-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile_loader.py
474 lines (397 loc) · 16.7 KB
/
file_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
Convert DICOM images to NIfTI format and identify images for further analysis.
Namely, the script:
- run dcm2niix command to convert DICOM images to NIfTI format
- prompts the user to select the images for further processing
- validates file existence
- checks for .bval and .bvec files for DWI image
- provides information about the images' dimensions and pixel sizes
Requirements:
- dcm2niix -- see the Installation section in the README.md file
Example usage:
# Activate SCT conda environment (assuming that it contains dcm2niix)
cd $SCT_DIR
source ./python/etc/profile.d/conda.sh
conda activate venv_sct
# Run the