aaxnVfy8FKCw8WQ3Nn2tnzt2jfl9/5GJeO7Y1Od/07026sbGt1/qxlZvOt2N1SxxLF6GWrl6PAGsXsB0xwF+D0ZEREREREREREREREQOqVYGhn4L3MnM3FsqzOx44HTgF602TERERERERERERERERNqrlYGhjwP9wCfM7IBn8JhZD/BBssfUfXRJrRMREREREREREREREZG2aeUdQ58CHg88FLjMzL7XLL+zmX0CeDCwDvhCCOEr7WmmiIiIiIiIiIiIiIiILNWi7xgK2VvBHgP8K9BHNkgEcGvgbGAAeC/w5MXM18xeaWafM7PLzSyY2ZUHmf4WZvZlM9trZhNm9iMzu+8iP46IyLKhPCsi0jnKsSIinaU8KyLSWcqzIstLK3cMEUKoAi8xs7cA9wGOIxtkugb4XghhRwuzfQuwB/gV2eCSy8xOBH4C1IB3ACPAc4BvmdlDQgjntrB8EZGjnfKsiEjnKMeKiHSW8qyISGcpz4osIy0NDM0KIewGPt+mtpwYQrgcwMz+QHY3kuetZAnqjiGE3zTrfBL4I/B+M7tl886mI17LzXTqNRp+leu3b3djP73wQjd29bXXurHxsQk3Njo6Fi8fGXHr3PJWp7qxbaec7Ma2b/fHIrdff2O0/LprbnDrXLd6wI2tW7PKjVVC3Y1198c36S2bNrl1VnZ3u7He3l43JuI4pHm22miwfSKeI6699HK3Xv7a+P6cz5fdOhOTk25ssjLtxo7dsMaN3aNh0fJyyd8vC31FN2YhPj+ARiJ59/Yc8Dq/m+bp3PhrOf+G4DUD/td+wpa1buyG3XvcWGWmFi1f2eOvj/4+//ss5P1Ny68FPeV8tLxYSKz7eNMBCInvZc/eUTc2MjruxrZs3BAtX9k/4Nap1hKNlCPJIc2x9XqDsfGpaCxV0Sy+PxS6u9w6IbENFvJ+vhmvVt1Y3clTm7cd69YZWLvejW3edpwbm5qquLHt113vxibHdkbLTzzllm6dXCLXF8v+uhoZGXZj4HxniXVfqc747SiW3FjqeFSvx2PFYjz3AkxPx7dRgErd31L9tQhmfr1KNR7LJ46L3T09iaXJEeaQ5tnxsSl+8KM/RGPr1vo9kt2j8XPCDcdvdOtU+vx9bwb/nLvY7e8t3V3xfd383ZLajXvd2MDeX7mx8p5hN7ar2u/GfnFx/JxgR9E/587l/M+8ctVKN9ZV9nNfsRC/NDYz459HVKv+sdE71gJMTfvzLFg8nxaSB3Y/2N3l576rrvKv82y/4WI3tnVd/DrETN3fdvZe2cpvx+UwOeTXZv29pZXrpTeLS8GHVMPi/fFaj59nJ3qPd2OXbvevvazO+/3Pldvix8Cegt9PX5G4vtKY9q9PNKbj16MBrGd1tPzmMYrgM2fbT/WpoYVHyZnZ98zsZQuY7qVz3j90ULOJZwHz7QUeAZw3m3ia9ceBDwOnAHde6HJFRJYL5VkRkc5RjhUR6SzlWRGRzlKeFVleFj0wBJwF+D+Tu8ktgHu3MP+DuS3ZD4Z/Gon9rPlfJR8RkdYpz4qIdI5yrIhIZynPioh0lvKsyFGglYGhhSoD/nO1Wre5+d/rIrHZsmM6sFwRkeVCeVZEpHOUY0VEOkt5VkSks5RnRY4CHRkYMrMccEdgVwdmP/sQ6NiDC6fnTTO/Xc81swvN7MIbb4y/d0ZERNqTZyuJ526LiCxjbcmxE1OJl0SIiCxvbcmzM5VO/M5VROSo0JY8O7zXf0+MiHRe/A1780TeFfTgxPuDCsBJwAbgs0tom2f2LVextz12zZtmPyGEDwEfArjTne50M3+tlIhIx7Qlz67s71GeFRE5UFty7Nb1G5RjRUTi2pJnV63sVp4VEYlrS5695a1vozwrchgtaGCI7L1CswKwsfkv5dfAy1to08Fc3/xv7JbE2bLYrYwiIrIwyrMiIp2jHCsi0lnKsyIinaU8K3IUWOjA0H2a/zXge8A3gbc701aA60IIVy+xbZ7fk92qeNdI7Mzmfy/s0LKPGI1GfFB99669bp2f//wXbuzKa69xY+PT0UF+AMZGx9zY6Fg8NjHpzy9f8DfJU084xY2t7lrpxi7780XR8usuutytc0PDf2zAwKoVbqxn9YAbK67qj5aPTfjr44SNG9zY6pr/mK6enugduwCUSiU3ZmZOJPUjDq+O3Iy1Jc/WA4zU49vOnt3+4zxHxq9w5pfYDhObYaFQdGNF/P3oqutXR8t7yv5TWCcHut1Yf9lfVm/Zzzkh+PPMFWM/0IJadcKtUyz6K2vb5jVubGTcf0T09TfEnxzbU/LXVerYkqv637Xl/ONEo1aNltersScczFbK++3I+et+plZxY+MT/vrH4stbuXLArVKvNfz5yc1RW3Ks5XIUnWO6fzz3lcv+vjUz6T+2bjLxqKV8t98/u/VpJ0fLR0emo+UAl11xpRtrTPvt37F7txu7cY//5OvTb3OraPn6lf7n2rvjej82NeLGphP9wfVr1kbLLXFcDHl/G+jq8nNbatsZHh6OlqdyVHfZ73c26n69YuKcoFT0Y17zU/OTo1Jb8myjAZXx+EY1Hvw+zkQl3h+ZGPfzW7Hk91dHp/x+xYq834/pd/ocYxN+2wcSeap/u3/uvzfnx65cHc9h4Oeqtav9PNvdFz+vBujr9vNbKudUnO+snjjnnpnx+5f1eqJe1d8Oyvn4d9OVOIfv6/XP/TH/OFHA3+YuuuhiNzaxPf7Z6lW/b3z99f5xWG622pRn64yPx/NHLbGPlXvi58Hpa1eHTqutsA60P2/xdbX3ur+4dX5x7jlubPeO7W7s2Fusd2MnbYlfX8kn8lve/FyaX9Xlxqbzfj4Kzjo+9Fc2E9c8FlkOkEvk+5QF9ZBDCD/Y1wizTwA/mlt2KIUQxs3sa8BjzOx2IYTfNtvVB/wNcAlwweFom4jI0UB5VkSkc5RjRUQ6S3lWRKSzlGdFjg6L/ulUCOGZnWiImZ0NHNv8cx1QMrPXNP++KoTwqTmTvxK4H/BtM/tXYBR4Dtntig8NIfWzchGR5Ul5VkSkc5RjRUQ6S3lWRKSzlGdFlpcj6Z76ZwP3nlf2xuZ/fwDsSz4hhEvN7O7A24BXACXgV8CDQwjnHoK2iojcHCnPioh0jnKsiEhnKc+KiHSW8qzIMtLywJCZnQE8FjgFWEH8UXchhHC/hcwvhHDWYpYfQvgz8MjF1BERWc6UZ0VEOkc5VkSks5RnRUQ6S3lWZHlpaWDIzN4H/D03DQYF9h8Ymv1btw2KiIiIiIiIiIiIiIgcIXKLrdB83uTzgWuB5wLfboYe1Cw/n2xQ6J3AfdvTTBEREREREREREREREVmqVu4Y+hugBtxvzvMkCSF8B/gO8B9m9kpgCPhC21p6hPBenWaWuDkq8b611KvYQvTpfJnzf/KTaPkFP7/QrTM6Me7G6on2F4pFN7Zt0yY31nX88dHyDRv9Osc7dQDKOX8cc9WKlW5sk9PG8V073DpXXPgLN3bjjp1urNxddmOr7nD7aHmOhltn7Yp+N1Zt+PVW1qpurFT22zjQH19ePrF9mOXdmCxvlsuR7+mLxlYkbiidqVai5aPjY/6y8n5+KBS63FjK9l174oFQd+vsHeh2Y1vX+bEt63v9hkxMuqFyV3w9Vqb9dVWpzLgxa/i5o6/s7+tr+uPreGbGX1dT/qIo5P3jTq6R2Hacz1ZNfOZc0d8+ivnUQdrPwcWCXy9nzjpJbFe5nN8fkOXNLL5teOUAOac/lTM/j+YLJTc2lehzVKp+O0Z2xHPsZVdc7da5/LLL3djMr3/rxgZWr3Zjp9/+tm5s24YN0fKxG7e7dSbHR9wYeX8/7+721zGNWrR4RV/8GAswPBGvA+mcOD095ca8VLSq32+HJbarSiV+vAfI5/1jTneXn7dzzrYfEv2ORqJPLctboZhn5eb4+VFv8PfZksW30ZDIl/nEhYF8w99Xuqp+nwlnH+ty+ucAmzf5n+vK31/pxq4fdfrNwG+6/HzUk4+fmxZLfi61vH9smZ7yc1g+5+eVmcl4vWrF/85C3Y/lEv3Eas3PwaEUb2N3eZVbp5BYH9Up/7iT7/K/62t2TLuxi/8cP06Pj+926+za48dkeatWa+zYHu9XTTf8PkRXr5NnU8+tOoSnVKlFpZqYug6c/GiJ/lbN6dv98OtfdOtc96vz3NjJa/3jTqPq55yi18Rc4npj3Z9ff9lfVzM1P4dRPvIfbha8/mziHK/uXJs92Kdd9B1DwG2An4YQLp27DJtzBhpCeCtwOfDqFuYvIiIiIiIiIiIiIiIiHdDKwFA3cN2cv2d/7rBi3nS/Au7WSqNERERERERERERERESk/VoZGNoOrJnz9+zzuE6ZN906oLXn94iIiIiIiIiIiIiIiEjbtTIwdDFw4py/f0b2+MSXzz5OzszuAZwFXHpAbRERERERERERERERETksWhkY+gZwgpndofn3ucAlwKOB68zsl8B3m/P+YFtaKSIiIiIiIiIiIiIiIktWaKHOp4EbgQmAEELNzB4JfB64FbARaAD/EUL4QLsaKiIiIiIiIiIiIiIiIkuz6IGhEMKNZINDc8suAk4zs1sAq4FLQgi72tPEm4fQCG4se8De4oON4Md++ZvfRst/fMHP3ToPetCD3NitTj3VjW3dutWNUa+7oWqtFi3ffIw/v0q16sZ27dntxsZnpt1YeWVftPyhj3mYW6d2xm3d2C//53Nu7M+/+40bu/z3v4uWH3fGnd06XX39biwEf5vbsXuvG6tUK27suK1bouXrBuLrEMBauvFQloOAUXMOM4WS/wq6rp7uaPl0dcpfWCKXlgp5NzaTyDm7R0figYaf96zm7yvlvF8v4MeGd1/jxo7btiG+rII/v5GxMTd27Q4/d4yMTbixUqkYLR+d8NfvTMPvgjQabojqjJ/DRqdmouXxo1GmK+/nsEbdr1nI+Tm4t7vsx5ztu6s7Xg6QK/jzk2UsBOpOP6yR2Iny+XhObNT9Oqn9v9Dt572Zip8DJqfi89y4brVbp1qddGMT035f8Ljjj3VjK3r8HLB7+9XR8lw9kdsq/rFq3fpVbqxW8XPbjh3XR8tHRvxjabnLj+ULfv5N9eoGBgai5d1FP0eNjo66sRW9vW6sjp9j87lEK71zMn92lPLxY5iIFQqU1q2PxnpWDrj16juui5bvHvb7WbVePwcUcv4+Wxn3c86Krvi+aYmOUXnCb8fxBb+vctGUn4Ov2OFfGlrXuyJaXpj221Ec8edXqfh94GKx5MZKzrpKHU/LiT5kveYfJxqJ8/i+/jXR8v4V8fUEUE8ck6qJ43B3uceNrV7tH4tXH7MuWn7tdZe5dVatidcB4Nu/92Ny1DODvHO+nquneiXefpS6AHsoJa4RJ2rV8a9dhETNUiIf/eHXv4iW//HnP3DrbPPTPb1+E8knzp8rM/Fz9d5uPzev6PX7s7mGf9zJVfxYw+l+JrqKHWHJJca/z0aip153h3jS+0Qrdwy5Qgh/aef8REREREREREREREREpH30U38REREREREREREREZFl4qB3DJnZ65Yw/xBCeOMS6ouIiIiIiIiIiIiIiEibLORRcq8ne9TeYh7UODt9ADQwJCIiIiIiIiIiIiIicgRYyMDQUMdbISIiIiIiIiIiIiIiIh130IGhEMIyHBhazM1Rs1X8Oo1EtVo9uLGpSsWN3fOs+0TLb3P7O7h1Tjn5FDe2cmDAjRXyeTf2u9/+1o2tWLEiWl5r+GtkZGTEjW3fscON9fbFlwWwfv2aaPnKnpJbZ9UxW9zY2kSs+4fnubHfXX9jfH6btrl1Zir+9vH1//s/N7Z37x43dvvTT3djuVz8tWMreo5363SXi25MljsjOIeZRuIVd6VSOVq+orfXrdNo1PxWhLobm56acGPj+fj+V6hX3TrduVQ7ZtzYZddMu7E9u+O5A6Cnx9lne+PrEOCGG4fd2NXbd7mxvWN++4uFeB4YnfbXvXX73+d0xV+PE1P+upqpx48v5USe6k2sq1I50U1KHMtqVX8byeXix9QVK1e7dYplf13J8mW5HN1dXdFYonvJTCW+L9+4a69bJ1dI9Jmc/h5AcdrPGwPl+L5XS+TYsR5/X1410O3G+kr+CmlMDbuxUI7P0+svASS6zRSCf75Q7vLbP94dj01NTbl1imX/O+sp+bEVfX1urOHk2Jlpvx2lop9H+xLH9dHxMTdWrSaOR/n48qan/WNHV2Ldy/JWA/bU4vljYsbfDktOnq3M+NthqPvJI+T83Ncw/5qBl6t6cqv8Onl/Wcf2uyHyOT+vjI2Nu7HgHLD6e3vcOqWaf5xI7evFot/Gclf8mFQs+uuj2OO3sdFI9IGdviBAf198JXcnjsMjE/76rSbakT3gJ67bOe4ArFsXP07MzPjtOOmkWyba8blETJYFZ1OsJK6JmnPdNtEFvllItb/odz8Z2XmtG/vhN78QLa+NpK6xxs8xAFb0JPrcvYmcWYh/ZwMD/sFlpd8MJs3vY+YSscYRspGEFsYecolrW4UQv4ZiB9krEpuViIiIiIiIiIiIiIiIHE00MCQiIiIiIiIiIiIiIrJMLOQdQ/sxs9ctYvIQQnjjYpchIiIiIiIiIiIiIiIi7bfogSHg9WSPPYw9DG/ug+us+bcGhkRERERERERERERERI4ArQwMDTnlOWArcBZwHPBR4JqWWiUiIiIiIiIiIiIiIiJtt+iBoRCCNzAEgJkVgX8DHgXcqbVmiYiIiIiIiIiIiIiISLu1csdQUgihamb/ADwMeAvwjHYvo9NCCAefaJ5qre7Gao2GG5uYrrix6UrNjW06Zlu0fNWaGbfO2JQfG53Y7rdjZtqNXXzF1W7s2G1bo+X+2oAvf/ELbuyH55/vxm512mlu7GlPe1q0fPXAJrfO1XtG3NiuxPcytcGf5+4rdkTLL/7L5W6dHTf438uOXXvd2Pbt8WUBVMNv3djE9GS0/Jj169w63et73Zgsc2bkCqVoqJDz82y5Ec+n/ZZ369Srfi6tJ1K6xR6K2lRsxCuGir+skZFxN7Zn1I8Nj/mxjQNFN2bE21iZrrp1GnX/Q1f99MaNw2NubMZZXPeKNW6d3nx82wCYSKyPycSxzNPT5Xd3Vq/scWP5XM6NVav+Oq7W/G0kOBtdqdzt11l8t0SWgZwZXaWuaGzX6Khbb3wmvn32rV7l1ikV/TzUmIn3HQBWl/39vBLi+9A1u3e5dXpK/j7ZSPQw1/b6+3lP3p9nMR/PHaHuL2ugty8xP399jE/4ea9ciH/PXSv9vFEo+cuqVv3zllD3c6w5x8VcwV+HU1P+eUS15h90qs52ClANfr1cMd5XKDjfJcDE1IQbk+WtUa0yufP6aKw+5ucBq8T3lVLJ74OVS/1urFjyc3Ct4vdHKrX4vrmqy19Wo9c/tzthg98hOb2+2Y39/NJr3Vjd2ddnCv4+W0/k4Foir9TridwXnHkmOmHTiX5iLhErJfJRVy7+XU8nziNC4vpEt3MuBun1kernOocCVq/2rxn09OmagfiCc06LW37zFqJvZsnkEtcnqPp97p9860tu7LqLfx0tP2Gdv18ev80/Lxjo9b+XdesG/Hor4n3kUsH/0Pmin0tD3T82kk/lHG+eqavVvtQ1Je/cH9LbAc4xqZ447xoeviFaXktcKwN/bSxJCKEKXAg8uBPzFxERERERERERERERkcXryMBQ0ypgZQfnLyIiIiIiIiIiIiIiIovQkYEhM3sMcE/gsk7MX0RERERERERERERERBZv0e8YMrOPJsJ9wC2A2Re+vL+VRomIiIiIiIiIiIiIiEj7LXpgCHjGAqaZAN4aQviPFuYvIiIiIiIiIiIiIiIiHdDKwNAzE7EKcD3wixDCZGtNEhERERERERERERERkU5Y9MBQCOETnWjIzcXIyEi0fHRiyq3T3dfvxq6+bru/rLEJNzY5NR0tH3baBzAx4c+vMjPjx6o1NzYyPubGxqfi62R0z41unU+d8yk3NjEd/8wAV11zpRvr7++Nlj/pqU9z61x7/U43dtlVV7ixn/3iAjd28e8uipZffdlVbp0NWza6sf4VK9zY5m3HurFK1f+uf37hr6Plp9/qFv6y1m9wY7K8mUEun4/GysUet96qvr5oeXfwlzU95ufgeq3qxspd8fYB9PbHD5FTU37e2zPmx0ZmKm6sWDA3dsvjNruxFb3x/JYzf37FCX99VOt+vdEpv95MPb4ee/Ndbp3xcf+YNDI26sYadf+Y1FUqRctLBf97Lidi+USsUvGPSY2G38Z6Pb4eq4ncbOa3Q5avaq3G9l3x/spMre7WK5Xj+2Uu+Nttvu4n4O4ufz8v4Ldjcia+D/U4+zFAubvsxrbv2OHGQsX/bOWBlW7My6VdvX4bqxU/Vyb74lW/njnH0nrDX7/WaPgxNwLVxLbT093tRPztI1fwTzcrie2q2B0/vgGExHF9eHhvtNw7HwCwxDFTlrdCzljVE9+GV64quvXKFt//anv9fmIh+PtKvu6/Grpa93Nwd1f8OkS16vcrujb453YDe/2+7D1W38aN/fKSa92YVeM5pzrt94tqJT9P5XP+ZwvBzzlerF73lzXlXO8A6HbzJfT1xs91AOq1+PFqZtpfVi7v5zC/9ZBLrKtS4lhcLMWPxcXU8bvHP/eT5S2fzzOwciAamzD/fgN/f+7EMT1xIcLltyMEP5Y6b/39Ly50Y+d946tubKAcX97GdX4uGljh57BVK/w2rljpX/8uluLHuZ7ENZnUmp8yv/3Vkn+9tGHxY2ouJDJm4jurh9Rxx59lKkOXnS7BNZdd6tYZvj5+rXpmyj//APB7GCIiIiIiIiIiIiIiInJU0cCQiIiIiIiIiIiIiIjIMtHKO4Yws9XA84GzgM2A91yHEEI4sbWmiYiIiIiIiIiIiIiISDstemDIzG4BnAes5+APb2zlQYwiIiIiIiIiIiIiIiLSAa3cMfQvwAaywaH3AJcC6TcZiYiIiIiIiIiIiIiIyGHXysDQvYDLgAeFEKptbo+IiIiIiIiIiIiIiIh0SCsDQ1Xg10fzoNDU5JQb+8AHPhgt3z067ta5zwMe7Mb+eNHFbmzvyJgbq1Rr8fJKxa1Tr9fdWAj+U/+C+U8MnKn586w5y/vlT3/k1iHnL+uWp97SjU2Mj7ixH/84vrxtJ5/q1hmbnnZj26+/zo1NjYz6sYl4G4fzDbdO2OWvj8mZSTfW19/vxuoN/7u+cdeeaPnO3XvdOiI+A8tFIyEfLwewYjFa3lvqceus6lnjxkLNP1z19PmHwUqI3ww7OpXYz6v+8aNU8Pe9bZtXubGTj1/vxnr7uqLl9YafO8ZndrmxHcN+Lh2d8o8vxe54zpmu+nX27t3txqr1GTdWKsS3D4B8ruTUybt1aok2mvnLqlX97Spf8Nd/Lhc/NtYbfk7PF7xXOcpyZmbkS/FtdP3AgFuvVov3IRtVf7+j5veLZib9fWEq0U/M5+P769o1a906lugnVib9Ng7vHXZjqwb8/Ot1mfbs8edXr/v9umrNzzeNRF+8kI9/7u4u/7iYOieYSvRz83k/X3r99JkZf37FRM4O5n/m0Un/WFtyth2AXmedhOBvO+asXxHLQ1d/vM9aS1xKKRTj+1/vCr//m8vFczOA1f39qJjoq0xPx/N6o+LvX+V+P3dMblzhxvLj/jGk4JwPADScawaNRD+rWPTzVCqHdZX9/pR3fGk0/Jw+M+N/5p4ePz/39/uxqen4d5NaH71d3W6skTj3Tx1Tc4n1mC/G6+US8wvmb9+yvDUagWmnH9Fo+P3Ig77YJCIkKhn+vm4tvCWlEVL53s/bE8P+ufp53/q6G9uzy79mt3Fb/Fy9bP5nziX6Rr19fW4sX/D7aDPEc/BU1e9HNmylG6v2neDGQtnPs1Xn+yyl+uLBX1eJTYeG+bm00fCPIddf+Zdo+c6rLnLrTI7Et4Fa4noYgL+l+n4BnNRCPRERERERERERERERETmMWhkYeiNwmpk9vt2NERERERERERERERERkc5Z9KPkQgjnm9kTgQ+a2UOBc4FrcW6eCiH8cGlNFBERERERERERERERkXZo5R1DAF3ANHB2858nLGEZIiIiIiIiIiIiIiIi0kaLHrRp3i30KbJXfe0CrgTib+gWERERERERERERERGRI0Yrd/O8guxOoOcBHw0hRB8hJyIiIiIiIiIiIiIiIkeWVgaGTgF+FEL4cLsbc6T4wx//4MY+9alzouUzIefWGZ/xx85manU3Vk0MueULxWh5IwS3jvmzS0ZT86zix3bt2RMtv+a669w6xx1/vBtbv2GDG7vqCv+mtZ07dkTLf/Kzn7p1Cv29bqw64S+rmPO3g66+rnig5FahUp1xY3uGq25seHSvP1PLu6GpyfjyxsZ1U6AsXgAaTm6s4+8ru8bHouXDtXhOAegtOvsXUEgkv3wiP0/MjEbLR8f9/Stf8HPixjV+Xjl+00o3Vi76H6DuNL+WyOl7Jifd2N5xPxby8eMOQLEUT2Q33LjdrTMxGf+eAYoFP08VEnk253zsQt6v00j8vmVq2s/B+cQ8S3m/e1WdnoqW790VP1YBNPDXhyxfOcvRX4rnvoIl8kYt3n+oTPrH+qlE3ujp63djlWrNjZW74/tQV93ff4qJfaG7yz8O3LBzpxu7cdduN1Yux3Pb8G7/OFAu+bkS8/PNdCLf9PbGjx/5or+s6al4rgGo1fzvxRI5dnwqvh1Y4pieC/65zqqVPW5sU7e/XV1/7Q1urOisk+lqxa1TyPvbjixvVoPCnvg2bGX/XKy0Or5N5Xv8OkXz+5BM+/vs+My0GxudiOeV/kSfLj/tt2MkcX2ikri0NNDn5+4bR+PrpFb3j2O5ir8/FxPHgp5EzPvUDa+zDYRKIm8X/c9sdX87mHSuNXSV/PWRt7Lfji7/e+kt+991Af+z1abG4+0o+8uqTPjfmSxvIQSqlfg+0Wgk8uJBrnDGa/jzC6lrool+jtuORF+8XPDn95vf/dqN/em3v3JjxUQT887xZfWqFW6d7m4/r8w0/LzYV/DrhRDPi3um/Iuilf5j3VhhxXFuLJfYdor5ePvLOb/PuvvqS9wYFf88afMxW9zYNdv98/8Lzz83Wr6qr8+tU+yKf5+WuAYMJLduz27Av9IjIiIiIiIiIiIiIiIiR6RWBoa+BtzdzFq520hEREREREREREREREQOk1YGhl4DTAEfN7NVbW6PiIiIiIiIiIiIiIiIdEgrd/28C/gT8CTgoWb2S+BaIPaQvhBCePYS2iciIiIiIiIiIiIiIiJt0srA0DPI3s1nwErgvolpA6CBIRERERERERERERERkSNAKwNDz2x7K44wF116sRtbf8wWJ1Jy6+zetduNlfp63dhMo+7GqM9Ei3OYXycEP5ao10jUCzm/3vjoVLQ8n2hFZbrixvKFshvr71vtxm64dke0fM/OG9w6K8IGNxZSX4v5n27Vmvg8J6cnE8uK3YiXyeX8ZeWTa9lXysXXf7GQ2K5EPAEajXj+aCSeZNrIxQ9N0w1/XxkdG3FjuegNrZlS0d+2C/l4zEr+obOQeEBrqejXK+eLbmx6OtX+ePlk3U9UE9M1N1YN/gcI5sfGJuLfze7hvW4dM//YUsj76yqX89tRcL6AUsnPiV4dgMmpaTe2duUKN9bf7R+vas5xbmTPsFvH3wJkWQsN6tPx/uCeG3e61XLeMb3hb2nVmp9TRsbG3Vhw8jnAyPSeaHkh0SctJPLQ7r1+vrn2husT9eLtAFi3Zm20vL+3z61TT6zHQiIX9SdySj4f/9wTkxNunYlJ/5hZq/nHgYHuLjc2PRnf3izxvZSK3W5s41r/qeQnbfP74ivK/jayayT+uUcnq26dmbr6uRJXyBmru+LH9MqMf95aGHdyX7ff36Ps7ysTNb+fW2vE90uAUj2+vHKiT1rC75+5xw9gRdnPb7c9+Rg39p0LL4kvK3GuYBU/h4Up/3hVz/v1vH5pLnG9o2B+rMfZbgCs7q/jei1+DLHEprN1jX9N6dRNA26sq+Cvq0Yjfg0FYPq6+Hrcm8izu6f8mCx3gUZwtvvEPpaaXyuxRuJaXiN5fS0+z2LiDK4xNerG/vSbX/pLqvvHHXPWYRZz2phL5Puafx7snc8CVGb63VhvOZ7Xx229W6e69vZubLrbP7ZYoq9bu/GyaPmV113u1rn4T79xY6Eav/YNsH5d/FwCYM+wvx1s3bguWl5r+GMP49Px9RtCej9a9MBQCOETi60jIiIiIiIiIiIiIiIih1/it80iIiIiIiIiIiIiIiJyNNHAkIiIiIiIiIiIiIiIyDKx6EfJmdlHFzF5CCE8e7HLEBERERERERERERERkfZr5Y6hZxzk39Ob/2b/XhAzO8XM3mBmPzOzG81szMx+Y2avNrMD3qZnZrcwsy+b2V4zmzCzH5nZfVv4PCIiRz3lWBGRzlKeFRHpHOVYEZHOUp4VWX4WfccQ8EynPAdsBR4E3BV4L/DrRcz3WcDzga8CnwaqwH2ANwF/bWZnhhCmAMzsROAnQA14BzACPAf4lpk9JIRw7mI/lIjIUU45VkSks5RnRUQ6RzlWRKSzlGdFlplFDwyFED5xkEneYGavAl4BnLGIWX8eeGsIYWRO2QfM7BLg1cCzgf/XLH8rMADcMYTwGwAz+yTwR+D9ZnbLEEI46Gdxyscmxtw6hVIpWt7bs8qtMzIy6sa6zQ1RS9zPlcvFgwXzK3l1AMz8hqRWZS6xvGq1Gi0vFPzNbvXq1W6sWIyve4Bjjtnqxq68/LJo+cTYSLQcYO3adW5s155hN7Z79243Nj4W366mpibdOrV6xY2Vy11ubMWKFW4sl9jmNm6Mr/9Tb3kLv5LcXBzyHJtpOKV5t0apO779dnV3u3VCzd+P8tT9ZRX8j1HIxWOVmQm3ztT4Xje2e8Rv497VNTe2quLn2TAV/2y7xvw27hmbcmNT0/G8DTAx5eejWoh/z3WnHKCQOO4Ui/5xorur6Ma6uuOxQtHf3op5PzbQ4x93tm1c48a2bNroxvpXroyW5xPHOGdTlCPPIc2z1VqN7Xt3RmN7R4bdeiv7+qLl+eDvk2Wn/wswk9jPpyp+LvL6kONTM26d5CoxP7Z69YAbyydyAOYcPxp+Pszj56hywV+P+YKf6xvO5+7uKrt1cokcu2evf6wqJNZHuRT/bI2GvyxLPKBiZJffF//z3j1ubGrGX/9VZzu2Uo9bp1z0Y3JEOQx9WXP3iVze39dDPd6fqk/6+W1kwo9V634s1/D3WavHc04+sV+Wi/7+XHJyAMD0tJ/vTz/1RDd20TXxPHD9Tj8HFMv+Z67X/Ws5kxPTbiyXc77nxDWUXD5xDaXh9+0rVf+coO581+sG/PP7M25zjBs7aWDAjTWqfi6dnvHPF/YMx9dxKpc2Cv785IhyyPNsLpejt+eAm5EAGJ/0t1GcWRuJC16p1iT6TSkF51pDqeHn7d9e+BM3dtEff+fGqlX/ukaqL7ZnIp6P9o76bTxug3+u25vIwfm8f51yYuXJ0fL62tu6dXYM+9tAYe/v3dj4VVe4sasu+1W0PBT9Y9z6Tce6sVxX/NwKoFbxjztTO/1+cFcj3pYrr7vRrXO3u98/Wl7u8q+jQWuPkjuoEMJbgO3AmxdR58J5yWfWZ5r/PQ2gefviI4DzZpNPs/448GHgFODOrbVcROTopBwrItJZyrMiIp2jHCsi0lnKsyLLT0cGhpp+C5zVhvlsaf53R/O/twXKwE8j0/6s+V8lIBGRhVGOFRHpLOVZEZHOUY4VEeks5VmRo1QnB4a2AOn7lQ7CzPLA68ieWflfzeLNzf9eF6kyW+bfSysiIoByrIhIpynPioh0jnKsiEhnKc+KHN3aPjBkZnkz+0fgLmTPllyK9wBnAq8LIfylWTb74NLYwxCn500zv23PNbMLzezCG2/0n8snIrJMvIc25ljYP89WK4lnAouILA/voUN92ckZ/5nVIiLLxHvoYF92alp9WRFZ9t5DB/Ps6PBwu9opIi3w3+7sMLPvJcJ9wAnAqubfb2+lUc3lvBF4AfChEMJb54Rm39QXe9tq17xp9hNC+BDwIYA73elOepWziCxbncixsH+e7Vs5oDwrIstWp/uym9esVY4VkWXrUPRlN65doTwrIsvWocizJ93ilsqzIofRogeGWNh7g64EXhNC+HwL88fMXg+8BvgY8Lfzwtc3/xu7LXG2LHY7o4iIoBwrItJpyrMiIp2jHCsi0lnKsyLLQysDQ/dJxCrA9SGEq1psD2Y2CAwCnwT+JoQwf/T492S3K941Uv3M5n8vXMiyGqERLS8U/NXS29cXLV+3boNb54ad/mPrLJd3Y+Wi3w7Lx58CWEg8HTDv1GnO0Y0E/AH8RPNpOPWs4C+rFmpurJD36+3dO+zGRkZHouUzl/uPBth5w3Y3tmvnLjc26iwLIJ+Pr6ye3l63zvj4mBtLfC309rp37XLSySe7sbPucc9o+QnHHucvTG5WDmWOxcCctBO8AEA+9sMjyBX919blzd/mc42qXw8/D+Qsno+KiZ1vcnLcje0ZH3ZjF11zgxvbOxm7Qz/T1xNfJ7tGRt06N+ze68YaFj8uApSLfg7Oh3isWCj5dRLrsavohigV/W2n4B0bE8e/Fb1dbmz9wHo3dsymjW5s5cCAG6vU4+VjI/62c8BeKke0Q5VnAw1mavH8kC/5fciJqal4oO5snMCK/Ao3Zubnhq6C31Hs7euPlle6/LzcaPg5qlr1c31fv9/Xqifm6fXF+7rixymARs1fj6Win9wmJt0f1jI5OREtX7NmjVtnYGX8nAWgJ5FkU+dB1OPruFbzk1TF296AyR5/PQ5P++ujnsiJjVI8p4fEd5bP+ccBOfIcyr6sFQxbFe9rWdXf1/eMxc8Xi4nHLG8o+XlqL/6yJmf83DftxNas9Lf5VN9tasrvkxZL/j5WSPQh73Bq/DUklbrfL5qa8q8ZJC5rEBLrMefE8okZlvL+uqKWyGFeZxA4dn18ng+77+3dOidsWO3GisFf1kRiXY1N+ttqLRfvV48N73TrbFw94C9MjjiH9JoBRs7ZpiqJnNnrP6muJanzrZz5wW7nesKfLjzfrfM/H/2QG7th+w5/WX0r3dgtTo19FZl1a1ZFy8dqu906u6p+gqjm/L5zbtzPi6tPPT1aXsmtdev85rxPujGb9K+hFGv+taNJ59rs6Wfc262z9eR42wFq+J85OH1ngPVbb+3GJpzj3Krj/G3x1NveNlre5VwzmrXogaEQwg8WW2ehzOx1wOuBTwHPDOHAkZsQwriZfQ14jJndLoTw22bdPuBvgEuACzrVRhGRmyvlWBGRzlKeFRHpHOVYEZHOUp4VWV5auWOoI8zs+cAQcDVwLvDkeb9A3BFC+E7z/18J3A/4tpn9KzAKPIfslsWHRkazRUSWNeVYEZHOUp4VEekc5VgRkc5SnhVZfhY9MGRmdwCeCvx3COEXzjRnAE8EPjE7crwAd27+dxvwiUj8B8B3AEIIl5rZ3YG3Aa8ASsCvgAeHEM5d6GcREVlGlGNFRDpLeVZEpHOUY0VEOkt5VmSZaeWOob8Hzibb+T1XAc8HejjwJWVRIYRnAM9YaCNCCH8GHrnQ6UVEljPlWBGRzlKeFRHpHOVYEZHOUp4VWX4Sb/923RP4dQjBfbNcCGEH8GvAf3OTiIiIiIiIiIiIiIiIHFKtDAxtAa5cwHRXkT1bUkRERERERERERERERI4ArTxKrgZ0L2C6LsAOOtVhlLP4uFhPT49bpzIzEy2fnply68xUpt1Yvux/Bal54rzGzRLvd2s0Gm4sZ/5XVSj6bazVq25semo8Wj4+NurWKR+3zY1NjPr1zFshQL1Ri5bv3rnDrTOc2HLziXW1ZkWvG2uE+PofG93T0rKS7/KrVdzQC573HDf28Ec8IlpeyLUyhizLXQiBeqMeD1b9bbSeL8YDpbJbJ1/qcmPW8PNUqPt5NhDP97lCPKcAdHf5xw9rxOcHUK37+Xn77hE3VhyZjJaPz/jHnZma850A5VLJjzlfC/jHkHzBzx2lxLGlp9v/rktFP9blrP91q1e7dY7dtMqNre5f4cbM/PanPtvAyvjyil39LS1Llq9cLk9fb1801u/0cQFw+g91p58Cfp8ZoD/Rb84luiqjE2PR8r5+f36pvs/UlJ/PR0biy8r4ny1fjufEXD7v1kn1t/t6/X5iuejn3z5nHafWRznRxkIi19fq/jGi6HRLy4kDRB0/Nl7111U17+f6YtnfRqrO6Wc+7/cT8rnEAU6WtRAC1Vq8TxUa/nlat7M/5xL5Zqri9y9nav6+0qj7+3qYifeBpyf9fuJkt7+vTCfa2JU4TljVz8+nHBPvo83UTnLr/Or3l7gxgp/D8nm/jUUnlMv533NPr39ZrOidzwClxLo66663jZbf+ra3dOtMTvrfC4VEf3s6fr0GoJq4ztPlHMry3kECqKSubcmyFhqNZB9u0fNLxvxttIyfO8KMfz5+wfnx1yl9+3//z63TO+Cffz7j4Y9xYxu3HufGth7v50zrWhktH9l5tVtn5PKfuLHLr/6TG9t56WVu7MT6d6Ll9bqfS7tz/vey/rS7+LEtd3BjxZ748kp9/vn4FP6xkcQx2oKfg1dvPtmNrcrFj+35xHZac669pS4dQ2t3DF0M3N3M3B55M3YP4NIW5i8iIiIiIiIiIiIiIiId0MrA0JeB1cC/m9kBQ1hmlgPeDwwAX1xK40RERERERERERERERKR9Wnk2yXuBZwFnA3cys3PI7iIKwC2ApwKnAlcA72lPM0VERERERERERERERGSpFj0wFEIYM7MHAl8CTgPePG8SA34HPCaEkHqgt4iIiIiIiIiIiIiIiBxCLb3NOIRwmZndHngU8EBgWzN0FfBt4CshJN5gKyIiIiIiIiIiIiIiIodcSwNDAM2Bny+yiPcImdkpwMYQwg9bXa6IiIiIiIiIiIiIiIi0puWBoRa9EngakD/Ey40yp/yYzce4ddasWRMtnxgbdetUp8fd2MjMhBtbvWa1G8uFeHlyxeb96BVXXenGLr3scjfWqNfc2B3vdHq0/ClP+Gu3zujIsBsb2eOv450797ix4KysRzzsoW6d5z77mW4spa+vz41deskl0fJXvvLVbp3rrr/eX5izDQCcctpt3NgD739/N9bf3R0tb4TEwkQcOYNSLh5rJDbgaq0aLQ/TM26dYF1urLsU364BSoWyGyvm4/mtPuPn0vqMn+8L+G3s6/bnmTM/Vir1R8sH8v7hfXTcb+PU5KTfDjcChUJ8eatWDbh1as73DDAz43/XpZK/Hrds2hotv8UJ8XKA3rJ/g3N/zwo3tnuvvx5nKv6xcX1Pb7x802a3Tq5QcmOyfOVyOfp64/2OorNPAlScfS+VG2Yq/j45sMLfTwrmZ45+i+evWuL4kOp35vNFN7Z+3Xo3Viz49fK5+NlCPu9/rnzOj+Xcsw+oVf2cOLBiZbR8amrKrVOt+PPr6elxYyn1Wj1aHhLHHMv5sVyXf3zO5/zvhcQ8KzOVaHk9cSztLfl9AVneQiMQpuLb/XSqX1qN75uFgr8dXrtnxI1V637uKDb8nNPVcOo1/Fw6OulfnyBxTjgz7uec9c41lOZMo6W9Ft+XAXLmr4/xab/eisQxqW9FvH9ZTZwG9/T5n6vc4+e3Lav94+aJm9bG2zHh99FDopceEsedSuLYXu72+9v5EF/emsTVxVq1teOOLAMG5uzT3jkmQHByR2qbt8QV08qe69zYHy/4uhu75E9/ipafcurt3Dp3edAj3NjWbce6sdRnqyfyWz3E+1Rrt93CrbNmzSo3dtU1293Y9Lh//Xj3H38aLV+xzV9XtzjTv2677rhbuTEL/roKIX5cTz32LPVQtGCJWOphao14OwBqNWf7ds5NAKzsHHf8KkD6Oo+IiIiIiIiIiIiIiIgcRTQwJCIiIiIiIiIiIiIiskxoYEhERERERERERERERGSZ0MCQiIiIiIiIiIiIiIjIMqGBIRERERERERERERERkWWicLgbcCQ66eST3Nj6DRui5Rf96U9unT07r3Njj33MY93Y3e92VzdWq1ai5Y16w61Tr/mxH//kfDd27WWXuLFcoejG7nbHO0fL73mXM906n//C593YRX/8oxu7YddON2YWLz/phOPdOqVi2Y1V63U3Nj0d/14ABlatjZbf4Y538pdV/YUb6+npcWMPecjD3Fil4rd/amIqWl7u8tcHeWcFiwCE+O8P6onfJZgTM/xtLbFZJ4MhcRTM5fLR8plqcOtUa36sK+d/5r6yn0vLpZIb6+7pjy+rf7Vbp+F8JwCVyowbq1am/Xq1WrQ8BH99TDr5BmD1qpVu7Nitx7qx47duiZav6I5/lwCTk3vc2A27x9zY3uFJNzZV87/Pnv7haHm+0OXWqdVSG7gsV/lcjt7u7misWqm69bzdsuHsxwDWSOS9it/32bHX379Kpfg2n1gUhYKftHt7e91Y3snnACv6/Ho9vfH1Ozw67NZpJPbXeqIPmfM6rEDdmWdXl583Gon8Wwv+slLHWnP6x1OJZXX19bmxxOqgkOiLd5X9PnBX/CujkUtsWMqx4jCMQj3eD2vM+P2AfD2+HxXw82xl2u8XVet+7pue9HOwOeeLeyf8/k2pkThXnPb7iYV8oq815dcrOf3czRvWuXW27R13Y7+71P9eigW/T33fu50WLd907Bq3zo69/vdSLPnr4+53Pd2NDWyM577pxDlGoeAfx2rmf5/VRC4trfQ/NzPOtajd/nWvmr86ZJkLIVCtxvutqWtXBH+79zQafg6++JLL3NilV17rxu58r/tHy08+7e5+O3pWuLGpit9GEv1Zy/v5qOB+bv+6wEw+fp0BoFL3z3VLiT5Vw+Lf2fG3OcOts/qEU93YVCKxFBr+sbGBk08TfXHz6gAhEUt0q7FE/zmfi1d0ipdEdwyJiIiIiIiIiIiIiIgsExoYEhERERERERERERERWSY0MCQiIiIiIiIiIiIiIrJMHOqBISP5hD0RERERERERERERERHplEM6MBRCeEYIibdei4iIiIiIiIiIiIiISMcUWq1oZt3AnYDNQNmbLoTwyVaXISIiIiIiIiIiIiIiIu3T0sCQmb0GeBnQu4DJj9iBoQaNaPna1avdOo962EOj5X88bqtbp5j3n5530oknurFy2R1vo+LMs1apunVmwowbu+Ppt3Nj2445xo0R8m5o9Zr4etyza5ffjtvf3o1t3eS3Y6ZRc2Pl7lK0fNO6dW6dK6+40o3lCkU3Vir5sWIxHnvqU8926zzucU9wYz093W5s61Z/ewwhvt0DmMW3qxDcKiKugBHy8e0+l+9y61khvs+a+ftXPfh5dqbq54dateLGKtX4vpLzdyGKJX+/7Mn7O1Jv2f9s3V3+PL3PXa8kcmKXf+juW+EvC+puZLoSX4/1RO444bgBN7Z+3QY3tmbVKjeWq8ePgaN7t7t1pqYn3Vgj56+rir86GJv0j7cjY/HlFYsjbp2JiQl/YbJsNRqBmZn4tlbI+138Lqd/2bVhvVunPuPnylKiX1QfGHBj1Xo8mfb29Ll1pqam3FiukDitSeSieiJRVabiOWVy2M8b9YafHOpOjgLoLvnHxXotvq5GJxPro8v/Xsan/RzV3bvCjeX74/m3x+njAnT3+HnU234BCk7/AaDg9BMAupztMZ/YPnbtutGNyfIWAtSq8RxR87taVGfidUqJ7bo70Rc0PwVTL/q5o5aPN3L7sH8+3lv1r4WUyv6yiokcZubvf9NOns3n/Wshp56wxV9W4pzguI1r3NgjHnHfaPmWW5zq1tk77H8x5Zx/LCt1+W2s1rx+ov/gnULez4kzE37/srvkt7GReNCP93UmDi3ki34bRbzrUPV6ItF6EhevUu812XriKW5szYZ+N7Z+Y/zaW+ha6dapJw4guUQfp2H+9dfUdb6Qi68Tq+5161z/+5/68xu7zo0VBvzrrMVj4uu4tO4Et061kXroWOLCTAsaqQufiVjycmmqXirWwrXZ1PxSFj0wZGb/DLyh+edvgEsBXbEQERERERERERERERE5wrVyx9DfAhXg4SGE77S5PSIiIiIiIiIiIiIiItIhqXuyPJuBH2hQSERERERERERERERE5OallYGhawH/AdkiIiIiIiIiIiIiIiJyRGplYOh/gDPNzH/7s4iIiIiIiIiIiIiIiBxxWhkYejNwMfAlMzuxze0RERERERERERERERGRDikstkIIYdrMHgj8FLjIzK4ie7xcIz55uN8S29gxOWdcrKvY5da5+5l3jpbfwykHCCG4sXq97sZI1PMjCS3OL2fWyiwJrbWy7ctym5+YXy7nj5laYn1Yop63Hs0SdXL+slJS66qlrae9X6UsE5bLUSgXo7E6qW07djiBnPkbYj6Xd2Mh+LFG4vcRFacdhbzf9hLTbqyc95/C2lUuu7Fiuc+N1arxw3i9kfhclYobWzWw0o0dt22rG8s7ueqqa6/x6+T97yXf8NfV2N4b3djkxHC0fHxst1unkPe7Qiv/P3v3HSbJVd3//306TNwctNIqBwQCCRAiJ4tgBOZrgkkmBxP8M8EkI6KaJmOEAWMwwTZgwDZBIJBNsAUWGYQABUwUymmlXW2andx9fn/cmt0JdWqme6ZnQ39ezzOPtHXqVt+urjp1q27VrdUrw9hAX/62DTA2Gdd/59Ce3Onlvviz9oxMhjHpXmZQjtodBQ2ByaDtOTYZ54b1a+KBAsr5qRKAwVWr4noEdbz5li1hmZGRkbgelTinrF4Z16OnoJwFdezviXP2+ES8Hm2gJ4w1JuJzgtFGfk7pXRXnjdHgGAbQU4nrsWLdhjA2MZm/PgYGBsIyvT3xZ/X3x8e3SjXOzRPj8boaH8tf/2MFx75Vq+Jjn3Q5h0Yjf7ufmCxqy+a3EYabBe3VcnwNwj1uB4wWXE/oC3LVxGi8f+3cMRbGqr0FeaonruMej8utHBzMnb5r146wTM9Afxi72yknhLE7HR/v6xs25OfT0ZG4Tdc/GLcF+8prwtie0aEw1ltdlzs9Oh4BNCfi5ZUa8e9SahbEPD7eRuVG9uwMy3iwH4kUKbpW1mzmt3O8Gefmout8K9dujGPr4vaKl/LbOeMF1yAKLl3gBdcnzOO2XS9xO2doeEfu9Gt++b2wzNbL/zeMrV0ZH682nfanYWzd0XfJnd679vCwTCP4nQEKLg8VXsKM0qkXrN8iRdf8Kah/8XXWIFjU9Ai/WNHntNExZGaHARcCd86qdEL218bHi4iIiIiIiIiIiIiIyHJpuWMIeA9wKvAr4GPAlUD+7a8iIiIiIiIiIiIiIiJywGinY+iRwI3A/dx99xLXR0RERERERERERERERDokHrwwNgD8SJ1CIiIiIiIiIiIiIiIiB5d2OoYuB/LfiCciIiIiIiIiIiIiIiIHrHY6hs4F/sjM7r3UlREREREREREREREREZHOaecdQz8D3g98y8z+Dvgf4AagmTezu1/Xdu32EyuIuXvu9GYwfT6VSvwTFC6xzc9bTmb5azJah0Vl5ivXjuX8rCLuubsOAJOT7a2rIkXlwlh7HyVdzr3JxMRYfqwU35dQruTHijZ5L8iYTjn+rHJPGCsFxbwR77NFmaNUir9AuRzXcXwy/ryRycnc6c2JibDM6pUrw9hhm44KYyedfNcwtmvn7bnTL//Vb8IyY2NDYYxm/vcCqBSs5ZI18gMF206pMhDGrr/t2jA2PDYexpoF991s2bknd/qqbdvCMtVKbxiT7mVWoq+vPzfW2xvntvEgb2y5fWtYZrIZ73fNgpxoE/G+0NvXlzu9vzd/+nyxVatXh7GB3ngfWrtyRRjbuWNn7vSxidGwTE9f/Fl9BZ9129b8PArQu2Iwd3p1Rby8vp78bQOg6QXHo1J8blK2/O1ge0Hd165dG9ejGW87PT3xNlypxrGe4LceG89vjwBUe6phTLrb5GSD22/fkRsbHh0Jy1nQ8JhsxNtuuZy/nwP09sTtIppxPqqU8ts4pd5436usiPeHRiNoZwHucT2G98SxqAm8alXcPlu9Is5TGw+L8+LYaH4bDGBoLL/tvHp1nEvHm8NhbGT0xjBWJT6WTQbH6N6CE6HGntvCmFXibcea8flCuRHHhsbzYz2DBW2PgnazdDd3mGzkb6fDw/E+u7q5KlhgwfMPBe0fLD4fL4oFTSOs4Dpfo6hdXVDFXiu4LnDbDWHsNz/5Zu70W2+4Mixz+OEnhrGjT4mfE1lzXHzNwHvzj3PR7w9gHh93ii6+NAsuAETXjoquKRVdgy++flxwTbegVOtLm6cPoUA7HUNXZ/814I3ZX8Tb/AwRERERERERERERERFZYu102lxP+x1RIiIiIiIiIiIiIiIisp+03DHk7sd1oB4iIiIiIiIiIiIiIiLSYQWDL4qIiIiIiIiIiIiIiMihRB1DIiIiIiIiIiIiIiIiXaKddwwBYGbHAn8J/BFwJOm9QzcBFwEfdfdrl6KCIiIiIiIiIiIiIiIisjTa6hgys6cCHwf6AZsWOga4D/DXZvZ8d//3xVdx+ZlZy7GiMkXcPf6sooJLXA8K6hF9lhx6irZHkVYZUI7yR7UalyvlxyaLNs9GMwyVLD7UTTbjhZaDqlc8/ixvNsJYs1lQzuIHeEfHx8PY5GR+JVetWhWWudMd7xjGTjrxxDBWLsV13DO8J3f6yNDusMzI2FAYg8kw0lOJ69Ff7cmdXq7E29vQaPxZW3ePhbFm0fG7FMcmgnUyUvA79/T0hjHpXmZQKufvD43JOBf19fflTj9i4+FhmdGxePus9OYvL9WjYF8OWrqbNm0KyxS1c8dG4/111+44F5UKlumV/ONHo1IOyzQr+XkIYNzj49HqTZvDWCPIv0X5q6fgmNPfPxDGRgrW40BQbtWadWGZiYLj88033xzGNh0WbwfrN64IY9EvY8G+AjAxMRHGRNL9r3OtWBFvh9u33Z47fWAwzpdr160NY2PDcQ47+vD1YaynJz8fNRrxMWJ0ZCSMNQvauRNj8X7kPYNhrBK069ZvXB2WOfGkY8PYne9y1zC249Ybw9jYzu35gdU7wzKlZpxXrDEcxsZHbghjPpifZ200zqU2Hm8f5eC8CsB6423H++Pt24a25k7vXREfP6p9/WFMulu6ZpC/Lw30FR3v8/ObF7R/CgfNKroOTMF+FJwTetgiAUpxe7A6kX9eDbD1+l+HsT9c+qMwNrItP/fd8U73Ccscedczw1ijd00YwwvWcdBstYJ1ZQXHHTz+zZoFV9TDyzntXg4tuo5aeI216Fp7fqxo2Ley56/H+a7otzyUnJmdAXwKGAD+E3gCcHr292fABUAf8KlsXhERERERERERERERETkAtPPE0Nmkm7Ge4e7/Nit2GXB+9kTRZ4HXAE9ZXBVFRERERERERERERERkKbT8xBDwIOCnOZ1Ce2VDyF0MPLjdiomIiIiIiIiIiIiIiMjSaqdjaB1w5QLmuzKbV0RERERERERERERERA4A7XQMbQXiN1fvcydgWxvLFxERERERERERERERkQ5op2Pou8A9zOzZ0Qxm9hzgHsBF7VVLREREREREREREREREllqljTLvBB4P/IuZPRn4LHB1FjseeAZwFjAOvGspKrnc3H1ZyiQWR+IQ0ccV16PNOhYs04oqeYhq/7c+8EW/Z9F37sZtQFoQbB4TE5NhkVKlmr+oSk9cxuIYVg5DzaL92Rv5n9WI696YnIhjpfzlAVSC7wzQV1B/Ss3cySsGesMi4yNDYezK3/0yjDUm4u82GizzuM0bwzL9g0eHsRtuuSmM7R7aE8a8nL8e3eLmzujYeBizUnz/TE8l/l1KpThWqeTXpVot2r4LtgHpWu7OeLD9jgwPh+UGm6typ/dX+sIyq/pXhLFx8vMQAAW5bbKRnxOHdu6OFxfsPwATBTlqvOCYM9GM2zHr1q/Pnb7xyDh/jU3Gub7cuzKMWU+cAyaDZVYn4nXfGI9j3ozXY7WnIO8NDOZO7y241XC4YFvccPgRYWxgVf52CtBoo11aLth2RsfGwph0OwfL397KwXSAdWvzt981a9eGZcoFbYfqYJyDq9V42/bo/N/i/DAwGB8LJkfjfaWvoB7jo3FeHNqT34ZcuzZ+K8ERR2wIY+vWxetq3Ya7hrHrLrskd3qj8buwzOqjTwtjvT1x/c3iY2PUZB0fva2gTMFlvYl4u2qU4jaw942EsVI5f/sZ6F8dlhkaiZcnXc6cUjm/DVeqFF0vzc9vpVLc5muW4rztxHmq8JpXECr5aFikMbQjjN105cVh7MYrLw9jXtAcP/lBZ+VOP+zEOIeVqvGxwDxex0WM/HxkBc+seNFvVtQeLKiHB+cu1uY1c2+2dx3ei2oZbN9W8EMXHVuKtNwx5O6Xm9nTgE8CjwIeObsuwBDwbHePt1oRERERERERERERERFZVu08MYS7f8nMfgi8EHgQcCSpQ+gG0lBzH3f3W5asliIiIiIiIiIiIiIiIrJobXUMAWQdP29ZwrqIiIiIiIiIiIiIiIhIBxWMCL28zOyOZvZZM/u1me00s2Ez+42Z/Z2ZzRmAOpv/fDPbbmZ7zOx7ZvbQ/VF3EZEDnXKsiEhnKc+KiHSOcqyISGcpz4p0n7afGOqAo4AjgC+ThqSbBE4jDVf352Z2d3e/FcDMTgR+mM3zt8BO4AXAN83sUe5+4X6ov4jIgUw5VkSks5RnRUQ6RzlWRKSzlGdFusy8HUNmdtUilu/ufuICZ/wW8K2cz/8u8HngOaRkA/BOYA1whrtfms33r8D/AR8yszu5u7db6VLpgHmQKmTWVqmlrkZXsvZW/kGtG7/zoWZ/5NimO2Nj4/mxcjUsVw1ScKngIddmM65H0eZbKgg2G/nTK6X4q1dsMow1PFggYKV4faxfvSqMbdk+lDv91m07wjK79gyHsdWD/WFsw6oVYezwDWtyp1eqK8MyI+P52waAFT3Q7EX5KL9ctac3LLFh/UAYW+PlMDa0ZySMjYzHv7UHdYymJwd+u0T2Q541o1zNzx2r16wJizXJX+yu3bvDMv0Dg2HMK/F+UirF++u2XfmfV1SPSiXOlUVtlZVr1oax/pWrw9hEJf9UqVKOT6FWruwLY16OY3vGRsNYKahHifjgVy3Feaga/2RMVuPvNhkcbH0yrkezYDNeuSo+vvX3x3m70SjIscHHTRaUsYLtVA4c+6Mta2ZUKvnH4LGCfXawP79tUS5osE4GbWaA3p6inTbetnv78vejajAdYGgov20JUC73hLG1a+M8e/31N4axTYdvzp1+zObjwjLNHdvD2Mht14WxVZvvGMbGmvnHl+uu+F1Y5oF3fHAYKzULzhfin4zG+I7c6UOliXh5HBbGBirxbz0xcXMYKzXjzxsOttWdt20Ny4yO7wpjcuDYL3m2VKIanINWoxNygCA3Y3G+NGvznKrwgkL+Mse3x3lvzzU/D2Pbb/5D/FF98XnrHe9xZhhbd8ydc6ePFfw6Re23ombTPCcv+VOLmmEF5/7ttt5K3sZ2UPDFipbW9IILVQXfzS36wLhMz0D+fjRfO3cha+O44O/YBcYW69rsv2sBzGwQeAxw0VTyAXD3IeCfgJOBey3B54qIdAPlWBGRzlKeFRHpHOVYEZHOUp4VOUQtpGPo+Jy/D5D6y74EPB44Pft7PHBeFvsAcEKrFTKzPjPbYGZHmdkjgI9moa9l/70r0Av8KKf4j7P/KgGJiORQjhUR6SzlWRGRzlGOFRHpLOVZke4x71By7n7t9H+b2ROBlwFPdvfzZs1+GfAVM/sz4AukJHEtrXk+8MFp/74GeIa7fy/799SzxnnP5U1NO7LFzxQR6RbKsSIinaU8KyLSOcqxIiKdpTwr0iXm7RjK8SrgxzmdQnu5+5fM7MfAK0njULbifOA3wArSU0iPATZOi08NqjiWU3Z01jwzmNkLSS9N45hjjmmxWiIih4Tz6VCOhZl5tqc/fpeCiMgh7HyWoS27flX8bhwRkUPY+SxTW3awP36njojIIex8linPbtgUvyNLRDqvnY6hU4GvLmC+a0jJoyXufgNwQ/bP883sPOCnZtbv7u8Ept6anfcWvamrkLlv1nb3jwEfA7jnPe8570vQREQONZ3Msdny9+bZwTWrlWdFpOssV1v2uM2blWNFpOssZ1t2w5pB5VkR6TrLmWdPvOMdlWdF9qOFvGNotklS59B8Ts3mXRR3vxz4BfBX2aSbsv/mPZY4NS3vcUYREZlFOVZEpLOUZ0VEOkc5VkSks5RnRQ5d7Twx9H3gT8zsbHd/d94MZvYa4DTgPxdTuWn6gXXZ/19Belzxfjnz3Tf77yXzLbDRaLBjx47cWLMZd1ibzbdkkW6jneIQsOQ5FtKWUSnnbx8jjfi+AZ8Yz51etmr8YQW3OZjFOb1cUK5cbuROH+iJt/k+j2PNyfzlAeweyXsKP1tmwc2qPdX8w7gVHKz6++Ih/qxcDmO3D+0JY7vGRnOnV3rizxoei7/znqHwBjMo2HYG+vK3kWM3b8ydDnDnU+8exvpXbQhjP77kF2HsV7+7Kozt2pO/rhrNZlimqF0iB40OtGWbbN81lBtbvXJlWK7Smz800ngl3ga94FhvjbjcYN9gGFt1WP4IIz3r4iFF+vvDUUkYGRkJY30F5crVvJtdk4mx/ONRqeB45BTF4oNOT29cj6jUeCPOlbt374g/qxLXY2DjujDmnv9blwq2j95KPBRXT6XgVDT4LIBmwXGgVM5fZqnggF+uFrQv5GDRkbZsuWSsGQjaMoNxG6e/vz93ek+wfQIEzV8A3ON2QMkKtu0g1lOQ9wZXxPvXWEEldw7tDmMTpfh7H33iKfmf1YjbzXu27whjPaU4d1QGVoSx0qr83+yInvz6AZQK2rnNsfiY5MH5EUCpkv/bVEbj49jk0M74s9atD2Pjk/nfGcAL2p6Tpfz696+O6+g7C9r2crDoSJ4t4fQ18/f34zesCcutWBHEgmWlD4v3vaKzraIrXnuG87ft4Z74vHrd4YeHsZUFw/H3rorbyEfd4YwwVurNz31Ruw46de07Wsvx2i86/hWeIbdTrqBMuwoXWRBrBtewygXb8IZgmPHomtGUdp4YOgcYB95hZpeZ2evM7Klm9udm9lozuxR4J2lcyXMWulAzy90zzOwhpKePfgzg7kPABcCZZna3afOtIL0g7ffAxW18LxGRQ5ZyrIhIZynPioh0jnKsiEhnKc+KdJ+Wnxhy91+Y2aOBz5CeCpo9rJwBNwPPdPdLW1j0P5rZEcC3gWtJ41KeAfw5sBt41bR5Xwc8DPhvM3sfsAt4AemRxUd7UZeiiEh3Uo4VEeks5VkRkc5RjhUR6SzlWZEu085Qcrj7t83sROCJwB8xcwzJ7wBfdPf42dl8/w48G3gmsJH0UNW1wEeB97j7ddM+/0ozewDwLuC1QA/wc+CR7n5hO99JROQQpxwrItJZyrMiIp2jHCsi0lnKsyJdpq2OIYCs4+fT2d+iufvngc+3MP+vgccuxWeLiBzqlGNFRDpLeVZEpHOUY0VEOkt5VqT7tPOOIRERERERERERERERETkItf3EEICZlYENQG80z/RHDUVERERERERERERERGT/sXbeB2ZmfwScAzwAqBbM6u6+qM6nTjGz20hjZU7ZAGzdT9U5EGl9zKT1MdNC18ex7r6x05WRA9OsPKt9aCatj5m0PmZqZX0oz3YptWXnpfUxk9bHTGrLyrzUli2k9TGT1sdcyrMyL+XZQlofM2l9zLQkObbljiEzezjwNfY9bbQNGIrmd/fjW/qA/cTMLnH3e+7vehwotD5m0vqYSetDWqVtZiatj5m0PmbS+pB2aLuZSetjJq2PmbQ+pFXaZmbS+phJ62MurRNplbaZmbQ+ZtL6mGmp1kc7T/O8OSv3D0Dd3bctthIiIiIiIiIiIiIiIiLSee10DJ0OXOHuL1vqyoiIiIiIiIiIiIiIiEjnlNooMw78dqkrcgD42P6uwAFG62MmrY+ZtD6kVdpmZtL6mEnrYyatD2mHtpuZtD5m0vqYSetDWqVtZiatj5m0PubSOpFWaZuZSetjJq2PmZZkfbTzjqFvAJvd/a5LUQERERERERERERERERFZHu08MVQH7mRmz1rqyoiIiIiIiIiIiIiIiEjntPOOoSrwPuBfzOyPgW8CNwDNvJnd/bvtV09ERERERERERERERESWSjtPDF0EvDor+zTgU8C3gP/N+fv2ktSyA8ysZGavMLPfmNmomV1vZu81s8H9XbdOMrPXmdkXzOwqM3Mzu2ae+e9oZueb2XYz22Nm3zOzhy5TdTvOzE42s7eY2Y/N7DYz221ml5rZG/K2hS5YH3c0s8+a2a/NbKeZDWf7yN+Z2RHB/Ifs+pDFUZ5VnlWOnUk5VpaScqxyLCjPzqY8K0tJeVZ5Vjl2JuVYWUrdmmNBeXY65dmZljvPtvOOoYuABRdy94e09AHLxMw+ALwM+DLwdeAU4KXA94CHu3vuE1AHOzNz4Hbg58AZwC53Py6Y90TgYmASeD+wE3gBcCrwKHe/cBmq3FFm9i7gxcBXgR8DE8BDgCcDlwP3dfeRbN5uWB8PA95AWhc3kL7racBzgV3A3d391mzeQ359yOIozyrPKsfOpBwrS0k5VjkWlGdnU56VpaQ8qzyrHDuTcqwspW7NsaA8O53y7EzLnmfdvev+gLuQhr47b9b0l5I6vZ62v+vYwe9+wrT//yVwTcG8nwca2UY3NW0FcC3wW7KOxYP5D7gnsDpn+tuybeEl3bQ+CtbTk7L18RqtD/0t5E95du//d3WeVY5d8HpSjtVfS3/KsXv/v6tzbPZ9lGcXtp6UZ/XX0p/y7N7/7+o8qxy74PWkHKu/lv66Ocdm31N5dt93UZ5d2HrqSJ5tZyi5Q8FTASP1pk33cWAYeMZyV2i5uPtVC5kve1zvMcBF7n7ptPJDwD8BJwP36kQdl5O7X+LuO3NCn8v+eyp0z/oocG3237Wg9SELojw7j27Yj5RjF0w5VlqlHDuPbtmPlGcXTHlWWqU8O49u2I+UYxdMOVZa1bU5FpRnp1OeXbCO5Nlu7Ri6F6ln+uLpE919FLiUQ3tDWqi7Ar3Aj3JiP87+eyivp6Oy/27J/ttV68PM+sxsg5kdZWaPAD6ahb6W/ber1oe0RXl2ft28HynHKsfK4ijHzq/b9yPlWeVZWRzl2fl1836kHKscK4ujHLsw3bwvKc8uQ56tLLKSg8BJwCpST+8c7v7dxXxGh2wGtrr7WE7sRuD+Ztbj7uPLXK8DyebsvzfmxKamHblMdVlWZlYGziGN0fhv2eRuWx/PBz447d/XAM9w9+9l/+629SGtU56dX1fuR8qxgHKsLJ5y7Py6dj9SngWUZ2XxlGfn15X7kXIsoBwri6ccuzBduS8pzwLLlGfb6hgyszsAHwD+mOKnjrzdz+iwASAv+QCMTpunmxPQQPbfvPU0OmueQ837gfsCr3f332bTum19nA/8hjQ25emkxxM3Tot32/qQ1inPzq9b96P3oxx7PsqxsjjKsfPr5v3o/SjPno/yrCyO8uz8unU/ej/KseejHCuLoxy7MN26L70f5dnzWYY823KnjZkdQ3pMaR1wU7aMw7JpJ2WV9OzfE60uf5kMk+qcp2/aPN1s6vv35sQO2XVkZm8FXgJ8zN3fOS3UVevD3W8Absj+eb6ZnQf81Mz6s/XSVetD2qI8O7+u24+UYxPlWFkCyrHz68r9SHk2UZ6VJaA8O7+u24+UYxPlWFkCyrEL03X7kvJsslx5tp13DL2O1Cn0Nnc/Cvh6qq8/wN03kZ4iupLUKfSINpa/HG4CNphZ3so7kvQ4Y7f3St+U/TfvsbOpaXmPqx20zOzNwBuBTwB/OSvcdetjOne/HPgF8FfZpK5eH7IgyrPz66r9SDk2phwrbVCOnV/X7UfKszHlWWmD8uz8umo/Uo6NKcdKG5RjF6ar9iXl2Vin8mw7HUOPAK4D3pwXdPdvAWcB9wFe28byl8NPSd/93tMnmlkfcHfgkv1QpwPNFaTH0e6XE7tv9t9DZj2ZWQ2oAf8KPN/dfdYsXbU+Av2kTmHQ+pD5Kc/Or2v2I+XYBVGOlVYox86vq/Yj5dkFUZ6VVijPzq9r9iPl2AVRjpVWKMcuTNfsS8qzC7LkebadjqHNwKXu3sz+3QAws56pGdz9GuAi4KltLH85fI403N3LZ01/AWn8vc8ud4UONO4+BFwAnGlmd5uabmYrSC/A+j1w8X6q3pIys3NIHZ2fBp47bdveq1vWh5kdHkx/CHAq8GPonvUhi6I8O49u2Y+UY/dRjpUlpBw7j27aj5Rn91GelSWkPDuPbtmPlGP3UY6VJaQcuwDdsi8pz+6z3HnW5nbAzVvBbcC33P3J2b/fB7wMON7dr5s23+eA/+fugy19wDIxsw+Sxiz8MvA14BTS9/gB8NC8jfBQYGbPBI7N/vlSoAd4b/bva93909PmPYm0EU0A7wN2kZL0acCj3f2by1XvTjGzFwP/QHoK7k3A7N99i7v/TzZvN6yPLwNHAN8GriWNS3kG8OeksSnPdPdLs3kP+fUhi6M8C3R5nlWOnUk5VpaScizQ5TkWlGdnU56VpaQ8C3R5nlWOnUk5VpZSt+ZYUJ6dTnl2pmXPs+7e0h9wGfCjaf/+/0hPDT1r2rQqcA1wfavLX64/oAy8Cvgt6dGrG4G/A1bs77p1+HtfROqVz/u7KGf+U4CvADuyDfD7wMP39/dYwvXxyYL1MWeddMH6eDLwX8D1wCgwAvwG+CBwTLdtH/pb3J/yrPKscuyc9aEcq78l+1OOVY7Nvp/y7MzvpzyrvyX7U55VnlWOnbM+lGP1t2R/3Zpjs++uPLvvuynPzvx+y5pn23li6MPAs4DD3X3IzI4B/gAMAa8HbiD1Tj0a+KK7P6WlDxAREREREREREREREZGOaKdj6GHAR4BXuvsF2bS3kTqFphZmwE7gDHe/aumqKyIiIiIiIiIiIiIiIu1quWMoXJDZE4EnAOtIjzj9vbv/YUkWLiIiIiIiIiIiIiIiIou2ZB1DIiIiIiIiIiIiIiIicmArtVrAzG43s+92ojIiIiIiIiIiIiIiIiLSOS13DAFV4PqlroiIiIiIiIiIiIiIiIh0VjsdQ78FNi11RURERERERERERERERKSz2ukY+mfgQWZ216WujIiIiIiIiIiIiIiIiHSOuXvrhcw+DDwZeDdwPnCdu48tbdVERERERERERERERERkKbXcMWRmjRZmd3evtFYlERERERERERERERER6YR2Om2sQ/OKiIiIiIiIiIiIiIhIB7U1lJyIiIiIiIiIiIiIiIgcfEr7uwIiIiIiIiIiIiIiIiKyPNQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSSyBKxua6xuJ+zveoiIdD2ze+zvKoiIiIiIiIiIHMgq+7sCcmCwuvUCXwLOAO7pNb+hhbLHAVd6zcPtyer2HOA52T8nveYPb7uyBwirWx/wbOCxwNHA54C3LdGy7wR8kLSPTgLv9Zp/I5j3T4HXAcPAHuDVXvPfB/O+HngMsAu4Opt3d858K4EPAScAo8A3sjr4Ir+ayIHB7Bjg/cAa0j5mwDdxP3c/1urAY3NzEZ6fi1pY5ieBOwJj06behvuTFjAf2bT74X7NtHlPJ+Xj+wHHAZsKPr8XeAPwUGCClA9fh/uvWv4uIiILZfltK3yJ2lZmTwDeB3wM97nt0YXm3jTvPYA6MEjK/d8F3ol7Y9Z8vwa25NRmE+6ntPM1RKQNZpuATwP3wn3t/q7OAacT7dm03BcDfwHsBq4HXoH7bQXznw68Bjgc6AU+j/v7Z81zNPARYD0pX38E938vWGYf8GLg0aQbv8vAY3G/vc1vJdK1rG7PJO1Pv/SaP7/Fsp8kXRddkmuCOcv/V+BBwHO95hd14jPa1cr1yxaXOyfHem1ujrW69QAfAO5Fui76PeAcr81qt6Z55+RYr+XnWKvbg4G/JV0zGALe6DX/2WK/14FGTwwtE6vbU6xuf7a/6xHxmo95zR9NOkltVRPYMc/yP+k1P9NrfmYbyz9QrQYapA6vly7VQq1uK0gN+7/ymj8EeBzwGqvb6Tnz3gN4JfCIrLPtVcC/W936c+Z9KbARuJ/X/BHAfwGfCKrxCeDLXvMHZss9HHjJor+cyIHjH4A34P5Q3B+B+x+rU2gW25eL8H25KDupXawn4X7mtL+5FyZT4+9PZs13JvALYOuseY8n3dxwP+CKeT77Y8BVuD8w+14vBT6cnYiLyMHE7CnYgdu+nuUTwJez3LO0bat0YfBlwIvmmXP+3Gt2BPBe4AV7j5FwGalDfbZv5+ToRwLXLebriEiL3Ldk++ohd8Fq0TrVnjV7BHB/4L64/xHwHuAzmJWD+V8EvBY4G/eH4H7/OZ1CyT8DddzvCzwceCBmjw+WuQH4T+AW4OFZHn6QOoVE2uM1/zTw520WHybd+NMRXvNnkfLDAaWV65ctLndvjvXavhxr9dwc+2ZSZ949veYPBn4NRNd2/hmoe21fjrX63BxrddsIvAN4nNf8QcAzgbdb3Y5ZzPc6EKljaPn0AwP7uxKd4DW/zmu+YX/XY7l5zbd4zf/Ja37rEi/6mcAXpp768ZrvAV4NvCJn3rOBs73mQ9m8VwL/Bjx1+kxWNwP+Enjd1FM/XvOvAlWr20mz5j0FGPCaf3na5DcAz7K6KWfIoWIA91/v70oc4J4JfAHPnkD0wly09NzfhPv2GdPM1gITeMp50+b9Eu7fxb1ZuEyzNcAe3D85rex1wFvZ91SriBw8Do72taW2FT63bYUtSdvqNaSnkUaWYFn3Ar6K+y17p7hfQOp4n8n9xTnlHwF8awnqISKyFDrVnn0xqbNpPFvuZaQbL+ferGD2QOAM3J+StTvzmd0LuBz3i7NlTmT1zMu1AP8I/DXun523DSwiHeU1/yuvdeWNpq1cv2zFi0mdTePZcnNzbHat835e8w9NTfOafwY40up2xKx57wVc7rWUY71WmGOfA7zLa6k97DXfSmpvn73I73XA0VBys1jdngY8mfQ0iJMeGXur1/z70+Z5OOlkrjE1JJrV9z6+fTTwbq+li07Zhvgp4BjArW7TH0e8xGv+6pw6/CXwXNLTKL3At4Ga13w4i5+bxT9F6kGdIPWQPgc4EtgOPHVqB8rKnEDq7TwpW+4u4G1e8+/krIay1e1s4PHZOvDsO31lVj3vDbybNATTqUvVOZQt943A1PJ2k3bI/12CZb+GNNzb173mj13s8jrkwaTvv5fX/OfZkH2zHT+V1KY5H3gT8C/Tpp0M/NxrPvsOhq8ADwCunPX55836/DGr269J2/e1C/saIgcgs08BxwJ3w+yiaZHv4F6bNt9ppMeRTwCeQdru30PaByaBl2UngFPzP4R0XFhJGsLhd8DrZwx3luZbQXoc+b6k3L0deD3wr8Ct2XJ/2eZ32wj8iJQ7H4vn5vdWzMlFuP8cy81FrXoXZkeR2iFGWlcLqe+fku6MbI/7DuCvciLDQF/byxWRYmYGvBx4CjBO6sC4gtQm/TjuV2bzVUjD4z6AtE82gG3AK/FpwxzbzPY1NrN9jc9tX7dR5wtInRxvxP09i1zanLYV7mPZUGyLa1ulpx3vi/tbMDtznrkXknu/D/w1Zt/E/VdZx9XzgBMXWKPHAe9aaPVFpA1mm0n72Z1I7dJriC5WWf65NZ5zbm32dOAFpBxRzpb7BtyvmjXfucA9gUncH47ZXwBTefh7uL9mEd/tYGnPrsB956xp55GuNXxh1vSXsG/9FDmBdA6xj/s4Zldhdizu+44VZvcDfoH7/7VacRGZn9XtLsA7SbmoH/gp6abs7bPm+xBwF9IQ9V+MhpKzuj2DlAdO9ZpvsLo9gHRzYpU0GsZzveY7snl7SNf0ziK1m/ewdK+tmJFjg2vCrWjl+mUrVnhtQTn2MODmnPJfIbXjPzVt2pwc6zUft7pdZXU71mt+7ax5vzJr3sutbndo7Wsc+NQxNNeVwPO8lh6/zR6LO8/q9udTCcBrfiFwodXtwqlCXvMtwCOynb0ybfrN2fTnkN6t85miD7e6vZ+04z/Yaz6WTXsW8FWr26OzId9ebXW7JzDkNb9vlrB+ATzaa/4/VrcXAk8nGyYseyLkM8BLveY/zaZtBv7Z6rbWa37+rGp8BPhK9mgdVrf1wCetbqu95v867btdDDwkm+dCloDV7WHAC4EXTvXMZp1rH7a6rZrdOdWGo0mJ94RFLqeTNpA/BMfs92xAupg52zXAEbOmbST/osPVzL0DdCPw42DeI4PliBwc3J8NgNmF2VA+0XxXAA/F7M2kBtkfAy/B/ZJsHPeVe+dN73V4HvBM3G/Opt0b+A/Mnrb3ZDoNLfFl0kXQv8qmnUZ6ys9xf+giv10/aWiiAdJ+vFit5KJWfBHYgWc3XKT1+QXMno779fOUfSz5HTvtM6sC5xDfjSkii/cR4Pek94Old+qYPYyUD6aP6+3ARcB78OxmFrOTgA+T3pGYzZXa11hqX+PF7es2HQf0kDqfFquTbat3kTrT5rOw3Ot+O2Z/CVyM2e3AOmAF8LR5PyEd507A/Xfzzisi7TFbT9qfX4X7j7JpdybdFHj4rHn3nlvvfQowdax/GLNV+LRza7M3kjqDHjkt/54OfBqzZ+B+9d55pzrfzX6E2edIuewhuI9i9oBFfsODpT07hNkm3Ke/Z+3ZpBsy90ntzNQZb/b3wOmkGx7emHMz2JWkG4Cnl19LujHqPGYeKx4FnIfZI0nDyVeA/wHePed9cCLSqlNJw+q+0GvpKT+r2xOA/7K6/XH2VAwAXktPT1vdzgQeGC0wuxb8GavbhVa315Jugnq61/xmq9tppFd0TD0B8zngAq/5vbNpa4GPkvLZ93M/YOEOmhxrdduUXWufMjfHpk61o61uNuud6M8kXSefbk6OzdZtXo69Ergr0zqSss68h1ndeqeu1x8KNCzULF7zi6c6hbJ/D5F2vFM7/dlWt7sBR3rNXzN9I8s6Y77CzHHDJ73m52Tx/wO+6zX/nyz2K2aexL4LeNFUp1BW5ibSk1Gvs7pVZ1XlUq/5R6bNu400zubLsp7rTnoNKTnuHb4i61x7MulO08V6GemOx3suwbI6xbJHGudMz5k2OXuC17zJ3E7fCvnjnU6QLnq0O69IN7g3cBbulwBT47hP3d1eJeWtp+ztFErzXEwavvHd05bzBOAHuH9+2nxXkO4iXMlipaEpjgKOwv2Li14eWDaExdzpi+H+n3svTKZ/byE9NVX8rg2zAWDlrBPwxUm/36eBf5xzN6yILA2ze5CGUTt3b6cQgPu3SHdKbps2rYH79/ZelEzTriSdxC63e5LajC9bgmV1pm1l9mBSZ89l88670Nyb8uJHSTc8nARsAh4KfH0BNXoQ8IOFVV5E2nQ2cM7eTiEA918Bf016gmi61wBPnzU05Nxz6/Tk4R1wr8/Kv78g5YKZT9zsczfg87i/dm8598XlgIOlPQt/B3wCs7WYGWbPJF1EnH2H+wbSOfv5wIW4P4h977eceeOB+8+AEzF7XKqhHU66geyLpE766TaR7oZ/Aelp3Idmn/3eRX4vEUm59NlTnUIAXvPzSDfc/3+LXHaZNELVY7JrnXjNr/Ca78rijwL+z2u+dwSg7CGFZ5NGPlmU7DsdBRzltaXJsS1cv2zF3wGfsLqttbqZ1fNzrNe8Afw36f0/FatbX/bAxRXMypteSznW6inHWr0wx34KeLXV7c7ZvPckPUF2fs68BzU9MTSL1e0+pBPAo0jDV4yTDrrfW4aPfzjw+SD2OeCfgL9f4LKm74RHZeMxzuA13211+xlwGvDzaaHzcubdY3X7CWlHvGSBdWiJ1e0w4O6kp7HyZtlgdVs3veOuVVkP8oF+8W/S6lbKOnimm92BB+nO2hmyjr7Z08eD8n3M7VxqZV6RbvDWnKEipqScOPudNwDul2Yn2lMezMwhHqd8l7knke1JQ6XtWJJlwSRmpZwxy/Pyw2JdQrp4UeQsUqNvaZgNAp8FPoH7V5dsuSIy25mkk6i53P9uxr/TkHNPJt3lt5LUFh8C7tzB+uVzH2Pp2oxL37ZKQ7y9GXhS27XKz73/D7ho2vuQxoHvYfZ60rDURR5P6mwXkc65D3nDxqWhH3+z99+279wayz+3xmwd7reTRpC476xhlqeL3l/2Q9znXDtYtIOhPev+neympS+Sbri+iHTsmj3k8Q5Snn7O3vam+/WYnU267jR76NMnA+/E7NWkO+HfRPp9ds+abyfpQvEZ2fEK4EOYfQ2z1QXnLiIyv+/PelJlyhdI5/OLeZdQw2te9KT3H5M6oGbwmo9Y3RZyk868siHrdizFsmjt+uWCec2/Y/UF5VhIw8u9PJtnhPQb/ZKUI2d7MvBOqxfnWK/5Vqvbs4F3WN02kJ4gejLpnZ6z8/FBTR1D01jdziLdvfEar/mvsmlllnec7DkX+hcYa3eZrc7fyZcajgLXe83P7OBnHAxuJN0JcPWs6Xl3y+btw8cAt82adj1pSJTZjiW916TdeUWk/dw83WLvqOmEVnLRYq0lXQAu8jjS0wWLZ7aBdCPGu3H/5pIsU0QiZRbefnwLaWiL5+Ke2jJm/cCSDFm8H3WibXUE6ea186Zd9F0DrMbsmgUOr5eXe08CfpIz7yrMTp3nPXhn4P7XC/hcEemM6e3JUeB6fEHn1sPAf+L+qo7Uav/qXHvW/etMf5oyDb139ax5RjD7PTOHTQW4jPwOvt3MfZLz9cy9efc3pCdGZw9n9EvgeODSBX0HEcnTieuyC1V0XaCrrhl4bWaOtXpOjmXvAwDvy/6m5n0FOQ81eG1ujrV6bo7Fa/5b0qgvU/P1AhuzkcUOGRpKbqYXAM+c6hSCvY+lRb2BeQkhGg6iyfzr+1ukIdvyPJX2T4pvzIapm8HqtpI0TMYVs0JPyJl3IJh3yWSPTu6yut23U5+RPYJ4QrZD7xdWt81WtzUFs3yfdMfl9DL3JicBAtdZ3e4xa9oTmPuE2w3AKTnf+89y5v0B6T0e0z+/jzQe8u8L6i3SjS4H7o3ZijmRdHI4/Z053yWNXzvbHwGrlqQ2ZmuyFxIvhTm5KHt3Ul4umor3YnZCdtd/XnxTNkzRbI+iaLzk9EL64/YO4bcYZscCF5DGdlenkEjn/ZD83Jekd91MuT/ur9rbKQTpolo8TvlC2tftmS+ftWZO2wqbp22VhiY6AQvarO434n4X3M/c+5fulvznOZ1CreXe35Kehp3tNNLTW/nSkIGzx3IXkaV3MWmkkZnSe4buuPffns6tsQWdW38XeFT2Ppv970Bvz+aXqQLvId1NPtu3SEO9TXdyYR32LfeRwCjuN82KfB14ZE6Jk9A7gUUW64HZiEazPZG0P3fS/5Cu081gdesnf59vmdVtTfbe+aXQyvXLqXhvdl12wTk2GxkpyrGz5z2aNMTmvO+ot3rKsdnrVubzZtKII4cUdQzNdDVpbGwgXQy3ur0c+Jtg/sbUzmR1K1vdngH8bTDv5cCjsyeQppZ/QvbSMQC85peSOnHePf0CfjaW4mOAj7X1reC1wEetbveatswjSHdLvyNnPMinWN2eP23edaSN/33B2JFL6cXAR7IXt+1ldbuf1e3rWWfWYvw98Ac6NBzefKxuTyR10txg9VljCu/zOeBpVrcTszKDpLEs350z7/uBc7N5sLqdRHpUfcYwHlkP+meAt0+ry2OBYa/5r2fNexXpcdDHTJv8duCjs17mJiJpzPJ3A5/LXuabpBPOf2TmnYDnAQ/A7AnT5juN9Pjy4t+bk8YpvwG4AbMnLnp5WS7CUi7Khl6LctGUS0g5Nhr29B7AVzE7Ye+UdMHiBcDHC5b7R6SLFotjdhfSHZt/gfsPp03vxeyPF718EZkrvW9iBWavwfa1gzE7CbMvkTonpjSyztupeTZh9o+kHJDncuDRs5Z7Aravfb0I8+WzhUvvMJvE5ratZrx3aaalbLO2knv/C3jkjIvJZn8JNHG/puAzHk80ZKCILKV3A2/B7H57p6ROoc8wd9SIFwMfwezMGVPN7ofZ17Hs3Dp1Ir0N+BJmx0+br4LZUzD71yX/FpGDoz07k9kpwJdJOT3vRtr3AG/H7Mhs/pWkUWk+XLDMHsxeQnqfyYvmxNO7oi7H7JXTyjwG2I779gXVW0QiQ8AXsw4GALL30jyF9q/LLtTXgFOtbs+d9tlrSddky2GpBcquQ05dk1yyHLvA65dTWsqxVt+XY72Wm2Onz3sW6f1Af+E1j4ZBxerWY/WCHDtz3vVWt38ASl7zjy6kzgcTi89Fuk+2AX8AOIE0RJcBXyUNy/Bo4NNe8/dOm/9uwAdJTw71ksYzvJHUAHuZ13zGuxCsbi8Cnp79s5d0h+DHvObfnTXf/wc8hzS0Qy/wbaDmNR/O4ucCf0G6+/DPvObjVretwCe85n9jdXsgqWF4jtf8X7MyJ5DGBT8pW+5u4G1e84uyeC/wJeAM0h1ILyB1ko1l87/Ta/5fs9bVF9n3eODdSI9Dk62PV3rNf5HNewZpDE7LmXcYeOLUd8vmP540lMids3pWSE8qvc9r/jsWwep2Nmkoov/xmj96kcs6hjR2ZYWpoTv23Z3z7uyxx9llziT1Wm8D7uM1n914n5rvZNI6G8j+3uk1vyCY91GksYnLpHHgX+Y1/03OfJbN90jSdnUV8OLsUcrZ864ivbjyONIY/xd4zd8+ez6Rg0o6Cfs8KW9Nz0OQTuT+fdq8bwIeRtoHtrPvHUC34D73yU6zhwJvAFaQ9sXfA6+bcxEt1eFvgXuT9tfrgVeR3nMz9+7P1r7fRuBHwGHA43D/9qKWl5Y5Jxfh+bkom/8C0ruAzsE9fxjWdPHiLcB6Un65GngF7jcULPcc4CvhC9bTEBuPyP41/bed+XuZvZl0HN7GTD3Az3F/PiKy9NKd1K8lDQk5TBr/+1bgXNwvnTbfVM4ZJO2Xw8A/Ay8k5da3zsltlt++xn1xnckLyWetLW9O2wovaFvZvjYrPk+bNQ23dx6wmdQefSPun501z8Jzb7pT/wOk4YknSCfwb8x9n96+Mp8jveRe76MU6bTUwfC3wB1I5963AzXS+X4ZeDvuF2bzhufW+Kxz69SB9FpSnhjKlvUt4O/3djaYHUd693GFue3pd2fDqy3mux0s7dn3ktrzDdI1gHp2E0C0zPuQbgjoI627d8x5x2XK0/9EGgYQ4D+Aj4c3EKQn6t/Ovpsnfg/8VTYcnYi0KLvZ/yWkIRnPI93k2Udqk/4EeK3X9r2/y+r2POBZ2T/XMPOa4GVe2ze8rtXti8AG5ubNb3rN3zmrHr2kp1MeTmqHQepIPo701NJnvOZtvefI6jNzrNcWn2NbuX6Zzb83x3otP8dafW6OzW5inz1fhfQEZZX08Mv3SQ9AzGmzWj0/x+bdAG91ezrp2v4Y6Xj4vqVYVwcidQyJiIjsT2mYiv9d4BjwIiIiIiIiIiIii6Kh5ERERPavlwJ6142IiIiIiIiIiCwLPTEkIiKynMxeRnqhpJMeTf8y7tH76URERERERERERJaUOoZERERERERERERERES6hIaSExERERERERERERER6RLqGBIREREREREREekQq9txVrf1+7seIiKyn5n1YHba/q4GQGV/V0AOcGZ3Bd4PHIb7qfu5Ngtj9qfA64BhYA/watx/v8hlrgQ+BJwAjALfAN5L3liMZncCPkjavyaz+b6x6LqavR54DLALuDqbd/divpaIyF6t5LmFL3Md8AbgvsA40AD+AffzZ833HOBsYMusJWwC3o37J2fN/2jgJcAKYAy4BngN7rfPmq8MvBh4IumdTk3gf4B34d5s+3uJyBxWt2eS9rdfes2f32LZTwJXes3f1qG6/SvwIOC5XvOLOvEZ7bL63Haj14J248KXeRfg9cBxpBy5G3iD1/yXOfPm5lOvzcynVrfjgB8Bv521iPd4zf+roC5PAN4HfKxTv69It1CebU8n8my23Dnn516beX5uddsMPA84CzgaeAbw/QUs+wnA84EeYAB4rdf8O9Piz2Fu23kS+Auv+bXtfyuRLmApH+LL3C5J57zPyf41ifvDl/XzDzatXFttbbkLu7baievAZo8BnpItcw+w37cBdQztT2afw/0p+7sahdwvBx6K2YX7uyoLYnYP4JXAI3Afwuwk4D8wexDuI4tY8ieAz+L+5exzziWdRH9w1uevAD4NPA3332M2CFyA2Rbcf9F2Xc1eCmwE7oe7Z8nkE6SLnSJyoDJ7CjCB+5f2d1UWYGF5rjXPA76J+6uyZfYCH8RsK+7TT4q3Aq+Y03gyexNw46xpm0kNqKfiviObdi/gI8CTZ33+WaTOoIfg3sjmfT7pRPqdi/heIjKL1/zTVrfvAW9so/gw6YSrI7zmz7K6tVOvjrL6vnaj1/z3Vk/tRqvbFq/Naje25i+Bt3jNf5t9zibgE1a3p3vNt0/7/L351Gspn1o9zKcA/9XKxWirWx/wMuBFwBltfhcRySjPtq5Tedbq+87PveZu9fD8/CjgV8DfAa9ZwHJLwMdJ7d8nec2HCmZ/u9f8M+3UX6TLdTQfhtLNjp8EOGiuse4vrVxbbW25rVxbXfrrwHAk8Dbcf32gbAMaSm7/0mPES+9s4Gw8a0C5Xwn8G/DUtpdodgowsDcZJG8AnoXZ7H3omcAX9j71456eAoJXtF1XMyOd4L9ub8+0+1eBataZJCIHrn7SXX4Httby3MK5n4v7f0/79xjwj8DjZs33n8HdPw8BLpo17024v2Jvp1Ca9lOgJ7urZ/q8X8P9H/Z2CqVp/8QBcGeOiOzjNf8rr/m5+7se+8EzgS94LbUbvVbYblwwr/lLpzqFsn9vIT0t+YBZ893kNX/FVKdQNu2nQI/VZ+XT9ryGdKflYm7OEpEloDy7dHnW6vvOz72Wzs+9ls7PrT7z/NxrfrHX/Ete8+EFLv61wP96zc+Zp1NIRNrl/ld4V+bDg0kr11YXppVrq526Duz+j7j/uu3v0AF6Ymh/MHs18P+Au2F20bRIE3h59pTO1LynAR8gPWb2DOBa4D2kx5AngZfhflm2zGcAX9z7OKTZQ4BzgDuRekOvmVWPRwF/Q7pwuRvYBqQLeO6fKKj/R4AXAD8A3oJ7+72cZmcCXwFuzeq4te1lJcfjfvGsaecDbwL+pc1lPhg4b8YU9zHMfk36Ha6dNe8bZ837c8yOW0RdTwZ+jvvsOxq+QjrBv3IhX0JECqRGwstJj/WOky5iXUEa+uzjWcctmFVIwz8+AOjL4tuAV+J+w7TlHQF8CjgG8OwplSmX4P7qJajzBcAjgDfi/p5FLq2VPNc+s7WkBtW3FjDvscBNuE8sYN5HAnchPY5dNF+FdNxb7LFGRApkQ5m9E9hAamf+FDh7+tMq2XwfIu27a4AvRkMcWd2eQRpS51Sv+Qar2wOAtwJV0v783GlPvPSQ2lJnkfL5HmBJhgqxum0kDae2AXjs9GF92jSn3eg1/3k2bNuSsbqdTGq7z/ukudUL8+kZVrf/BAaB1aR18Uqv+VjOco4G7us1f4vV7cz2ay8ieZRnF6wTefZk4OdeW9rz8+wpy9O95u9YYJGnW92eS7qutxL4Z6/5h9r5bJGDltnTSE85ryYNHT4BvHXW6BRT887Ih+FQcrYvH+K+AZubD0nnyB8ADiPd3P120hOCo6QhHt+I+/+1+Z0Wes3hrqQnkL5OygN3Jx0PRoCXzHlNhVkP6Vz84aTrz1Xge8Cbs86M9tnM3I0vfe4uuLa6UK1cW+3UdeADjjqG9ofUM30uZhfOO6ak+xWkodzeTGp4/TFpB78Es02kBkBaptklwAOnlf1f4H8x+6c5yzV7OvAnpB12dzbtBOBLTD3amCe9L+Ik4Mm4nxfOt3Absu9QZmnuqs+7E+ca4IhFLHMj8OOc6VeTHgOcnhA2ANflzDvnhJmF13Uj+RdlrwbulzNdRFr3EeD3TD1SDGD2MOCLwL9Pm89JT7C8Z2+DIt1d8mHSOLXZXH4z8IhsHOFJvCPDPBxHGnf8mCVYVit5rnVmjyDd1HBn0jqde1ya63GkRlrRcj8PnJn968/D9wal4ec+D5xO+p3/3wI+X0TacyrwXuCFXvPrYO+7Ev7L6vbH2d3aAHjNX5zFz2R6G3aWbKicz1jdLrS6vZZ08vZ0r/nNVrfTSCe3U3dxfw64wGt+72zaWuCjpDbavO91mEc/cDipzbpxkcuC1tqNLbO6nQ28kHSh4nVe818VzDsjn3ptTj69jZS7Pzvt4vDzgXOBl+Ys8l2kixoisvSUZxeuE3m2U+fn9we+n3Xmv530rs3fkNPhB1xCup7wZa/5hNWtCnzU6vYEry3JdRqRg8WVwPP2vms2Det1HmZ/js/abzzlw+wG9TAfZufun8HsQmxfPsT95uzm/ea0a7VXkM5vn4f7D7LlnwJ8ErNn4fue4G7BQq85XI7ZK0nvvnkZ7mdn894R+DhmD5l2baME/AfwGVJHkGc3xz4R+Cpmj1zQDZmxQy13d+o68AFHQ8kdXO4NnIX7JQC4b9l7F3srzKqkE7jnzXjBlvtVwF+TOifyyh0LXEBKIkvT2HD/Iulk9Sjc83akVk3mfEaTxXWCVsgff3SCdFF2OguSqeVMW2hdW/l8EWlVet/XQDbs2b4XCbp/i3Rn0LZp0xq4f2/GXSYpD/cvW333uSdwIun9DYvV2Tzj/t+43430UuKLWVj741Gku5+Klvtk4A7MN2Z7Gn7ugaQ7xD6FbowR6aQ7Ac+eulgJkF2k+gzw/y1y2WXSHaGP8ZrfnC37Cq/5riz+KOD/vOZ7n7zOLqY9Gzh2kZ9N9p2OAo7ymn9xscsDzGsLbje2zGv+btLv8SSmH8vy5y3Mp17zPV7zD80adu6fgDvMHnbO6vZgYIfX/LLFfQMRCSjPLlwn8myn2s2bSBcjPwG82Wv+YNJ7K75odStPn9Fr/kuv+eenvlv235eS3ukm0j3cL97bKZT+PUTqoD51CZa+Nx9mN36mm/d9bz6EdKP7y/Z2CqV5fk161+5b2/rU1q85/D3uH5s272+Bm5h50/lTgK/j/qVpw6g57l8gdRg9ra267vvMvbk7u867WK1cW12oVnJ3p64DH3DUMXRweSvuO5dgOacBP83e9TCT+3dwPz+nzDrgQuA7uY9kLka6YLdjqZY2Z0rqCJs7feHGSY9YztbH3M6dyeB9HHnlF1rXVj5fRFp3JmkYx7nc/w736/f+28wwewpm/4nZdzD7NmZfJT0Js7zcx3C/akZnVvuWJ8+4/5jU8Hxn4XxmG4AxfAFjq7vvJL3I8+HzPq6dhlT9AFDHZp5gi8iS+X72TpvZvgD80SKX3fCa732nQ44/Br48e6LXfIT5OpoXyGu+w2t+01IsC5jMXjQ+W14+bovXfCJ798UOq9tT5pl3p9dSPm1hmKVLSUNzAHtfnP5m0nDWItIZyrML14k826l2807glcBzvJaGoPKaf490HeZR8xXOnhQ7KC5EiiwZs/tg9tlp5+bfAP6M1KmzWA3cXzfP+fYupl7JMV0aRm5zW5/a+jWHXTnThpnZgfEg4PmYXTTnL3Xsn9hWXadz34EvXe5u4drqQrWSuzt1HfiAoztmu1OZ7FHwFjjp4um7MHs67p9d8lotjbxt+hjS8Bftup40ZNNsx5LejTTdjdn0q2dNz+vZX2hdW/l8EWldKznxLaTHo5+Le9pXzfpJJ2wHs+XLM+kR/LvMM9efkp5QbcV3gccD75vn85uY3QzcFfhFi58hIvMrOnleio7sIkUXxA7Ei2WttBsX65uk4Z8+t4B5F5ZPk7XMPEE+gnTX+3lW37vK1wCrrW7XZMNVicjiKM8uXCfybKfazb8hdfr9ftb0y5jWAT+PlfPPInKIMDuL9KTca/BsuNx089+79me1pmm3c6oT1xyGgbfh3uo59v6yv3N3p64DH3D0xNChZYL8xDP7MbdfAvfLXjw2l9nhOVO3434j6XHIJ2O2dO9nMNuM2ZolWtp12bBQ0z2B9EK16PPXZO+fiPwAeOysMn3se1fFdN8nnUhPn/fezE0QrdT1BuAUzHpnTf+znHlFpHU/JHVE5Evvc5tyf9xftbeBBuA+Qjx+bJNOHWvNejE7IRsbeLFayXNTccs+f3ZuKma2kjT+cJHHAF9tablpaL0dHZhXRFrzQKvbYTnTnwh8q8Of/T+k9tEMVrd+4JFL8QFWtzVWL2w3tmJOu9HqYbtxKt5rdTshe89HKxaVI61uR+XUpUo6Tux9d5HX/Eav+V285mdO/QEvJ70UXZ1CIktDeXbhOpFnbwBOsfrSnp97za8C1lndVs8KnTy9vla3fqvb+px6nwzc3O7nixyEXgA8c2+nEKRh2GB3WGLprQIeMWdquhGy3f2x1WsOC3EBix9qtNj811Zb0cq11an4fNdHWrm22qnrwAccdQztXzswO33vv8x6MHsiZu0+/v0r4IHZcGTppWtmbwOeOmOulFA+BXwKs7XTPn8tZu+gaBzMNG7iU4FXYPbgNuu5j9kTSTvnDZgtxQvU3w+ci9lgtvyTSOOqfzr4/GOmff4Tc+dJ716axOwx06a+HfhoziOlnwOehtmJ2fIHSUMmvbvtuqbP+Ez2mVP1fiwwnI1dKiKLkcYDXoHZa2YML2Z2EmZfYubQDY3sfWtT82zC7B+Jh+24HHj0rOWekL3EcrEuAf4A/P2il9Ranpvy99nnX5IbNTsZsy9muW1q2gbSUHLxXegpJw7inn/Hpdl7MXv+3mNdmvZ4UmPsc9OmGWYXYPaQadOq2XHxBtwPioaayEFoiPQ+hKOnJljdHkca2/xjUaEl8jXgVKvbc6d99lrgsyzBkCJW39dutHrQbmzN54CnWT21G61e2G6cUpj7rW5Pt7r9bfa9p6adBvwD8J5Z877X6vb8rINnatrcfJp83Or2oqn3XFjdekgvQf5U8P4OEekc5dmFW/I8mw2zN+P83Orp/Nxriz4/fxfwMatbX7bcOwCPI633KeuBr1p933Ujq9sRwMdp950mIgenq0lDpCVmfZi9HPibZazDrcA5mN1/Wj1OAf4ZeGOby2z1msP83L8DXIvZh7MbNaeWvRqzN2D26raXnZYz/7XV1rRybXVK8fWRVq6tdu468AHHlubVBNIWs6NIG+wa0mOCI6SxKT+092VmZm8CHkZ6hG07adxZgFtw//OcZT4V+GvS00MA/w7cCzgJeMqM8R7Nnkx6aXmFdFdgg7SRf3XaPKeR3sdwGO6nZtOmHmE8DfgJ6fHGG9pcB2cCXyG9EPc+M3rE22X2KODVpIbpOOlFcL8J5t0I/Ag4DHgc7t8O5lsFvJf0O6wELsD97cG8JwPnkn7TAeCd4eOaC61r6vF+NekurF7gKuDFuC/nnRAih67UyfBa0onXMCkf3wqci/ul0+ab2r8HSU9jDpMafS8k7cdvnZNHzF4EPD37Vy/pDpOP4f7dRdb5AuAs4BzcF/+4fCt5Ls1/Nunk839wf3Qwz32AV7DvCaFJ0jr9RsFyHwKcivsHg/gAaciAR5KGSymTOuDOwX37rHmPJp0Y3J10jCsDXwI+mN0LyemHAACDTElEQVRNJiJLxOr2DOAlpCfTzwPOJo3D3UNqL77Wa/velWl1ex7wrOyfa0gv9702+/dlXvO/njbvF4ENwN1IQ+pM+abXfMY7y7I7uN8MPJx97eEPk3LbE4HPeM3PbfM7zmg3ei1oN7a2zDntRq/Fw3xYfV/u91p+7re6PZU0XnwPKe9tBd7gtZltTKvH+TR7mfz0ecukJ38eQxouagD4qNf84wV17SdtC5tJv+8bvXbADkctcsBTnm1Ph/Js7vm512aen1vd/gR4TfbP49h3TWcCeJ7Xpr3LdF+ZZwMvIuXlYeClOfl7LWm4qbuR3mMxTsrzS/s+aJEDWboA/wHgBNJ1TSONOrEGeDTwadzfm81bmA/xffkQi/MhPjMfYnYhqc31t6Sn+5x0HeF1uF8xbb4zSHlo6mmW6cseBp6I+3A278KuOaRruq/PvstncH9TVv7VwKuAK5l7HfgFwHOzeoyRcsfngE8u6vx4oddWW1vmwq+tpvnnvz7SyrXVTlwHNvs8aR3BzG1g7ra1TNQxJCIiIiIiIiIiIiKyUGYX4v7w/V0NkXZpKDkREREREREREREREZEuoY4hEREREREREREREZH5mJ2G2beBMzC7CLOvY7Zif1dLpFUaSk5ERERERERERERERKRL6IkhERERERERERERERGRLqGOIRERETnkWd3usb/rICIiIiKHOLM1mJ2wv6shIiIyn8r+rkBXMfskcCXub1vmz30O8JzsX5O4P3xZP/9gY3Yn4IOk/WMSeC/u31iC5b4eeAywC7gaeDXuu3PmWwl8CDgBGAW+kdVh7riPrdTV7E+B1wHDwJ7s83+/2K8lciiyum0CPg3cy2u+dn/XZzlYPT/3eG1xY85afW7u8drc3GN1+yRwR2Bs2uTbvOZPKlh2CbgIuLPXfENO/HTg2cD9gOOATe1+DxFpkdkxwPuBNaQ2igHfxP3c/VirA8/+bHdabt4lm3Y/3K+ZNf+Tgb/M/jUJ/CPuX56nHk8A3gd8bNnPgUSku7RyHt3acuc/jzbrI7U5HwscDXwOiHOe2b2BGrACaGZ1PRf3xqz5fg1syVnCJtxPaev7iMjCqC27MLqGelBTx9DyGiZtpMvL/ZPAJwEwu3DZP/9gkl4W92ngabj/HrNB4ALMtuD+i0Us96XARtJJtmP2GOATwBNz5v4E8Nm9J9pm5wIvISWv9upqdg/glcAjcB/C7CTgPzB7EO4jbX8vkUOU13wL8Aird1XO/ATwWa+l3GP1IPe0IHtK55XAI7zmQ1ZPucfq9iCv5eaeJ3nNb2jhI15IOvF+fBA/HvhSVof/bmG5IrJ4/wCcjfuv93dFDlj7v915PfAK3LfPKv81YOusaY8CHgn8Ce6jmJWBN2M2hPv/BPXoA14GvAg4o+3vIyL7j9lTgAncv7S/q7IACzuPbsXCz6NXAw3SDbl3Bh5YsMy7Am8Hnon7LZgZ8NfAu4C/mTX3t3F/8azyfcBX2v5OIrJQasvOZ/+3ZUHXUBdFQ8ktJ/e/Us/yAe+ZwBf29gK7p15heEXbS0wNvb8EXre3x9r9q0A1Sy7T5z0FGJh19+UbgGdhNnt/baWuZ5MOaEPZvFcC/wY8te3vJSKHDKun3DPVKZR5A/Cs7Kmcdp0NnO21lHu8tnS5x+q2Fngy8JFoHq/5l7zm3/WaNxf7eSLSsgGdSM9r/7Y73d+U0ym0lnQReGjWkv8Y+CDuo1nZBvB37BuVIM9rSHdwHlIn0CJdph8Y2N+VmFdr59GtWNh5tPsW3P8J91sXsMwnAX+J+y1ZWcf9/cDdMavOWu6L55SGRwDfaulbiEg71Jadn66hHuT0xFC7zJ5GuiC1GnBgAngr7t/PmfdDwF1Ijx9+MRxGwewZwPOBU3HfgNkDgLcCVdJde88lPZb8AeAw0gb5duAo0pNIW4A34v5/bX6nCukxuQcAfaQ7XrYBr8Sn3cGd7nD5JPB10jZ0d1KDcQR4Sc5j1T2kHfPhpMekq8D3gDdnO2L7zDYCPwI2AI/F/TuLWh48GHjjjCnuP8fsuEUs82Tg53tPpPf5CmldXznr88+b9flj2SPkRwPXtlnX43G/eNa084E3Af+ykC8hciizum0m3aV3J9IjxdeQGgN5854AvAM4iZQndwFv89rc/GN1ewXwDPYN0/P3pFx4KvBBr/lnF1HnC0gnhm/0mr+n3eVk5uQer/mY1XNzTyuO91pLueddVrejSMcWA16ft14zbwHe6jVvWN3arJ6ILDmzTwHHAnfD7KJpke/gXps232mkNu0JpDx5LfAeUs6ZBF6G+2XT5n8IqT25EigDvwNenzPc2Qrgb4H7ktrn24HXA/8K3Jot95dtfrdDrd2Z50+B/8yZ/mXgNZi9FPet2bAd7yAaDcHsaOC+uL8FszMXXn0RaUu6kPZy4CnAOOnc/ApSW/Xj2UWtVs75jwA+BRwDOGbPn/Zpl+D+6iWo8962LL70bdmC8+hWLP15tPubgsgEqQ08Mc8SHkc6bxGRTlBbthX7uy2ra6iLpI6h9l0JPA/324GpHfc8zP58zp13U3d5pJOi+JFi988An8HsQsxeS9rgn477zVnCaeJ+BfBQzK4AvpjV4QfZ8k8BPonZs3D/bRvfyUnvanjP3h0w9cZ+mDSu41Q9L8fslaRxG1+G+9nZvHcEPo7ZQ/b26qYe2v8APkPqCPKs0fpE4KuYPRL3+Ro+RfqBw0l3MW1cxHKmbACuy5k+e+z1VmwkvyF6Nem9F7Pn/XEw75GzltNKXYdzpl0DHJEzXaSrWN3Wk/Lpq7zmP8qm3Zl0wD981rwnkfLZS73mP82mbQb+2eq21mt+/rR530HqCL+P13wy+5zPkjrT7+u1WQ3A1h0H9JBO2BerldzTilZyzxeBHV5LN1hk73n6gtXt6V7z66fPaHU7FdjgNf/fNuslIp3i/mwgDV9c9F7LfW3aNwNnkZ5IeQnul2C2iXTSTLasJwDPIw27c3M27d6kIR2ehvtV2bQyqQPj47j/VTbtNNIdfo77Qxf57Q61dmeexwJ/NWeq+/cwOxy4BbPfkm6O2Ak8KFjOu0gXn0VkeXwE+D1Tw+4AmD2M1L7692nzLfSc/2bgEaT3FU9m1yqW2nEcWm3Z9pmdBVwz7xBF6Th3Au6/W9LPF5F91JZtxf5uy+oa6iJpKLl2uV+8t1Mo/XsI+D7pLvDFKpOeRHrM3oThfgXuu6bNs5LUKfODaXX4NSnRvLWtT3Vv4P69Gb2y6c6i/qDE3+P+sWnz/ha4iZk7ylOAr+P+pWmPADruXyB1GD2trbru+8zrSE9MHYX7Fxe1rMSCjqrF3I5eIf9uyglSQ7jdeVup6+ScKe5N1DksAunJoHOmOoUAvOa/Io31fadZ874LeNFUp1A2702kJ0hfZ/U0/EPWWXRvr/nfeM0ns/m2kXJelaVxT+BE0vsbFquV3NOKObknG9ZtTu7xmv/nVKdQ9u8tpDujXpKz3HcBr11EvUTkwHJv4CzcLwGmhuSZuru9ShqS7Cl728VpnotJw0y8e9pyngD8APfPT5vvClIeWcliHXrtzlmfagPAStznvujc7FjgVcA9cL8LaT08LvdmNLMHAztm3CUrIp2T3oUwgPu5TH/Ztvu3SNcGtk2b1uo5fycdlG3ZJT+PTjnzpaT3WcznQcAP5p1LRJab2rKzp7dP11CX0SH3hZaN2X1IDZijSI9fjwObSEOkLVYD9/nusNtF3ou03f8Ps81tfWp6kufJpHEXV5K+1xDp5YlRHWYbZubO9yDgDMyenjNvBfh2W3Wdzn0HsGPRy0kmMStlO/x0i7mQOx6U72Nusmll3lbq6nOmpIPT3Oki3ec+5Awb5zX/ldXtN7MmH+W1uRe6vOa7rW4/A04Dfg7cH/hazny3W91+uBSV9pqPAVctxbJoLfe0Yk6OyTrPFpp7LiE1oqeXfwJwide83Ts/ReTA81bcdwaxu5KGLZr9zhtwvzQbsmzKg8kf3uG7pKdbFu/QanfOdhZ55xfJK4HX4H45AO63YTaO2Ytx/9DeudJoAW8mvUNDRJbHmaQhbuZy/7sZ/279nL9z/OBsyy7pebTZ/yNdGH5KzrBJeR5Penm6iBxY1JadSddQDxLqGGpHesz3paSTo19l08ocOOO8ltss9xbS44TPxf02AMz6gQsXUZdh4G24X7CIZSynG0ljiV49a/pi7qC6nvSY/GzHksYHbXfeVuqat68fA9yWM11E9pl998gh1xDItJJ7WrHY3LOWdMFiuvsC97e6nTlt2t2sbv8FPN5rPt5qJUXkgLcUufdAfBnZ/m53zvY44pEHTgJmjrXuvhOzRwEfmjb1CNLNcudhe1f5GmA1Ztd0aDgqkW5XJr3LdyE6cc5/IDhQ27Ixs+eShu974gI7hQDOwP2vF/3ZIrLc1JZdOF1DXUYaSq49LyCNC/mrvVPcG8DuZazDKtKLGmcyuwtw85zpC3N/3F+1t4EIZGPcLmZsyAuA/28R5edntqbtp6Tm+j7pLpzpy783cxPH9HgvZidkd1/luQE4BbPeWdP/jLlPmP2ANLb79OX3AaeTxoxut67XZUMMTPeEnM8X6UYXA3PGDs7eM3THWZNvtLrdLWfelaThMK7IJv0QeFTOfOtITxMtmtWt1+p2gtXD3NOKObnH6mHumYpb9vmzc9t011l9/txjdds0NQzfLI8i5bq9suH5HuA1P3PqD/iZ1/zR6hQSOSRdDtw7e5/nTGank04Ip3wX+NOcZfwRqe28eIdWu3P6civAcXuHPZnrt6SnYqeX6WP2WOvuN+J+F9zP3PsHLwf+WZ1CIh3zQ/JzX5LedTGl1XP+Jp26bjR/PmtFK+fRU3HLPr+wLduR8+j0TumHAk9acKdQqscvFvW5IrI/qC07M65rqAcQdQy152qmv2jVrA+zlwN/s4x1uBU4B7N9FxjNTgH+GXhjm8tsZOOHTy1vE2b/SEpA7XH/DnAtZh/GbPqL11Zj9gbMXt32stNyjiEljRswe+KilpV8DngaZidmyx8E3snMMT9nuwT4A/D3udE0zvNngLdPq/djgeHsvVDT572K9HjjY6ZNfTvw0RnjRbde1/cD52bzTL1g9EnoMXQRSPvMW6xue19kmHUKfYa5d4S8Fvio1e1e0+Y9Avg88A6vpTFrs/cO/dTq9k6rWzmbbx3wCfJfeNiO4tzTAq+l3GP1ubnHa3Nyz5S/zz7/koJFvx841+op91g9zD33AL5qdTthaoLV7b6kGzE+3sJXEZFDTRoL/N3A5zDb1wmRTuT+kZlDgZ4HPCB7we/UfKcBbwLmvjenVYdau3OmPyJdjIi8n9SW3Jwtsxf4KOllyCKyP6X3Dq/A7DXZSCaJ2UmYfYmZNyu1es5/OfDoWcs9IevYWKwla8u2eB49ZcFt2SU9jzZ7P7AOeBbuk9OmPwKzovchPZ5oyEAROXCpLTubrqEeQCw+RkoobRgfAE4gPV5mwFdJwyQ8Gvg07u/N5n0e8Kys5BpgNTD1XoTLZjwGbPZFYANwN2D6Oyy+ifs7Z9XhQuDZwN8CJ5MeS7wVeF32YrKp+c4AzmXfI4fTlz1Memx5OJv35GzeQdJ7goZJHU0vJD2e/lbcv43Zk0kvBF8NfAb3N2XlX016Ke2VpDFyb5pWjxcAz83qMUYaB/JzwCezp63aY7YR+BFwGOkFuIt/Z9G+9TCQ/b2zcCg8swtIY7Kfg3v+cIKpJ/zVwCOBXtJYyi/Gfe5TZmargPeSHodcCVyA+9vnzNdqXdNQH68m/ZbjwMtwn/3+FJGuZHU7kpRP70DKp7cDNeAdpH3m7V7zC7N5T8imn0Qa5mw38Dav+UU5y30l8HTSCxHHsmU+O5v/mkXWeW/u8VqQe1pb3pzc47Ug96T5zyYNOfQ/XvNHF8w3J/d4bW7uyTrj3gKszz7/auAVXvMbCpb9bNKx5W6ku4X+bPpTQ1a317Pv6drpx79bvOZ/Hi1XRNqUbgL6PGlIhtnt2Y/i/u/T5n0T8DBSztnOvnHTb8Fz9k+zhwJvAFaQ8snvSe3ea3Lq8LeklwCPk+7CfBXwCdznPB3a4vc79Nqd+8qcA3wFn/sevWnz3I90/Oshtek/C3w4vOiahqc6D9hMOm94I+6fDZcvIu1L7z54LWlIyGFghHR94FzcL50238LO+Wcu+0Wk9iyknPJ74GO4F3UmL6TO8+ez1pa38PPoNP/etiwet2UXdB6dLrb+C+n60BpmXvd5N+5fnzbvCDOPj1NOAO6BB21fs88BT5/RmSQiS0tt2XaWqWuoB7GDtmPI0otN/xp4EenHv420857j7nv2Y9WWh9mFi04IIiKBrs+xHWR1Ow94odd82/6ui4jsP8qzyyidXP5vNqyZiHQJ5VkRkc5Rjl1GastKhxzMQ8m9D/g74FfAS4EvAC8DLsiSk4iItE85tgOy4dFK6hQSEZRnl9NLgW/u70qIyLJTnhUR6Rzl2OWjtqx0xEH5xJCZ3YX0gu8vu/sTpk1/KWmMwqe7e+F41+vXr/djjjkmN3Ygr5OTRkZ4zU03caeREX7X18doqcTfHHssI+Xy/IVFltlll1221d037u96SGuWIscCVHt6vbdv7vsVIb3FtqACuZNLBW3LUkGzs1yKP61ajgtGx4JmM16ez4pNbJ5k9L6jYI6XoLy9xMB3+rGJmd+x6J27RhyrVCq504u+V7XgeFEpXMdxzILPK/XEw6QPj8Tv2S0X1LEoZkEdi85LSqV4/Y6NRe9hhsnJeBSPajX+3pVKfv2L3rrcaMQjrv7u91cqzx6EliLPDvb1+ZoVK/ODRe/xDkf9KshDBbFmQbu58G3iwTIbk/H2bgX76/R9+XnDwzxqfBwHet35ek8v/zgw0Eo1gHBVFX6vKA+lBRYULFpmVMnCuscfVnQcK8pt0XGgVLh9xJ9VdHwr+q2L6h9tj+VSwblSwXq8eetW5diD1FLk2RUrB339hnW5sWazaB/Lz2PlghHUi87mPWjvAQyPj4Sxlf2rc6dXC5a3Z2RHGBtvFDwAYNUwVC3H7aJqdfa7xZNKqS/+qIK1VXS8KtZ6gi7Ks4XXxAvL5U8vyrNFx53iY3tcrujY7sH2XaRoXf3mt79Tnj0ILdU1g3Xr1/vRR+dfm50oOAfyoH1R1LY4YCygis/Yto2H79yJm9HbbHLhqlX8y4ZDdDcpWh8duDy/vFf8Cz6tjVDRIa4StHVvvOF6br/99rDkwdox9DbSuIwPdvfvTZveB2wDvuPuf1K0jNNPP92//e38oRSLTojab2iIHLyK8kTRRdr169f/zN3v2Yk6SecsRY4FWLFqvZ9237NyYyONggv1lfwTxP7+/rDMQHzuyKq+4TB2xNr8C4UAE6MTudP3jMTLGx8bCmPWzF8eQG81Ppm2UnzyvmHdhtzpR6xdFZY5fMVgvLze/I48gJV98bqqrMz/AQaOOT4s87Nfx8Pzrl4dXOwGVq1eG8Z6evPr2Ncbbzv9ffG6v+rqK8PYltu2hrEjNx8VxjauW5873QqGix/avSuMPeSsP1WePQgtRZ49csNGf9FjHpcbizqNIW7n9vTk514o7uwcHY07eYs6lMvl/H1v+/btYZme3nh/HSg4EDQaBZ0dBR3pjcn8iw6lgrxctB4Lz7sKQtWe/O9dtH6LvvPu3fGrhm6//fYwNjiQf/zoqcZtwfGCDvaijvm+vjhvD43Gx+HhsfztcdWq+LhYdH73ln/+J+XYg9RS5Nljjz/aX1v769zYntH4guXocP4+trKxM3c6wOpGnAQmN+W39wB+fnX8WrAz75r/2pwj1x4WlvnJr78Sxq7ZdXEYq1TiC5aHrTo2jG0+7MTc6RsG7hh/luV3eAH09sXHq6jDDqAZdNoVXf6ZnIiX11vQ9pyciM8J+oPDS181Pu70Bu1fgHLBTVqVgrb9WJBLASb2ROc78TY8Mh4fC+7/Rw9Xnj0ILdU1g7vd/XT/+rf+Nzd26+3xOdD4ZH6neKmom72g3bHUinJH8cNURZ2yBbEF1GmptHtZPOy0K1hgcdu5vfXRCG5TLipT1FYsqqMXdG5SdKNTMMBbpeC8ZV1wnefPHv0nXHH5ZeEXOFgf7bsX6YbzGS0Tdx8FLs3iIiLSHuVYEZHOUp4VEeks5VkRkc5RjhU5BBysHUObga3unnfbwY3ABjObc2uEmb3QzC4xs0u2bo3v9BUR6XJt5ViYmWcnJuI7zUREutyi27J7Cp7UERGRxefZod3xk+AiIl1uSa4ZbNuma7Mi+9PB2jE0AETPoo5Om2cGd/+Yu9/T3e+5YUP8OLaISJdrK8fCzDxbrRaM7yYi0t0W3ZYd7FOOFREpsOg8u2JlPMSuiEiXW5JrBuvX69qsyP50sHYMDQPRAN590+YREZHWKceKiHSW8qyISGcpz4qIdI5yrMgh4GDtGLqJ9FhiXhI6kvQ44/gy10lE5FChHCsi0lnKsyIinaU8KyLSOcqxIoeAyv6uQJt+CjwCuDfwvamJZtYH3B347nwLKJfLrF27tlP1ExE5mC06xwL0lJoc1ZvfFrylkftUOQAT1XLu9P7q7rDMpr6RMHa3OxwVxo4/+pgw9oerbsqdfu0Ne8IyYw0LYysH4uFIVq1cGcZ6+uJ1tXtP/vfevvv2sEx/j4exNaviOlYGcoeITrFyNXf6xHD8u5Sak2HMm40wZsT1r5Tz73eplOPfpWh5pYJYNfis+crh+d9tcjwaiQG2b9fY24egJcizDo1mfqgUTAeq5fwc69GygAbx/tqYKIgV7Atezv+8/p4415RL8X43MRJfezCLcwDx16ZEfrmqxfUYL8h7RaqV+LRsz0j+MhuNglxZievY1xfd4AsrVwyGsYngt25YUc6LY81GHBvZEx9rR4bjG5Ar1fz1aJPxDz0+rutWh6hF59lGc5wdozfmxkoet5mqQX4bn4yP9ePj8f6wvqANuXnV4WGs7PG+Hjlsdby8627LP34A9FbjfLSiJ27LDpTzh5EqleJjQVFKd4+DBSmTZjN//VcKcvPkZHz86+2Nc3ClEv8uUZu1p6AeRZf1Kr3xuq/0xkPSDu2J86wFebYxGm/f5VK87chBa0muGUw2nK07J3Jjv795Z1hurJH/rs1Swf5QKsgdS60oTxG0L+fjBW0qis4/g88rrmNRPdorF31eUTs9ys2pHu1VJGq3Fhw+sILfrHDNN+P2Z7kg1iQ/Z5YK1tXO1fmxsYI2MBy8Twx9jrTuXz5r+gtIY1h+drkrJCJyCFGOFRHpLOVZEZHOUp4VEekc5ViRQ8BB+cSQu19hZh8CXmJmXwK+BpwCvAz4DvBv+7N+IiIHM+VYEZHOUp4VEeks5VkRkc5RjhU5NByUHUOZlwPXAC8EHg1sBT4InOPuxc9JiYjIfF6OcqyISCe9HOVZEZFOejnKsyIinfJylGNFDmoHbceQuzeA92Z/IiKyhJRjRUQ6S3lWRKSzlGdFRDpHOVbk4HewvmNIREREREREREREREREWqSOIRERERERERERERERkS5x0A4l10nNZjwUppktY01EDnzaJyRSLRlHr8i//6A8sjssN+o7cqcPWpybN1R7wti6nnIYO2rjyjC2a2df7vSR0f6wzMqBdWHsyMPXhzFohJGRkZEwtrU6mTv99l1xmVt37Qpj/f29YWzlyji2gvx1PLEn/p0ZHwtDkxPjcawxEcYak/nlJsvxfTDVcrztlOJNh2o1XmbJPIx5M/83myj4znv2DMUVkS5mWCn/GDzZiHNKT0/+Nj86Gm+DEMeajTg3V6rxqYYFu9DAQH7uBfB412JyIn/fAiiV43pUg/WRPi//A4vyEEXNooIvULSfj43lr/9GkE8AVqyKj2+Nybj+RceB/v7832ay4DUCvZXBuB4F2+mOHTviZQb1AFi9Iv979/XFZZpFG5Z0tUZzgqHhW3Jj/aWNYbmBSv52WAraSwBNHw1jgz1rwlh5qBrGbrt+S+70I9bG7dVVK1aFsZ6C24o3rFkbxtasjpfZ25O/b/ZU41xEwXosPDctaJ9FybtacI7RLMjB5UqcF72g/uVqfs4sF9Sj0hdvAwOr4nU/OREfC6L2BUDJ8utf9EKZcrmgUS1dreENdo3uzI0NNeJz2mY5f4srNeNtt/jK1RK3BQoWd6C0OgpTYoG26x8ULKpH4WcVpfuCYqU26tEsrEgcbBa0kYvaz40go1pBm3XXaP63bjTj9jboiSEREREREREREREREZGuoY4hERERERERERERERGRLqGOIRERERERERERERERkS6hjiEREREREREREREREZEuoY4hERERERERERERERGRLlHZ3xU4EJlZWzEREdmnhNPHZG5sfXkoLDdq+WXypybDQ6NhzMe3x+VuvyqMlUZ35U4/fuNAWGbd+tVhrOHxN7jy2hvDWMU8jK3o6c+dvsMbYZmdu4bD2NXNW8OYN8fD2Ikb1+VO75uI18dAwfrYdustYWxkbCSMrV9/WO70tWvWh2V6esphrNGI61iyeB1PTMZ13DOc344YG4nLFNVDupgBlfztt1qJm/hNz88pPf19cZlmM4yNjMT5d6AvXma1ml/3xmS8ve8ZjveTaqU3jFV64tj23fHxqKe3mjv98MM3hmW2bdsaxibH4nVlBbmoYvm/Z381/xgA0BNsGwB4/HuWCs51PNh2ira3am+87sfHxsLYypUrwlh/T7xdRbW3cnw/ZKWkeyUl0sQ9P0dMNjeEpYYm88usLtjUSj3xfjRRkIP3jO4JYzfe+LPc6UcctSkss2nz3cPYyUfH+a3cF7eLqnZEGKuUB3Onlyw//wIUrA4gbjeXrOgHyJ9spfauDRVlFavEX8B6gvUYHDMB+lbE5yY9Bce/ycn4NytKi+VG/veeLFgf5XLBMUm6nONM5EcKzrdKwRG/4vF22LR43/OCc+64ddGeg/2qclH9rSAHRxErWGLRZ7X7i0U/dfHvEm87zWZBTQra3BRcsyFocxdV0oo+q4BawSIiIiIiIiIiIiIiIl1CHUMiIiIiIiIiIiIiIiJdQh1DIiIiIiIiIiIiIiIiXUIdQyIiIiIiIiIiIiIiIl1CHUMiIiIiIiIiIiIiIiJdQh1DIiIiIiIiIiIiIiIiXaKyvysgIiKHJvcmE6N7cmMTjZGw3C27bs+dvn14OCyzef3aMFaeODKM7dm2M4z1lCZzp69c0RuW8bEdYewP194Sxi777bVhbOOaVWHs9FPvkDv9sFXx4f3GrfF6vPW2/N8LYGj3jjA2OZ6/zBM2WVimr1oOY8O33hbGbt5yaxjbsSH/9zz++GZYplqN75GZnBwPY6Nj8TY8sTV/2wHYVenJnW54WMY9rr90L7MSlZ78fNSYiLdBCza1lSsHwjIe78oMDPSHsZ5qNYw1mvkVsVKcGwaJY+VynJuvue7mMHbF734Xxh521sNzp59x/weHZb799a+FsT27doWx/oG4/pVKfsw8zl/Vcnwc6KnGsbGxOO9VgnLV3rjuE804f00WbFg9wXcGMIvL9ff1tVxGJFaCcn5uHJqM20wV8sv0NeJjfXVyIoxNNuLtd2DVpjB20035+e3zF/xnWOYOZ/1ZGFu3OT8nAhw+eU0YqzYK8luQu83ifN9sxse4clysWCM/V5UacZHBnvx8A7ByYDCMlQranqVqfjuxry8+RvcW5ODoewHYZLw9lr0gFuTTyUa8soqOO9Ll3LBm/vZR8oJ2X5AXq5PxtjZRjvcHjxrIQMFp2sEhPITEX8ziQnizIFaKYyXy178H5wQAVorzZVHLzoLPAmhGJQsW6AXP1XipoP4F7eByo+hZnfzKFG2mpWA/KvotQU8MiYiIiIiIiIiIiIiIdA11DImIiIiIiIiIiIiIiHQJdQyJiIiIiIiIiIiIiIh0CXUMiYiIiIiIiIiIiIiIdAl1DImIiIiIiIiIiIiIiHQJdQyJiIiIiIiIiIiIiIh0icr+roAsNe/AMq29jysottS8je9dWHWPK1/4tZbxO4sc6JqNSYZ2bc2NrVg/EJY7ZmBd7vT1YyvCMoetiWO9fdUwNrRnPIxV+/Lvnag0G2GZLVu3h7Hf/+H6MHbNDfnrCWDb1h1hrMJE7vQjNx8dl7HJMLZjZ1z/G7fE6+q2W7fkTt9yRP50gHWr83/npCeMVEtxot214/bc6ddcFWf8cqkgZvFnVcrlMNZsxst0z48VfBTVarwNS/cyM3p68veViWZBwUZ+DrNg2wTwgm06Wh5AOahfkcZkvLy+nnhfuLUg/37v4h+HsTvf64wwdvr975c7/bd/+ENYZmR4TxjrrcanXiv6e8PYZLBOyqV4/a4cGAxje/YMhbHhPXH9V6xYmTvdm/EGVynI2b29BbmtIClOTsbHMQvKjY2NtVxGxKxEuZTfZnXiXNUITgrHC/LsRCPej27ZsjuMjY7GberV647JnX7rzvz2I8A3L49z6ar7nBbGnnTkhjB25PZrwphZfnuqWbCuijQL8lG5YJHVSpCfC9r9N912axgbHY9zTtEhetXqNbnT73DSSWGZ/sE430PcXrWi3F2w/kvBIhvNeLsql/vDmEiUB8zjZxmawTncZKlgD7Oiva8gQRzk7QQPvnfD4u9cacZttN6Cc/Wh8fzzcYBSczh/eT2rwzLjFOWOghxWcM3DgmdkvODZGSvYPoqvRxeUK3hUx8OLy+3Uo/h4qieGREREREREREREREREuoQ6hkRERERERERERERERLqEOoZERERERERERERERES6hDqGREREREREREREREREuoQ6hkRERERERERERERERLqEOoZERERERERERERERES6RGV/V0AOfN70OBaHMLN2Pq0g0iyIFVYkmF5QhHIcLPioQu2sDpGDWNMbjI0P5cY2VPvDcscdsSF3ev+KlWGZvv54ec2CI11zMg72BDtttRznh4H+ahjbsHYwjB0zvi5eZl+8zCMOW5873RojYZndu7aGsR07bg9ju0bGwtjonvz7TPot//cHqFbj5Q2s3BjGys2eMNYIjlcT4/H62HrbzWFscOVAGCvaDqwSx8qV/N+zXHDM9Kru45G5Go0Gu3fuyI319/aF5ao9+dtgs9EIyzSbcRtsYnw8jBXVoy/YTyb3TIZl9oyMhrEdQzvC2LpNcY59+jOfGcZOPPHk3OmX3nJbWGZlb3w8KmjKsmZlfIxzzy84Phb/Zjt374qrUfB7lqvxMacR1MOKGscFn9VbkEcbzfi7jY1PhLE9k3G5yMREvDzpbkaJKvltgX6P81ElOG6Pj8XtkWY1Xp5Vbwpj69fHOXNtENv+f3Fb8MZf/DaMXWlHhbE7//HmMLa54PhSmQjyR0/cLiqV4nZRUWx8Mj5e3XhD/jq+9trrwjK3bdsexqwU57eSxXW0cv76uOTSn4Vl7n7Xe4SxB9z3gWGsHKd7zOJ1heWfP5nFx4JKQb6XLmcF1w4LrqF5sL15qeCaYsE2Wnyhr92LgAeGStB+axbkqfGCdb/1dz8KY7f8+r/DWKmUv9DDjj89LLPp5DjGQNy+n/T4C0QRa/Oac2E7uOgad9H2HfxmRcJ9Yp5yutIgIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIl1DEkIiIiIiIiIiIiIiLSJdQxJCIiIiIiIiIiIiIi0iXUMSQiIiIiIiIiIiIiItIlKvu7ArLUrK1SzWYzXqLF/Yelgq5F92h6EABKpbj+Rjn+sHYU1KPp8fqISxUHS9FvY+39ZiIHOjOj2teTG+vv7w3LbVi7Knf6itX50wHGJuN6jBQEG5PjYazc1587va+vLyxz1GD+9wVYuWIgjN11aCyMVaphiCM3rMydvmP37rDMlu1bw1hjciSMjQ7HMZ/Iz8+7Bwtyejk+gExOxutj+474uw1N5E/vG4rL3HzbzWHsiCMOD2ObNmwIYwODK8JYqZR/oPBmvJ16I/hi0tXcm0yO5+8rYwUNkmY5f3+tlOJkUw7KAPRU43JF7cvxRiN3uhe0i0bGCvaFapx/jzrq2DD2o29fHMe+9Yvc6Wsr8fqoBvkQYLygfTlckGN7e/K/2+RkvLw9e/aEsclg3QN4wW/W05t/7B6fKMhfBdtitRKfik6Mx8ss2q7KwW8zMR5vO0Xbt3Q3A3qDzWO84BRujNH8MpPxftlXiWMb1sf5YcDj7ff662/Jnb55U/xZm6+P22e/vjluQ95y61FhbGx1fpsaoCdYV6WCY1LJ4vOI3bvi7/bjn/8sjN1886250ysWr99KT1yPUkEDfrIR57dKcI1ix9adYZlvXfi/YWx0JG5TP/j+dwtjbnGeDZqyhbm0Uo6P0dLtLLwmVnSlrPC6nMxgk/lrsjIZtwdvvfHyMHb5Nz4Uxg6bzD/uAPT3558jX33Db8IyNnZbGDvqnn8SxsbL8bm6eX4OLhHnvba3xoNgI9YTQyIiIiIiIiIiIiIiIl1CHUMiIiIiIiIiIiIiIiJdQh1DIiIiIiIiIiIiIiIiXUIdQyIiIiIiIiIiIiIiIl1CHUMiIiIiIiIiIiIiIiJdorK/KyDLp+kexqwU9xE24mKMDo+EsfHxifx6NJthmWazEcbKlXhz7e3tDWPVUn653t54eWYWxpx4hZSIy0H+9/aC34WC5RXVUeRAYFai3DOQGyv1rw7LNfvW5E5vVAcLPmsyjJXH4zxVrca5b2DFitzpPQNxPXoq8f7c3x/nqcPXx7lvYmxnGKuW8vPsEYetD8scf+RwGPvdDdvD2G0743LRtx4di3+XW26NP2vFqjDE7uHxMHbTtt250/cU1KO3rz+MbduZvzyAiRPy1z3A5iMOD2P9ffnbQakgpZeKgtK1qpUKh22I9vV4m5mYzN8fLG6eMTkW73eVajWMjRW0E0cm8pd567Y45+0ZjvfloUa8T+4a2RPGrr7mf8PYho1H506/z13vHJbpqZbDWGm8L4w1LW6Xeqknf3nVgrZxf/7xF2B01464HgXt9Nt35pcbG49/lzWr14QxmmNhyArax42C84W+4HyhVHCuIxIp0WRwMshjHu9/t+7ekju90YhzaaMnzh3bt98elyvH+8PQaH656sp4n119RNxGL3mcV27dkZ+nAMorR+NllvP39eGJXWGZ667KX78Av/nlNWFs+664Xdc3mN8e7O+P2/2lcpxXis7x3eNjdCm4RFcqx8faicl4/f7kJxeHseOPXhvGNq+Jt4OxieC6RsGFI7VlJeSOB22Pdq+VyUxRC3l8x21hGb/2kjB21OBQGNu+M85VjeH8cr1si5f3+x+EsbVHnRTGykfF10OaRZtVoPjya0GwcBte6nq0Ry1kERERERERERERERGRLqGOIRERERERERERERERkS6hjiEREREREREREREREZEuoY4hERERERERERERERGRLqGOIRERERERERERERERkS6hjiEREREREREREREREZEuUdnfFZCYuxdELSoUlmgUxLbt2BHGfvPb34axLbfcGsZGR0dzp09MToZlyuVyGJuIQ/T194exNYMrc6cfvmlTWObITRvD2IrBvjDmzWYY6+vtzZ3eU+0JywS/MgCNRiOMlUrt9fmaFX2iSGuaGKOev+PePhFva40dE7nTy7uGwjJjY/n5BqDZiHPO4etXhbHV1RW5060nP6cAVCoFebuxJwy5jYSxnkqc36K1WO0bDMts3rg2jq2Pv9v1W7aFsYHe/ObEYF9c98mJ/N8ZoDEZx6oFLZfenvzct2skzs279sTrvlTaEcZ+d9XVYaynJ67k5sM25H9WteD41yhqD0i3KpVK9Pfn7+tFbUibGM+dPjI8Fpbp6YvbPr0FO+VEI/+zALZt35E7/ZZd+dMBrDIQxiYL9rvB/tVh7LQzTgxju4fy6791ZGtYZuVhcY7tq8T7ebWNHNAoaCn2DsTrqnc8/q2L2oJR27NZio+zowXt/krBZ1VK8fpoNOJjRNQeKNonSgWfJd3Nm00mh4dzY32lePtdMZmfOyYq1fjDLN5Gb999exgbt7h9OVnN39dXrYzzw9rD4xy24oa4LT5+zW/C2Egzvp5w7Z78fPq7rfH57PXX3BTGJkfjc+T+FfH3XrV2Te70nt74XL3ofLxccD7eaBZcs5nMb7M2Cs5nrOBYsGdoZxi7+Ic/DmN/+rCHhDH3/O89MR5vi41G/n4kAvExWmdAS8ODNDawNv+8FKBy+B3C2OgNce7Yujtu++/ck587jlgR/9KDtiuMDd1yZRhbd8TpYWzSCo7FXUhPDImIiIiIiIiIiIiIiHQJdQyJiIiIiIiIiIiIiIh0CXUMiYiIiIiIiIiIiIiIdAl1DImIiIiIiIiIiIiIiHSJA6ZjyMxeZ2ZfMLOrzMzN7Jp55r+jmZ1vZtvNbI+Zfc/MHrpM1RUROegoz4qIdI5yrIhIZynPioh0lvKsSHep7O8KTPMO4Hbg58CaohnN7ETgh8Ak8LfATuAFwDfN7FHufmFnqyoiclBSnhUR6RzlWBGRzlKeFRHpLOVZkS5yIHUMnejuVwGY2S+BFQXzvpOUoM5w90uzMv8K/B/wITO7k7t7Z6u7NNquZlCu2YyL3HTLLWHsR5dcEsauu+GGMDa0e08Y27Vrd/70nTvDMne68ylh7JiT7xDGbrllSxy76bbc6Tdef3NY5sZ1a8LYxvVrw9i4N8JY/8r8TfqoI44Iy6zu7w9jg4ODYUwksKx5dqLZ5JY9+TnihiuvCsuVb8jfn8vl3rDMnuHhMDY8PhrGjt20Pow9sGm503t74v2ysqIaxszzlwfQLEjegwOr4mUGD/5aKX4geP2a+Gc/4agNYezmbbeHsfGxydzpqwfi9bFyRfx7VsrxphWXgoHecu70aqVg3edXHQAv+F1u374rjO3cNRTGjjp8U+701SvXhGUmJgsqKQeSZc2xjUaT3UMjubGigmb5+0Olvy8s4wXbYKUc55uhiYkw1gjy1OZjjg3LrNlwWBjbfMxxYWxkZDyM3XLjTWFsePetudNPPPlOYZlSQa6v9sbraufOHWEMgt+sYN2PT4zF9aj2hLGi41GjkR+rVvNzL8DoaP42CjDeiLfUeC2CWVxufCI/Vi44LvYPDBR8mhxgljXPDu0e4Tvf+2VubOOGuEWybVf+OeGm4w8Py4yviPe9MeJz7mp/vLf09+Xv6xbvlkzetj2Mrdn+8zDWe/uOMLZ1YmUY++nv8s8JtlTjc+5SKf7Oq9euDmN9vXHuq1byL42NjcXnERMT8bExOtYCjIzGy6xYfj6tFB7Y42B/X5z7rr02vs5zy82/C2NHb8y/DjHWiLed7dfE12vkgLPs12bjvaWd66UHxaXgZdW0/Pb45ECcZ/cMHh/Grrwlvvayrhy3P1cfk38MHKjE7fRVBddXmqPx9YnmaP71aAAbWJc7/eDoRYhZsO0XtanhABpKbirxzMfMBoHHABdNJZ6s/BDwT8DJwL06UUcRkYOZ8qyISOcox4qIdJbyrIhIZynPinSXA6ZjqAV3Jd0w/KOc2I+z/yr5iIi0T3lWRKRzlGNFRDpLeVZEpLOUZ0UOAQdjx9Dm7L835sSmph25THURETkUKc+KiHSOcqyISGcpz4qIdJbyrMgh4GDsGJoaBDpv4MLRWfPMYGYvNLNLzOyS227Lf++MiIgsTZ4dLxh3W0Skiy1Jjt0zUvCSCBGR7rYkeXZsPH5/rIhIl1uSPLtje/yeGBHpvIOxY2jqLVd5b3vsmzXPDO7+MXe/p7vfc+PGjR2pnIjIIWBJ8mxPNf8lriIiXW5Jcuxgf39HKicicghYkjzb21PuSOVERA4BS5Jn16xd15HKicjCHIwdQzdl/817JHFqWt6jjCIisjDKsyIinaMcKyLSWcqzIiKdpTwrcgg4GG/nvoL0qOL9cmL3zf57yfJVZ/9oNj13+rat28MyP/nJT8PYNTdcH8aGRnM7+QHYvWt3GNu1Oz+2ZzheXrkSb5KnnHByGFvXtzqM/eHXv8mdfuNvrgrL3NyMhw1Ys3ZVGBtYtyaMVdeuzJ2+e0+8Pk44fFMYWzcZD9M1MJD7xC4APT09YczMgkj+9paVKojJQWpJ8mzDYWcjf9u5fVs8nOfOoauD5RVshwWbYaVSDWNV4v3o2pvy714a6I3vqRheE9/Bv7I3/qzB3jjnuMfLLFXzbtCCyYk9YZlqNV5Zx2xeH8Z2DsVDRN9089bc6QM98boqOraUJuLf2krxcaI5OZE7vTGRN8LBVKH4buBSKV73Y5PjYWxoT7z+sfzPW716TVikMdmMlycHoyXJsVYqUQ2O6fHxPNbbG+9bY8PxsHXDBUMtlfvj9tldTr1D7vRdO0dzpwP84eprwlhzNK7/lm3bwthtt+fnL4DTT7tz7vTDVsffa/uWm+LYyM4wNlrQHjxs/Ybc6VZwXPRyvA309cW5rWjb2bFjR+70ohzV3xu3O5uNuFy14Jyg6InkqPpFy5ND0pLk2WYTxofyN6ohj9s4e8bz2yN7huL8Vu2J26u7RuJ2xapy3I5ZGbQ5du+J676mIE+tvCU+999eimPXrMvPYRDnqg3r4jzbvyL/vBpgRcHTtEU5Zzz4zRoF59xjY3H7stEoKDcRbwe95fzfpq/gHH7FYHzuj8XHiQrxNveb3/wujO25Jf+7NSbitvFNN8XHYTloLVGebTA0lJ8/Jgv2sd6B/PPg4mtXy6fdWlgH6l+2/HW1/cbfhmV+euFnwti2LbeEsWPveFgYO+mo/Osr5YL8VrY4l5bX9oWx0XKcjzxYx8t/ZbPgmkeL0wFKBfm+yEH3xJC7DwEXAGea2d2mppvZCuD5wO+Bi/dT9UREDnrKsyIinaMcKyLSWcqzIiKdpTwrcmg4YG6dMrNnAsdm/9wI9JjZG7N/X+vun542++uAhwH/bWbvA3YBLyA9rvho96LbykVEupPyrIhI5yjHioh0lvKsiEhnKc+KdJcDpmMI+Avgj2ZNe2v23+8Ae5OPu19pZg8A3gW8FugBfg480t0vXIa6iogcjJRnRUQ6RzlWRKSzlGdFRDpLeVakixwwHUPufmaL8/8aeGxnaiMicuhRnhUR6RzlWBGRzlKeFRHpLOVZke5y0L1jSERERERERERERERERNqjjiEREREREREREREREZEu0dJQcmZ2lLvfsMB5/8Tdv9ZetQ5c0avTzAreqVbwvrWiV7E5Fsa+/8Mf5k6/+CeXhGV27RkKY42C+leq1TB2zBFHhLG+44/Pnb7p8LjM8UEZgN5S3I+5dtXqMHZEUMehrVvCMldf8tMwdtuWW8NYb39vGFt7j7vnTi/RDMtsWLUyjE0043KrJyfCWE9vXMc1K/M/r1ywfZiVw5h0NyuVKA+syI2tIt6mxibGc6fvGtodf1Y5zg+VSl8YK3LL1tvzA94Iy2xf0x/Gjt4Yx446bDCuyJ7hMNTbl78ex0fjdTU+PhbGrBnnjhW98b6+fmX+Oh4bi9fVSPxRVMrxcafULNh2gu82UfCdS9V4+6iWiw7ScQ6uVuJyJQvWScF2VSrF7QHpbmb520Y0HaAUtKdKFufRcqUnjI0UtDnGJ+J67NySn2P/cPV1YZmr/nBVGBv7xWVhbM26dWHs9LvfNYwds2lT7vTdt90Slhke2hnGKMf7eX9/vI5pTuZOXrUi/xgLsGNPfhkozomjoyNhLEpFa1fG9bCC7Wp8PP94D1Aux8ec/r44b5eCbd8L2h3Ngja1dLdKtczqzfnnR4Me77M9lr+NekG+LBdcGCg3432lbyJuMxHsY31B+xxg8xHx97rmimvC2E27gnYzcGlfnI8GyvnnptWeOJdaOT62jI7EOaxcivPK2HB+uYnx+DfzRhwrFbQTJybjHOw9+XXs710blqkUrI+Jkfi4U+6Lf+vrt4yGsd/9Ov84PTS0LSyz9fY4Jt1tYmKSLbfkt6tGm3Ebom8wyLMFp28Fl1iXXNFHFVWx6Dpw4VcraG9NBm27737tS2GZG39+URi7w4b4uNOciHNONapiqeB6YyNe3sreeF2NTcY5jN6iNXlg8Kg9W3CO1wiuzc73bVt9YugbZhZfgc+Y2SOAL7a4bBEREREREREREREREemgVjuG7gxcYGbhIwdm9hDg/MVUSkRERERERERERERERJZeqx1DbwMeCPyb5YxRYWYPAi7IlvuExVdPRERERERERERERERElkpLHUPufg7wCeDxwD9Mj5nZ/YCvAT3Ak93960tVSREREREREREREREREVm8ShtlXggcDvylmd3k7m83s/sA3wD6gKe4+1eXspIiIiIiIiIiIiIiIiKyeC13DLl7w8yeBFwEvMXMBoG/BAaBZ7j7l5a2iiIiIiIiIiIiIiIiIrIU2nliCHcfNrM/AX4EnA00gee4+38sZeUOJt70MDb3bUwLCzY9jv3s0styp//g4p+EZc4666wwdudTTgljRx99dBij0QhDE5OTudM3Hxkvb3xiIoxtvX1bGBsaGw1jvatX5E5/9J/9v7DM5L3vGsZ+9h9fCGO/vvzSMHbVFZfnTj/u3vcKy/StWBnG3ONtbsu27WFsfGI8jB139FG50zeuyV+HANbyq8qkWzjGZHCYqfT0heX6Bvpzp49OjMQfVpBLeyrlMDZWkHO27dqZH2jGec8m432ltxyXc+LYjm3Xh7HjjtmU/1mVeHk7d+8OYzdsiXPHzt17wlhPTzV3+q498foda8ZNkGYzDDExFuewXSNjudPzj0ZJXznOYc1GXLJSinPwYH9vHAu2777+/OkApUq8POli7jSCdlizYCcql/NzYrMRlyna/yv9cd4bG49zwPBI/jIP37guLDMxMRzG9ozGbcHjjj82jK0aiHPAtluuy51eahTktvH4WLXxsLVhbHI8zm1bttyUO33nzvhY2tsXx8qVOP8WterWrFmTO72/GueoXbt2hbFVg4NhrEGcY8ulglpG52Tx4ugp5x/DRKxSoWfjYbmxgdVrwnKNLTfmTt+2I25nTQ7GOaBSivfZ8aE456zqy983raBh1Lsnrsfxlbit8puROAdfvWVrGNs4uCp3emU0rkd1Z7y88fG4DVyt9oSxnmBdFR1PewvakI3J+DjRLDiPX7Fyfe70lavy1xNAo+CYNFFwHO7vHQhj69bFx+J1R27MnX7DjX8Iy6xdn18GgP++Io7JIc8MysH5eqlR1CqJ9qOiC7DLqeAacUGpBvG1Cy8o2VOQj375i5/mTv+/n3wnLHNMnO4ZjKtIueD8eXws/1x9sD/OzasG4/ZsqRkfd0rjcawZND8LmoodYYWfmP97Ngta6o2wi6d4nyjsGDKzBxeWhncCHwE+C1w3e353/+485UVERERERERERERERGSZzPfE0EXM32lmwLOyv+l8AcsXERERERERERERERGRZTJfx813Wf6nqURERERERERERERERKQDCjuG3P3MZaqHiIiIiIiIiIiIiIiIdNiyvTXezB5rZucs1+eJiIiIiIiIiIiIiIjITMv5DqDHkd5D9JZl/Mw2WRtF4jLNgmKTjXikvpHx8TD2oDMfkjv9tLvfIyxz8h1ODmOr16wJY5VyOYxdftllYWzVqlW50yeb8RrZuXNnGLtly5YwNrgi/7MADjtsfe701QM9YZm1Rx4VxjYUxPq/e1EYu/ym2/KXd8QxYZmx8Xj7+Np//VcY27799jB299NPD2OlUn5f8aqB48My/b3VMCbdzvDgMNMsuC+hp6c3d/qqwcGwTLM5GdfCG2FsdGRPGBsq5+9/lcZEWKa/VFSPsTD2h+tHw9jt2/JzB8DAQLDPDuavQ4Cbb9sRxq67ZWsY2747rn+1kp8Hdo3G6976499zdDxej3tG4nU11sg/vvQW5KnBgnXV01vQTCo4lk1OxNtIqZR/TF21el1YptobryvpXlYq0d/XlxsraF4yNp6/L9+2dXtYplQpaDMF7T2A6micN9b05u97kwU5dvdAvC+vXdMfxlb0xCukObIjjHlv/jKj9hJAQbOZisfnC719cf2H+vNjIyMjYZlqb/ybDfTEsVUrVoSxZpBjx0bjevRU4zy6ouC4vmtodxibmCg4HpXzP290ND529BWse+luk8Dtk/n5Y89YvB32BHl2fCzeDr0RJw8vxbmvafE1gyhXDZTWxmXK8WcduzIMUS7FeWX37qEw5sEBa+XgQFimZzI+ThTt69VqXMfevvxjUrUar4/qQFzHZrOgDRy0BQFWrshfyf0Fx+Gde+L1O1FQj6K3RvQHxx2AjRvzjxNjY3E9TjrpTgX1+EJBTLpCsCmOF1wTteC67cH+LpSi+lcLHu3YeesNYey73zgvd/rkzqJrrPnnGACrBgra3IMFObOS/5utWRMfXFbH1WDY4jZmqSDWPEA2Em+j76FUcG2r4vnXUGyevWLZnhgSEREREfn/27vzKM2Su7zzT9z7brkvtfdS3epFrQapkZAEEsK2JDQYHbA844XFBgxjYHxs4IyPxz6WsYGxPQcvY1szxmdAtgcb2R6bMaYHxmJkBJaRkIRoCyEhqdWL1PtSXVW557vfmD8yW6qsjieqsqrerOy63885ebIqfm/cG2+8cX8R99583xcAAAAAAFxf3BgCAAAAAAAAAACoCW4MAQAAAAAAAAAA1AQ3hgAAAAAAAAAAAGqCG0MAAAAAAAAAAAA1wY0hAAAAAAAAAACAmmhc7wYcRjHGfdcZjsY2NqoqG9vqDWysNxjZ2KmbTyfLl470bZ2Nro+tbz3n29Hv2dhDX3rCxm47fWuy3PeGdP9/+EUb+82PfMTGvurVr7ax7/3e702WLy+esnWeOL9mY2czr0v3hN/muS89nyx/6AtftHWef9a/Ls+fXbGx555L70uShvH3bGyrt50sv/n4MVtn6viMjaHmQlDRaCVDjcLn2XaVzqdzobR1xkOfS8eZlB6CjzWrdMU48PtaW9u0sfPrPra64WMnF5s2FpRu46A3tHWqsX/SQ5/e9MLqho31ze6m5o/YOjNlemxI0lamP7Yzc5kz3fHLneWFaRsrC//3M8Oh7+PhyI+RaAZdqz3l6+x/WYIaKEJQp9VJxs6ur9t6m/30+JxdXrJ1Wk2fh6p+eu0gScttf5wPYvoYevLcWVtnuuWPySqzwjw644/z6dJvs1mmc0cc+30tzsxmtuf7Y3PL5712I/06dxZ83mi0/L6GQ3/eEsc+xwYzLxYN34fdrj+PGI78pDM041SShtHXK5rptULDvJaStNXdsjHUWzUcavvMM8nYeMPngTBIHyutll+DtVtzNtZs+Rw8Gvj1yGCUPjaXOn5f1Yw/t7vjhF+QvG58k4399iNP2djYHOv9hj9mx5kcPMrklfE4k/ui2WZmEdbLrBOLTKyVyUedIv1a9zLnETFzfWLKnItJ+f7IrXPNVKDlZX/NYHqWawbwojmnlS1/eYvyc0GRuT6hoV9zf/QDv2RjTz/0u8nyO4754/IVp/15weKMf12OHVv09ebTa+RWwz/psulzaRz7uVFlLue4beauVnu5a0ru3F/KjwOZOWmcOe9aXX02WT7KXCuTeMcQAAAAAAAAAABAbXBjCAAAAAAAAAAAoCYO8sbQg5J+8wD3BwAAAAAAAAAAgAtc1XcMhRDulnSLdj748ekY48PusTHGvyvp717N/gAAAAAAAAAAAHDl9n1jKITQkPQ/SfoRSScvij0v6X+X9L/GmPlWUAAAAAAAAAAAABy4fd0YCiF0JL1f0h+SFCStSHp899+ntXOj6H+R9M0hhHfGGPvXtrkAAAAAAAAAAAC4Uvt9x9C7Jb1V0ucl/eUY4/svDIYQ3inp72vnxtG7Jf3k1TfxcFlbW0uWr291bZ2p2Tkbe+Lp5/y+NrZsbLvbS5avmvZJ0taW396g7+/hDYb+zV9rmxs2ttlN98n6+Rdsnff9q/fZ2FYv/Zwl6fEnH7OxubmZZPl3fff32jpPPXPGxh59/Es29vHf+YSNPfTpB5PlTzz6uK1z4paTNjY3P29jN52+zcYGQ/9a//YDv5ssf91X3eP3dfyEjaHeQpCKskzG2s1pW29pdjZZPhX9vnobPgePR0Mba3fS7ZOkmbn0FNnt+rx3fsPH1voDG2s2go296vabbGx+Jp3fiuC319zy/TEc+3rrXV+vP07340zZsXU2N/2ctLaxbmPV2M9JnVYrWd5q+Ne5nYmVmdhg4OekqvJtHI/T/TjM5OYQfDtQX8PRSM+dTa9X+qOxrddqp4/LIvNm/3LsE/BUxx/nDfl2bPfTx9C0OY4lqT3VtrHnnn/exuLAP7f24oKNuVzamfFtHA58rsyuxYe+XjBz6bjy/RuqysdsRBpmxs701JSJ+PFRNPzp5iAzrppT6flNkmJmXl9dXUmWu/MBSQqZORP11iiClqbTY3hhqWnrtUP6+But+HViI/pjpRz7r4Yejn0Onuqkr0MMh35d0Tnhz+0WV/xa9huXX2Nj//Xhp2wsDNM5Z9jz66JRy+epsvDPLUafc1xsPPb76prrHZI0ZfOlNDuTPteRpPEoPV/1e35fRelzmG+9VGT6qpWZi5ut9FzczM3f0/7cD/VWlqUWFxaTsa2wbev543kSc3rmQoTl2xGjj+XOWz/zOw/Y2Id+9ZdtbLGd3t/JYz4XLc77HLY079s4v+Cvfzdb6XluOnNNJtfz3eDbP2z566VVSM+pRcxkzMxrNo65ecdvMpeh22ZJ8OSjj9g6q8+kr1X3u/78Q5L8CiPtT0tal/S2i28KSVKM8VclvV3ShqTv2ee2AQAAAAAAAAAAMEH7vTF0i6RfjzHat1Psxn5Dkv8TZwAAAAAAAAAAABy4/d4Yek6X9768KMl/ngMAAAAAAAAAAAAO3H5vDP2ipLeFEI66B+zG3i7pP1xNwwAAAAAAAAAAAHBt7ffG0I9LekjSb4QQ3nFxMITwTZI+uPuYv3H1zQMAAAAAAAAAAMC10tjn439F0lDSGyV9IIRwXtIT2vnouNskLe8+7uOSfiWEPZ86F2OM33R1zQUAAAAAAAAAAMCV2u+Nobde8O8g6cjuz8XenCiL+9zXddPd7trYz/zMzybLz61v2jpv+2++xcY+++BDNraytmFjg+EoXT4Y2Drj8djGYvQvTwz+a6X6I7/Nkdnff/3Yh20dFX5fr7r3VTa2tblmY7/1W+n9nb77Xltno9ezseeeedrGumvrPraVbuNqWdk68azvj+3+to3Nzs3Z2Ljyr/ULZ88ny8+cW7F1AC9IIf3G1Fj6N6yGZjNZPtOatnWWplNT0e6+RkMbm5710+AgbiXL17uZ43zo549Wwx97p29asrG7X3HcxmZmO8nyceVzx2b/rI09v+pz6XrXzy/NqXTO6Q19nZWVczY2HPdtrNVIjw9JKouWqVPaOqNMG0Pw+xoN/bgqG77/iyI9N44rn9PLRtvGUF8hBJWt9Bg9vrho641G6TVkNfTHnUZ+XdTf9sdCN7NOLMv08Xr0iP3EaoXMOnGw7du4urJqY0uLPv+6JdP5835747Ff1w1HPt9UmbV4o0w/76mOnxdz5wTdzDq3LH2+dOv0ft9vr5nJ2TH457y+7efalhk7kjRj+iRGP3aC6V8glFJnLr1mHWUupTSa6eNvZt6vf4sinZslKYz9cdTMrFV6vXRerwb++GrP+dyxfXLexspNP4c0zPmAJFXmmkGVWWc1mz5P5XJYp+3XU25+qSqf0/t9/5ynp31+npvzsW4v/drk+mOmM2VjVebcPzenFpl+LJvpekVmezH48Y16q6qonllHVJVfR+oKpu6YqRTkj/VwBZezq5jL9z5vb636c/UPfeD9Nnb+rL9md/J0+ly9HfxzLjJro5nZWRsrG36N1lc6B3eHfh1ZhQUbG87eYWOx7fPs0LyerdxaPPq+ygwdVcHn0qryc8gzj30hWX7m8Qdtne219BgYZa6HSfu/MfS2fT4eAAAAAAAAAAAAh8S+bgzFGP/LpBoCAAAAAAAAAACAyfLvbQMAAAAAAAAAAMANZb8fJfdlIYR7JP0hSTdr5/uDnpH0mzFG/4F3AAAAAAAAAAAAuG72fWMohHBK0j+X9IdN/P+T9AMxxmevsm0AAAAAAAAAAAC4hvZ1YyiEsCDpv0i6S1JP0q9J+uJu+BWSvlnSOyV9KITwdTHGtWvYVgAAAAAAAAAAAFyF/b5j6K9o56bQL0v6czHG5y4MhhBOSPoZSe+S9Jcl/fVr0ciD9vuf/X0be9/7/lWyvB/91zVt9isb64/GNjb01VQ2msnyKkZbJ/jNZaO5bQ7lY2fPn0+WP/n007bO7a94hY0dP3HCxh7/0paNnXn++WT5Rz/+MVunMTdjY8Mtv69m4cdBZ7aTDrRsFQ2GfRs7vzq0sdX1Fb/RUNpQdzu9v41N/5wBJ0qqTG4cZ77i7uzmRrJ8dZTOKZI00zTHl6RGJvmVmfy81V9Plq9v+uOrbPicePKIzyuvOLVgY+2mfwJj0/xRJqef3962sZVNH4tlet6RpGYrnciefeG5ZLkkbW2nX2dJajZ8nmpk8mxhnnaj9HWq6MdAt+dzcJnZZqv0y6thr5ssXzmbnqskqZLvD9RXEQrNtdK5rxEyeWOUXj8Mtv1c383kjenZORsbDEc21p5KH0OdsT9+mpljYarj54Fnz5yxsRfOnrOxdjud21bP+Xmg3fK5UsHnm14m38zMpOePsun31eumc40kjUb+dQmZHLvZTY+DkJnTi+jPdZYWpm3s1JQfV8885T+Yomn6pDcc2DqN0o8d1FsYSY3z6TEc2v5crLWcHlPltK/TDH4NqZ4/Zjf7PRtb30rnlbnMmq7s+XasZa5PDDKXlhZnfe5+YT3dJ6Oxn8eKgT+em5m5YDoTc8+6cottSXGQydtN/5zD2I+DbXOtodPy/VGGtm9Hx78uM23/Wjfkn9uou5luR9vva7DlXzPUW4xRw0H6mKiqTF68xBXOdA2/vZi7JppZ59h2ZNbi7Ybf3qc+/bs29rnf+6SNNTNNLM38srw0b+tMTfm80q98Xpxt+HoxpvPi+a6/KDqYu83GGvO321iRGTvNMt3+duHXrOeeeNjGNPDnSTfdfIuNPfmcP/9/4CMfTJYvzc7aOs1O+vUMmWvAkrKjO+W/k/SspO+4+KaQJMUYn5f0XZKek/TH9rltAAAAAAAAAAAATNB+bwzdLunDMUb75wMxxp6kD+8+FgAAAAAAAAAAAIfEfm8MDST59y19xYwk//5YAAAAAAAAAAAAHLj93hj6rKS3hRBOuweEEG6X9HZJn7mKdgEAAAAAAAAAAOAa2++NoX8uaUrSfw4h/MkQvvJtWmHHt0v6dUmd3ccCAAAAAAAAAADgkGjs8/E/J+lbJP0JSf9W0iCE8MRu7LSklqQg6RdijD93zVp5wB585CEbO37zLSbSsnXOnT1nY63ZGRvrV2Mb0zj9NU+FQrJckhSjj2XqVZl6sfD1Nte7yfIy04pBb2BjZaNtY3Ozyzb27FPPJ8vPn3nW1pmPJ2ws5l6W4J/d0pH0Nrd725l9VTZWFH5fZbaXvVaR7v9mIzOuACdKVZXOH1Xm7xKqIj019Sp/rKxvrNlYIX8ctZp+bDfKdCy0/NTZyPy5Ravp67XLpo31ern2p8u3xz5RbfVGNjaM/gnE4GMbW+nX5tzqiq0Tgp9bGqXvq6Lw7WiYF6DV8jnR1ZGk7W7Pxo4uzNvY3JSfr0Zmnls7v2rr+BGAWouVxr30evD8C2dstcLN6ZUfacORzylrG5s2Fk0+l6S13vlkeSOzJm1k8tC5FZ9vnnr2mUy9dDsk6diRo8nyuRn/ydrjTD82MrloLpNTyjL9vLe2t2ydrW0/Z45Gfh5YnOrYWG87Pd5C5nVpNads7OTRJRu767Rfi8+3/Rg5u5Z+3uvb/lPO+2PWuUhrFEHLnfScPuj789bGpsl9U369p7Y/VrZGfp07quzXP6s1Tu+vnVmTtuTXZ3b+kDTf9vntvrtvtrFfe+Dh9L4y5wph4HNY7Pr5alz6em5dWmSudzSCj02bcSNJYez7eDxKzyEhM3RuPeKvKd17atHGOg3fV1WVvoYiSb2n0/24ksmz57p80wScqCqacZ85xnLbu5JYlbmWV2Wvr6W32cycwVXddRv73Kf+q9/T2M87wfThTsy0scjk+5E/D3bns5I06M/Z2Ew7ndc3w3FbZ3j0tTbWm/JzS8isdUcvPJosf+zpL9o6D33uUzYWh+lr35J0/Fj6XEKSzq/6cXDryWPJ8lHl7z1s9tL9G2P+ONrXO4bijm+X9KOSHpPUlnT37k97t+xHJX3XfrYLAAAAAAAAAACAydvvO4YkSTHGn5b00yGEmyXdrJ23mzwVY3z6WjYOAAAAAAAAAAAA186+3jEUQhiHEL783UExxqdjjJ+IMf72hTeFQgj/NITg37cFAAAAAAAAAACAA7evG0PaeWfQ5X7IIx/WDAAAAAAAAAAAcIjs98bQ5ZqVtK9vlwshvDKE8DdDCB8PIbwQQtgIIXwqhPBjIYSXfJteCOGeEML9IYSVEMJWCOHDIYS3X7NnAAA3EHIsAEwWeRYAJoccCwCTRZ4F6uea3hgKIRQhhK+W9HZJT+2z+n8v6S9KelTS35T0lyV9QdLflvTREMLUBfu5U9JHJb1Z0t/bfeyspA+EEN5xtc8DAG5A5FgAmCzyLABMDjkWACaLPAvUTONSDwghjC8q+jMhhD9zGdv++X225d9L+qkY49oFZT8TQnhY0o9J+rOSfnq3/KckLUp6fYzxU7vt/HlJn5X0T0IIr4oxxkvt0D1gY2vD1mm0WsnymeklW2dtbd3GpjIfuDfK3LYrinSwEXwlV0eSQvANyXVlkdnfcJh+01ij4Yfd8vKyjTWb6b6XpJtvvtXGHvvio8nyrY21ZLkkHT16zMbOnl+1sXPnztnY5kZ6XHW727bOaDywsXa7Y2Pz8/M2VmTG3MmT6f6/91X3+Ep4uTjwHLujMqWlrdGaSo/fztRUslyS4sgfR6UunsYu2FfDP41GkY4N+lu2TndzxcbOrfk2riz7r+VbGvg8G7vp53Z2w7fx/EbXxro9/2bfra7PR6OYfp3HplySGpl5p9n088RUp2ljnal0rNH0461Z+tjitJ93Tp88YmO3nDppY3MLC8nyMjPHmaGIw+dA8+xwNNJzK2eSsZW1VVtvYXY2WV5Gf0y2zfpXkvqZ47w78LnIrSE3u31bJ9slwceWlxdtrMzkAL3kNGhX5fNhKZ+j2g3fj2XD5/rKPO+pTtvWKTI59vyKn6samf5ot9LPrar8vkLm7xDXzvq1+OdXzttYt+/7f2jGcWhN2zrtpo/hULkOa9lgj4mi9Md6HKfXU+Ntn9/WtnxsOPaxovLHbBinc06ZOS7bTX88t0wOkKRez+f71917p409+GQ6DzxzxueAZts/5/HYX8vZ3urZWFGY1zlzDaUoM9dQKr+2Hwz9OcHYvNbHFv35/de95mYbu2tx0caqoc+lvb4/Xzi/mu7jXC6tGn57OFQOPM8WRaGZ6Ze8GUmStLntx6jMpkPuW01yrcmsm3Ia5lpDq/J5+/ce+KiNPfjZT9vYcOiva+TWYue30vloZd238fYT/lx3JpODy9Jfp9xauDtZPj56n63z/KofA42Vz9jY5uNfsrHHH/1ksjw2/Rx3/NRtNlZ00udWkjQa+Hmne8avgztVui2PPf2CrfMNb0nfj213/HU06fLeMRQu+IkX/f/in5GkxyW9R9LfuIxtf1mM8YGLks+L/t3u71dL0u7bF98l6UMvJp/d+puS/pmkV0p64372DQA3OnIsAEwWeRYAJoccCwCTRZ4F6ueSN4ZijMWLP9q5+fMvLiy76KcdY7wjxviXYoz+ttj+3LL7+/nd3/dJakv6WOKxH9/9TQICgMtDjgWAySLPAsDkkGMBYLLIs8AN6pIfJXeR75f0yCQakhJCKCX9uHbeifRvdotv2v39dKLKi2X+vbQAAEnkWACYNPIsAEwOORYAJos8C9zY9nVjKMb4LyfVEOM9kt4k6a/FGL+wW/biB5emPgyxd9Fj9ggh/JCkH5Kk06dPX7tWAsDL03t0DXOstDfPti7xWaYAUAPv0YTWsgsz6c9jB4AaeY8muJadn/Hf4wUANfEeTTDPHjt+4tq0EsAVuZzvGLouQgh/S9IPS3pvjPGnLgi9+E19qVVa56LH7BFjfG+M8Q0xxjccO3bs2jUWAF5mJpFjpb15tpn5snIAuNFNei073fZf7goAN7qDWMtOdVjLAqivg8iz84uL16StAK7MobwxFEL4SUl/XdLPSfpzF4Wf2f2delvii2WptzMCAESOBYBJI88CwOSQYwFgssizQD3s9zuGJi6E8BOSfkLSz0v6gRhjvOghn9HO2xXfnKj+pt3fD1zOvqpYJcsbDd8tM7OzyfJjx/zbH58984KNhaK0sXbTtyOU6Xt6jcy9vtLU2d2ijURd/BJ8Rab5qky90PD7GsWRjTVKX29lZdXG1tbXkuX9Lw5snTPPPmdjZ8+ctbF1sy9JKst0Z01nPgpmc3PDxjIvi2Zm7Lt2ddfdd9vYW7/xDyTL77jtdr8zvKwcZI5VkIJJO9EFJKlMf2xH0fQfTVcGP+aLaujryeeBIqTzUTNz8G1vb9rY+c1VG3vwyWdtbGU79Q79HbPT6T45u7Zu6zx7bsXGqpCeFyWp3fQ5uIzpWLPh/9K2zPRjp2lDajX92Gm4uTEz/83P+HddHF88bmM3nzppYwuZv3wbjNPlG2t+7LzkKMWhdlB5NqpSf5TOD2XLryG3ut10YGwGp6T5ct7GQvC5odPwC8WZ2blk+aDj83JV+Rw1HPpcPzvn11rjzDbdWny24z9eqhr5fmw1fXLb2rZ/WKvt7a1k+ZEjR2ydxYX0OYskTWeSbO48SON0H49GPkkN3HiTtD3t+3G15/tjnMmJVSud02PmNSsL3n33cnKQa9nQCApL6bVWGPpj/fxG+nyxOfD57UTL56kV+X1t933u65nYkQU/5nNrt27Xr0mbLX+MNTJryK+9N/01JIOxXxd1u/6aQeayhmKmHwsTKzMbbJWZd5SNMjnMLQYl3XY8vc1ve/trbZ07TizbWDP6fW1l+mpj24/VUZFeV2+snrF1Ti4v+p3h0DnQawYKKsyYGmRy5oz/pLorkjvfKoIPTpnrCZ974CO2zr/9P99rY88+97zf1+yCjd1zb+ql2HHsyFKyfGN0ztY5O/QJYlj4tXOx6fPi8r2vS5YPiqO2zqc+9PM2Frb9NZTmyF872jbXZl/3dX/I1rn17nTbJWkk/5yjWTtL0vFbv9rGtsw8t3S7H4v33ndfsrxjrhm96FC9YyiE8OOSflLS+yR9f4wvvXMTY9yU9CuS3hpC+JoL6s5K+gFJD0v6xIE0GABeRsixADBZ5FkAmBxyLABMFnkWqJdD846hEMJfkPQ/S3pC0gcl/amL/gLx+Rjjr+3++92SvknSfwoh/CNJ65J+UDtvWfzWxN1sAKg1ciwATBZ5FgAmhxwLAJNFngXq59DcGJL0xt3fpyX9y0T8v0j6NUmKMT4SQniLpL8j6a9Kakn6pKRviTF+8ADaCgAvN+RYAJgs8iwATA45FgAmizwL1MyhuTEUY/w+Sd+3j8d/XtIfnVR7AOBGQo4FgMkizwLA5JBjAWCyyLNA/Ryq7xgCAAAAAAAAAADA5HBjCAAAAAAAAAAAoCYOzUfJXQ9FSN8Xm56etnUG/X6yvNfv2jr9Qc/GyrZ/CXLblPkat5D5freqqmys2PuFcns0mr6No/HQxnrdzWT55sa6rdO+/bSNba37esF1iKRxNUqWnzvzvK2z6rtDZaavjszP2FgV0/2/sX7+ivaV/S6/0cCGfvh/+EEb+yPveleyvFFwDxn7F2PUuBqng0M/RsdlMx1otW2dstWxsVD5PBXHPs9GpfN90UjnFEma6vj5I1Tp7UnScOzz83Pn1mysubadLN/s+3mnPzKviaR2q+Vj5mWR/BxSNnzuaGXmlukp/1q3mj7WMf1/bHnZ1rnt1JKNLc/N21gIvv2557a4kN5fszN3RftCfRVFqdmZ2WRszqxxJUlm/TA26xTJr5klaS6zbi4yS5X1rY1k+eyc315u7dPt+ny+tpbe1w7/3Mp2OicWZWnr5NbbszN+ndhu+vw7a/o41x/tTBsbmVw/Gvs5ommWpe3MBDGWj20OfV8NS5/rm20/RoYy81Hp1wllkZngUGsxRg1H6TVVrPx52pQ5notMvukO/PqyP/LHSjX2x3rsp9fAvW2/Ttye8sdKL9PGTmaeCEOfn195c3qN1h/dZet88jMP25iiz2Fl6dvYNKGi8K/z9MyU3547n5HUyvTVW998X7L8q+97la2zve1fFzUy6+1e+nqNJA0z13k6Zior3SQhaZC7toVai1WVXcPte3vZmB+jbfncEfv+fPwTH0l/ndJ/+n//o60zs+jPP7/vj/wxGzt56+02dusrfM4MnYVk+dqZJ2ydtS9+1Ma++MTnbOzMI4/a2J3jX0uWj8c+l04V/nU5/uqv97FbvtbGmtPp/bVm/fl4V35uVGaODtHn4OWb7raxpSI9t5eZcToy195yl44l3jEEAAAAAAAAAABQG9wYAgAAAAAAAAAAqAluDAEAAAAAAAAAANQEN4YAAAAAAAAAAABqghtDAAAAAAAAAAAANcGNIQAAAAAAAAAAgJpoXO8GXE/BlN980822zpEjR5LlWxvrts6wt2lja/0tG1s+smxjRUyXl7aGpNJHv/T4Yzb2yKNftLFqPLKx17/hdcnyP/0d327rrK+t2tjaed/HZ86ct7FoOutd3/atts4P/dnvt7Gc2dlZG3vk4YeT5e9+94/ZOk8/84zfmRkDkvTKV7/Gxr75He+wsbmpqWR5FTM7A4wiSC3z5wdVZgAPR8Nkeez1bZ0YOjY21UqPa0lqNdo21izT+W3c97l03Pf5viHfxtkpv80i+FirNZcsXyz99L6+6dvY3d727bARqdFI729padHWGZnXWZL6ff9at1q+H285dWuy/J470uWSNNOubGxuet7Gzq34fuwP/Nx4fHomXX7qJlunaLRsDPVVFIVmZ9LrjqY5JiVpYI69XG7oD/wxuTjvj5NG8JljLqTz1ygzP+TWnWXZtLHjx47bWLPh65VF+myhLP3zKgsfK+zZhzQa+py4OL+QLO92u7bOcOC3Nz09bWM549E4WR4zc04ofKzo+Pm5LPzrosw2B/1BsnycmUtnWn4tgHqLVVTspsd9L7cuHaaPzUbDj8Onzq/Z2HDsc0ez8jmnU5l6lc+l69v++oQy54T9TZ9zjptrKLsbTZbOhPSxLElF8P2x2fP15jNz0ux8en05zJwGT8/659We9vntlmU/b9556mi6HVt+jR4zq/SYmXcGmbm9PeXX22VM7+9I5uriaHhl8w5qIEjBHNPuHFOSoskduTEfMldMB+eftrHPfuL9Nvbw5z6XLH/lvV9j63z9H36Xjd16+jYbyz23cSa/jWN6TXX09D22zpEjSzb2+JPP2Vhv018/PvfZjyXL50/7vrrnTf667bHbv8rGQvR9FWN6XvdXBaQYfTSGTCxTT1W6HZI0Gpnxbc5NJCm0zbzjq0jiHUMAAAAAAAAAAAC1wY0hAAAAAAAAAACAmuDGEAAAAAAAAAAAQE1wYwgAAAAAAAAAAKAmuDEEAAAAAAAAAABQE43r3YDD6K6777Kx4ydOJMsf/NznbJ3zZ562sT/+x/64jb3lG95sY6PhIFlejStbZzzysd/66Eds7KlHH7axotG0sW94/RuT5X/g699k6/z7X/z3NvbgZz9rY8+ePWNjIaTL77rjFbZOq9m2seF4bGO9Xvp1kaTFpaPJ8q99/Rv8voa/Y2PT09M29s53fpuNDQa+/d2tbrK83fH9odJ0MCBJMf33B+PM3yUEEwvyYy0zrLPBmJkFi6JMlveH0dYZjnysU/jnPNv2ubTdatnY1PRcel9zy7ZOZV4TSRoM+jY2HPR8vdEoWR6j749tk28kaXlpwcZuu/U2G3vFrbcky+en0q+lJG1vn7exZ89t2NjK6raNdUf+9ZyeW02Wl42OrTMa5QY46qosCs1MTSVjw8HQ1nOHZWWOY0kKVSbvDfza5/kVf3y1Wukxn9mVGg2ftGdmZmysNPlckuZnfb3pmXT/rq6v2jpV5ngdZ9aQhVuwShqbbXY6Pm9Umfw7in5fubk2mPVxN7OvzuysjWW6Q43MWrzT9mvgTvolU1VkBhY5FkZQUGOcXodVfb8OKMfp46ghn2cHPb8uGo597utt+xwczPniypZf37SqzLliz68TG2VmrdX19VpmnXvTiWO2zumVTRv79CP+dWk2/Jr67d/w6mT5qduO2DrPr/jXpdny/fGWN7/OxhZPpnNfL3OO0Wj4eWwU/Os5zOTS1oJ/3uqba1Hn/HWvke8O1FyMUcNhet2au3al6Me9U1U+Bz/08KM29shjT9nYG//gO5Lld7/6Lb4d0/M21h34Niqzng2lz0cN+7z9dYF+mb7OIEmDsT/XbWXWVFVIv2aveM3X2TrLd9xrY91MYmlUfm6sZPJpZi0eXB1JMRPLLKsVMuvnskhXNMVXhXcMAQAAAAAAAAAA1AQ3hgAAAAAAAAAAAGqCG0MAAAAAAAAAAAA1wY0hAAAAAAAAAACAmuDGEAAAAAAAAAAAQE1wYwgAAAAAAAAAAKAmGte7AddTpSpZfnR52db5b7/tW5Pln739VlunWQYbu+vOO22s3W7b2MBsczQY2jr92Lex17/ua2zs9M0325hiaUPLR9L9eP7sWd+O177Wxm495dvRr0Y21p5qJctPHTtm6zz2pcdsrGg0bazV8rFmMx377u/+HlvnT/yJ77Cx6ekpG7v1Vj8eY0yPe0kKIT2uYrRVACsqKJbpcV+UHVsvNNLHbAj++BpHn2f7Q58fRsOBjQ2G6WOl8IeQmi1/XE6X/kCaafvnNtXx23TPezzI5MTOjI3Nzvt9SWMb6Q3S/TjO5I47bl+0sePHTtjYkaUlGyvG6TlwfeU5W6fb27axqvB9NfDdoY1tP9+ubaT312yu2TpbW1t+Z6itqorq99NjrVH6JX7HrC87J47bOuO+z5WtzLpovLhoY8NxOpnOTM/aOt1u18aKRua0JpOLxplENeimc8r2qs8b48onh7HJUZI01fLz4niU7qv17Ux/dPzrstnzOWpqZt7Gyrl0/p02a1xJmpr2edSNX0lqmPWDJDXMOkGSOmY8lpnxcfbsCzaGeotRGg3TOWLkl1oa9tN1WplxPZVZCwafgjVu+twxKtONfG7Vn4/PDP21kFbb76uZyWEh+OOvZ/JsWfprIffecYvfV+ac4PaTR2zsXe96e7L8lnvutXVWVv0L0y78XNbq+DYOR26d6P+mu1H6nNjf8uvLqZZvYxX9/tzLmZlaVDZ9GwF3HWo8ziRaJ3Pxyh950q13vtLGjpyYs7HjJ9PX3mJnwdYZZyaQIrPGqYK//pq7zheLdJ+E4Yqt88xnPua3t/G0jTUW/XXW5s3pPm4du8PWGVa597NkLsxcgSp34TMTy14uzdXLxa7g2mxuezm8YwgAAAAAAAAAAKAmuDEEAAAAAAAAAABQE9wYAgAAAAAAAAAAqAluDAEAAAAAAAAAANQEN4YAAAAAAAAAAABqghtDAAAAAAAAAAAANdG43g24ngpzX6zT7Ng6b3nTG5Pl32jKJSnGaGPj8djGlKnnIxlXuL0ihCvZpOKVtfKa78s2P7O9ovD3TEOmP0KmnuvHEDJ1Cr+vnFxfXdHoubYvJWoiFIUa7WYyNlZubFfJ0iL4gVgWpY3F6GNV5u8jBqYdjdK3vaWejbXLoY112m0ba7ZnbWw0TE/j4yrzvAYDG1taXLCx20/famOlyVWPP/Wkr1P616WsfF9trLxgY9tbq8nyzY1ztk6j9EuhhYU5G5vupMe2JPVHvv1rm1vJ8rLj97XVHdkY6isEqXTrjsxCYGTWnv2Rzw1HFpdsrEynSknSzPy8b4dp47PPPW/rdLtd346GzykLc74drUy9YNo41fI5ezD0/RimWzY2Hvpzgt44nVPa8z5v9MwcJkmthm/H7PJRGxuO0v0xPT1t67Rbfl9TU35+azR9bh4OfF8N+un+72fmvvl5P/eh5qI0HqfH/XCUW8um1wjbVWa9WvprEDH6dUAvcz2hY3LVsOePr7XVvo0125k81fJt3Iq+3tzMTLJ8fX3V1mlNT9nY19x7h4296hX+WD96NJ1Pe12/ppua8WvBTrloY1u9TRtrN5eT5W4+kqRq6LdXjP3rUlSZWPTzravX3VqzdaI5joCc3LWyqkqvc2Llc3PuOt/c0jEfW/brlVik1zmDzDWIzKULxcz1iRD92q4tv87Z3F5Nlj/2+x+2dc5++j/b2NKcn69OvOaP2NjyrV+dLG8vnbR1xuZ1lqTM5aHsJUyXTmOmf3Ny1/yVaX/+OqsJ5pYe9onl9sM7hgAAAAAAAAAAAGqDG0MAAAAAAAAAAAA1wY0hAAAAAAAAAACAmuDGEAAAAAAAAAAAQE1wYwgAAAAAAAAAAKAmuDEEAAAAAAAAAABQE43r3YDDKGRiMcZkeWXKL6XR8C9BdotXuL+DFEK6J10f5upcqt6VOMh95cRY2dhodGV9lZOrZ2NXtivUXIyVhsN+Olb4v0soG+lYbsjHTMaMKv2+ypaNFaZaHPtjNpc5isI/gbL0bRyM/P66o1GyvBoObZ2FuTkbO37iFhu765X32dj62vlk+ac/96Ct0+9v2piq9POSpEaml4swTgcyY6doTNvYky88bmPb/YGNVZm/u3l+bStZPn/unK3TbLRtDPUVQqFOZyoZa7d9bhuYvPH8+bO2zqjyx12VyYlh6I+FdqeTLJ9qp8svFZtfWLCx6bY/hpbmZm1sbXUtWd4f9mydVsfvq5PZ1wtn03lUktqzM8ny5qzfXqeVHhuSVMXMfFT4c5MypMfBSqbtS0tLvh2VHzutlh/DjaaPtcxr3R+k1yOS1Gw1bQz1NhqNdf78ajK23evaesEsPEZjP3bLMn2cS1K75ddFqnw+ahTpNU7R9sdeY9YfD+OxWWdJitG3Y3vLx9wSeH7er88WZn2eOnbc58V+L70Gk6TNfnrtvLDgc+mg2raxbu9pG2vKz2UjM0e3MydC460XbCw0/NgJlT9fKMc+tjlIx1ozmbVHZt2MeotRGo3T43R72x+zC9W82WDm/Q+Z9Y+CPx/PxczSSCFznW+cW1dnmtgOmesCLzxlYw/+9geS5WeeesTWOXnyThu79d6vs7HF2/01g9hOz3Pu9ZekEP28k7v4UmUuALhrR7lrSrlr8Pnrx5lrupla+9/aJe4hZPCOIQAAAAAAAAAAgJrgxhAAAAAAAAAAAEBNcGMIAAAAAAAAAACgJrgxBAAAAAAAAAAAUBPcGAIAAAAAAAAAAKgJbgwBAAAAAAAAAADURON6N+AwCiHsO5arkxNj9PvKVbzG7VCmHW5fuPHkxiOwX0FS6fJHs+nrFenYKDc8x5UNFcFPdaPKb7Q0TW9Ev69YjW2sqjL1gv87jd5gYGOjUbqR8/Pzts6r7rnHxu66804bKwvfxq3trWR5d3PD1un2N21MGtlIq+HbMdVsJcvLhh9vmz2/r7MbfRurcvN34WND0yfdzOvcarVtDPUVglSU6eNhPPK5qDPVSZafOnbS1un1/fhstNPb22lH5lg2K90TJ07YOrl1br/nj9f1DZ+Lisw2YyM9f4wbpa1TNdJ5SJIG0c9HCydusrGxyb+5/NXKzDlTU9M21s3047SpN7+4bOsMM/Pzs88+a2MnjvtxcOTYrI25VyaYY0WShsOhjQFSek6fnfXjcOXc+WT59IzPl0vLSzbW3/Y57NaTR2ys1Urno/HYzxG9btfGqsw6d9j3x1FszdhYw6zrjhxbsHXuvOs2G/uqr77PxlbPPG1j/bWVdGBhzdYpKp9Xwnjbxgbdp2wszqTzbOj5XBoGfnyU5rxKkkLbj5045cd32DybLG/P+vmj2ZmyMdTbzjWD9LE03cnN9+n8FjPrn+x7I3LXgZU5jsw5YbQrEkmFXw82h+nzakk6++TnbezRT33Mxrrn0rnvnld9va1z831vtbFxe9HGFDN9bJatIdNXITPvKPrXrMpcUbeXc670cmjuOmr2GmvuWns6lnt3TxnT/XipK/q8YwgAAAAAAAAAAKAmuDEEAAAAAAAAAABQE9wYAgAAAAAAAAAAqAluDAEAAAAAAAAAANQEN4YAAAAAAAAAAABqghtDAAAAAAAAAAAANdG43g04jGKMB1JnR/ARH5LbXb4dV9jGzDZDrpE3qCt/rQ8/93rmnnMdxwD2wQyP4XBkqxSNZnpTjZavE3xMobShKnc8x3F6X2Pf9vFo6GNFenuS1DDPWZI6mfarqJLFs9NtW2XQ3bSxRx76fRsbD/1z65lt3n7TMVtnauZWG3vquWdsbGNzy8Zime7HGPxyp9cf2Fgo/N/PtBr+dSkKH2s00m1pNnPjOzMGUFsxRg3M+O1ub9t6M9V8snyq0bF15qdmbWygdB6SJGVy22iczombaxt+c+b4kaRhJkcNMnPOsPLrmOUjR5Llx272+as/8rm+bM/ZWGj5HDAy22wOfd+PBz4WK9+PzVYm703PJMvbmT813M6MxaMnT9nY9Hx6nErS+ArWpWVm7PT6fRtD3UUppMdbacolaXkpPX4Xl5ZsnTKzdmjO+BzcbPqxHd35f/D5YXrGzwWjnj9WOpl2DHo+L25updeQS0vLts6pU0dtbHnZ99Xy0fts7InfeyBZPh4/ZOss3PoaG2u3fPtD8HOjW7IOei9k6mQu6w39uBoXfg0cO10bK8r0+JmeWrB1Nrt+e6i5EFWU6TVc0chdL03nt6Lwa76q8Hk7yuep7DUvEypiz1YZb67a2DOPfMLGnn7k0zYWM8vxV/6BP5wsP36nz2FF088FIfo+zglK56OQec9KzL1mufVgph3RnLuEK7xmHqsruw4fc6004ztkXujc3JLDO4YAAAAAAAAAAABqghtDAAAAAAAAAAAANcGNIQAAAAAAAAAAgJo4NDeGQgj3hBD+dQjh8yGEtRDCdgjhwRDCPwwhvOQDqHcff38IYSWEsBVC+HAI4e3Xo+0AcNiRYwFgssizADA55FgAmCzyLFA/mW+pO3C3SDol6ZckPSVpJOk1kn5I0neGEF4bYzwjSSGEOyV9dPcxf0/SmqQflPSBEMI7Y4wfvA7tB4DDjBwLAJNFngWAySHHAsBkkWeBmjk0N4ZijL8u6dcvLg8h/KakX5D0fdpJNpL0U5IWJb0+xvip3cf9vKTPSvonIYRXxRjjlbalKA7NG6msEK6o1rVuRi2FK+v8l7U6PucbzfXIsVWM6vcH6VjZtPWaJgUXmTe5VpVvR274FplgNU6XNwr/1BthZGPjaDYoKRS+P44szNvY8yubyfIz51ZtnfWtbRtbmJmysaPzszZ28uhisrzRnLN1uoP02JCkkHtDc8zlo3S9Zqttaxw9Mm1ji7G0sc2tro11B/61jqaNrnzH4V+X4Drk2RBUNtO5Y2Fx0VarlN7s+saGrTM1PWNjseGPk6Lwx+u59fT+cu1oNHyuzK1V5haXbGxqbsHGho30qVKj9KdQc3MdG4ulj231ezZWmHYU8pNfs/B5qOlfMo2a/rmNzGQbR74dVWYYz837+W1qyuft8TiTY83uRpk6ITNOcXhcj7VsCEGNRnoO7meO2Zmp9NqizCxYR2bNLEntVu6g9WO73UkfR01TLkmbm+m1pSSVZcvGlpZ8nn3yyadt7MTJm5Llp2+63dapVldsrPvCEzY2f9M9Ntav0vPLE595yNb5xnv+oI0VVeZ8wb9kGg9Wk+WbxdBvT8dtbLrhX+vh8FkbKyq/v20zVtdeOGvr9AbrNobD47rk2aJQ05yDNt0JuSSZ3Kzg82UIV3hOlb2gkN7mYMXnva3HPmljK88+6nfV8eet93ztW21s+fRXJcv7mVcnt37LLZsucfKSLs0twzLn/le6eiviFYyDzBPLba2KmQtVmecWg9uhr9OaTh9Hl1rnvhyuNDy++3tJkkIIM5LeJelDLyYfSYoxbkr6Z5JeKemNB9xGAHi5IscCwGSRZwFgcsixADBZ5FngBnXobgyFEDohhKMhhFtCCN8s6Wd3Q+/f/X2fpLakjyWqf3z3NwkIABLIsQAwWeRZAJgcciwATBZ5FqiPQ3djSNIPSHpB0pOSPqCdtyZ+d4zxw7vxF99rnHpf3otlN0+ygQDwMkaOBYDJIs8CwOSQYwFgssizQE0cmu8YusD9kh6UNCvpddp5e+KxC+IvfqhiP1G3d9Fj9ggh/JB2vjRNp0+fvgZNBYCXnfs1oRwr7c2zrSn/XQoAcAO7Xwewlj0y778bBwBuYPfrgNayM1P+O3UA4AZ2vw4ozx494b8jC8DkHbobQzHGpyQ9tfvf+0MIvyjpd0IIUzHGn5L04rdmp75F78WrkMlv1o4xvlfSeyXpDW94wyW/BA0AbjSTzLG72/9ynp1ZXCDPAqidg1rL3n7TTeRYALVzkGvZo4sz5FkAtXOQefbOe+4hzwLX0WH8KLk9YoyflvS7kv78btEzu79Tb0t8sSz1dkYAwEXIsQAwWeRZAJgcciwATBZ5FrhxHbp3DBlTkpZ3//0Z7bxd8c2Jx71p9/cDl9rgeDzW6upqMlZV/oZ1CJfaMlA3HBQ3gGueY6WdkdEo0+OjOx7ZenE4SJaXoel3lvkzhxB8Ti8z9cpynCyfbvkx34k+Vo3S25OkjW7qXfi728z8sWqrmZ7GQ2aymur4j/gLZWlj5ze3bGy930uWN1p+X9t9/5y3Nu0fmEmZsTPdSY+R2246liyXpK969WttbGr+qI19/IHftbHPPfRFG1vfSvfVuKpsndy6BC8bE1jLVlpZ30zGFubmbL1GO/3RSIOGH4MxM9eHsa8305mxsfnj6U8YaS37jxSZmrKfSqJut2tjnUy9spn6Y9cdw356Pioy81FULuYnnVbbt8PVGox9rtzYWPX7avh2TB9btrEY0691kRkf7Yb/KK5WI3MqavYlSVVmHijK9DaLzIRfNjPrC7xcTGQtWxZBi9NmLTPj1zhTU1PJ8pYZn5Jklr+SpBj9OqAImbFtYq1M3puZ9cdXP9PItc0NGxsW/nnfeue96X2N/bp5a2XVxlqFzx2N6VkbK+bTr9mpVrp9klRk1rlV389J0ZwfSVLRSL82jZ6fx0aba35fy0dsbDBKP2dJipm156hIt39qwbcxrmXW9ni5mEieLRTVqdLH+yuOLtp6s7MmZra1szN/7OXOtnJXvLa202N7u+XPq5dPnrSxuczH8bfn/Rr5lrtfb2NFO5373LpOmtS1b9fLvvdz81/2DPlK6mXqXKnsJjOxylzDKjNj+Kj5mHF3zehFh+YdQyGE5JERQnibpFdL+rgkxRg3Jf2KpLeGEL7mgsfNaucL0h6W9ImJNxgAXkbIsQAwWeRZAJgcciwATBZ5Fqifw/SOof8jhHBK0m9Ielw7n0v5eknfKWlD0l+64LHvlvRNkv5TCOEfSVqX9IPaecvit8bcLUUAqCdyLABMFnkWACaHHAsAk0WeBWrmMN0Y+r8k/RlJ3yPpmHbeVPW4pJ+V9PdjjE+8+MAY4yMhhLdI+juS/qqklqRPSvqWGOMHD7rhAPAyQI4FgMkizwLA5JBjAWCyyLNAzRyaG0Mxxl+Q9Av7ePznJf3RybUIAG4c5FgAmCzyLABMDjkWACaLPAvUz6H5jiEAAAAAAAAAAABMFjeGAAAAAAAAAAAAaiLU9fvAQggvaOezMl90VNLZ69Scw4j+2Iv+2Oty++O2GOOxSTcGh9NFeZZjaC/6Yy/6Y6/99Ad5tqZYy14S/bEX/bEXa1lcEmvZLPpjL/rjpcizuCTybBb9sRf9sdc1ybG1vTF0sRDCAzHGN1zvdhwW9Mde9Mde9Af2izGzF/2xF/2xF/2BK8G42Yv+2Iv+2Iv+wH4xZvaiP/aiP16KPsF+MWb2oj/2oj/2ulb9wUfJAQAAAAAAAAAA1AQ3hgAAAAAAAAAAAGqCG0Nf8d7r3YBDhv7Yi/7Yi/7AfjFm9qI/9qI/9qI/cCUYN3vRH3vRH3vRH9gvxsxe9Mde9MdL0SfYL8bMXvTHXvTHXtekP/iOIQAAAAAAAAAAgJrgHUMAAAAAAAAAAAA1wY0hAAAAAAAAAACAmqjtjaEQQhFC+IshhAdDCL0QwpMhhH8QQpi53m2bpBDCu0MI/3cI4YshhBhCeOwSj78nhHB/CGElhLAVQvhwCOHtB9TciQshvDKE8DdDCB8PIbwQQtgIIXwqhPBjqbFQg/64J4Twr0MInw8hrIUQtnePkX8YQjhlHn/D9geuDnmWPEuO3Ysci2uJHEuOlcizFyPP4loiz5JnybF7kWNxLdU1x0rk2QuRZ/c66Dxb2+8YCiH8b5J+VNIvSfpVSfdK+hFJH5b0jhhjdR2bNzEhhCjpvKRPSnq9pPUY4+3msXdK+oSkkaT3SFqT9IOSXi3pnTHGDx5AkycqhPB3JP0FSb8s6eOShpLeJunbJX1a0ptijN3dx9ahP75J0o9ppy+e0s5zfY2k75e0Lum1McYzu4+94fsDV4c8S54lx+5FjsW1RI4lx0rk2YuRZ3EtkWfJs+TYvcixuJbqmmMl8uyFyLN7HXiejTHW7kfSV0uqJP3iReU/IilK+lPXu40TfO53XPDv35f0WOaxvyBpvDvoXiyblfS4pC9o98biy/lH0hskLSTK//buWPjhOvVHpp/+5G5//BX6g5/L+SHPfvnftc6z5NjL7idyLD/7+iHHfvnftc6xu8+HPHt5/USe5WdfP+TZL/+71nmWHHvZ/USO5WdfP3XOsbvPkzz7ledCnr28fppInq3rR8l9l6SgnbtpF/qnkrYlffdBN+igxBi/eDmP23273rskfSjG+KkL6m9K+meSXinpjZNo40GKMT4QY1xLhP7d7u9XS/Xpj4zHd38vSfQHLgt59hLqcByRYy8bORb7RY69hLocR+TZy0aexX6RZy+hDscROfaykWOxX7XNsRJ59kLk2cs2kTxb1xtDb9TOnelPXFgYY+xJ+pRu7IF0ue6T1Jb0sUTs47u/b+R+umX39/O7v2vVHyGETgjhaAjhlhDCN0v62d3Q+3d/16o/cEXIs5dW5+OIHEuOxdUhx15a3Y8j8ix5FleHPHtpdT6OyLHkWFwdcuzlqfOxRJ49gDxb1xtDN0k6G2PsJ2JPSzoaQmgdcJsOm5t2fz+diL1YdvMBteVAhRBKST+unc9o/De7xXXrjx+Q9IKkJyV9QNKipO+OMX54N163/sD+kWcvrZbHETlWEjkWV48ce2m1PY7Is5LIs7h65NlLq+VxRI6VRI7F1SPHXp5aHkvkWUkHlGcbV9fGl61pSankI0m9Cx4zOJjmHErTu79T/dS76DE3mvdIepOkvxZj/MJuWd36435JD2rnsylfp523Jx67IF63/sD+kWcvra7H0XtEjr1f5FhcHXLspdX5OHqPyLP3izyLq0OevbS6HkfvETn2fpFjcXXIsZenrsfSe0SevV8HkGfremNoW9JxE+tc8Jg6e/H5txOxG7aPQgh/S9IPS3pvjPGnLgjVqj9ijE9Jemr3v/eHEH5R0u+EEKZ2+6VW/YErQp69tNodR+TYHeRYXAPk2Eur5XFEnt1BnsU1QJ69tNodR+TYHeRYXAPk2MtTu2OJPLvjoPJsXT9K7hntvC0x1Xk3a+ftjHW/K/3M7u/U285eLEu9Xe1lK4Twk5L+uqSfk/TnLgrXrj8uFGP8tKTflfTnd4tq3R+4LOTZS6vVcUSO9cixuALk2Eur3XFEnvXIs7gC5NlLq9VxRI71yLG4AuTYy1OrY4k8600qz9b1xtDvaOe5f92FhSGEjqTXSnrgOrTpsPmMdt6O9uZE7E27v2+Yfgoh/ISkn5D085J+IMYYL3pIrfrDmJK0vPtv+gOXQp69tNocR+TYy0KOxX6QYy+tVscRefaykGexH+TZS6vNcUSOvSzkWOwHOfby1OZYIs9elmueZ+t6Y+jfSYqS/seLyn9QO5+/968PukGHTYxxU9KvSHprCOFrXiwPIcxq5wuwHpb0ievUvGsqhPDjkn5S0vskfX+Msbr4MXXpjxDCSVP+NkmvlvRxqT79gatCnr2EuhxH5NivIMfiGiLHXkKdjiPy7FeQZ3ENkWcvoS7HETn2K8ixuIbIsZehLscSefYrDjrPhpfegKuHEMI/1s5nFv6SpPdLulfSj0r6LUlvTw3CG0EI4Xsk3bb73x+R1JL0D3b//3iM8X0XPPYu7QyioaR/JGldO0n6NZK+Ncb4gYNq96SEEP6CpJ+W9ISkvyHp4tf9+Rjjr+0+tg798UuSTkn6DUmPa+dzKV8v6Tu189mUb40xfmr3sTd8f+DqkGcl1TzPkmP3IsfiWiLHSqp5jpXIsxcjz+JaIs9KqnmeJcfuRY7FtVTXHCuRZy9Ent3rwPNsjLGWP5JKSX9J0he089arpyX9Q0mz17ttE37eH9LOXfnUz4cSj79X0v8jaXV3AH5E0juu9/O4hv3xLzL98ZI+qUF/fLuk/yjpSUk9SV1JD0r6x5JO12188HN1P+RZ8iw59iX9QY7l55r9kGPJsbvPjzy79/mRZ/m5Zj/kWfIsOfYl/UGO5eea/dQ1x+4+d/LsV54beXbv8zvQPFvbdwwBAAAAAAAAAADUTV2/YwgAAAAAAAAAAKB2uDEEAAAAAAAAAABQE9wYAgAAAAAAAAAAqAluDAEAAAAAAAAAANQEN4YAAAAAAAAAAABqghtDAAAAAAAAAAAANcGNIQAAAAAAAAAAgJrgxhAAAAAAAAAAAEBNcGMIAAAAAAAAAACgJrgxBAAAAAAAAAAAUBP/PzHuOF+oCltSAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "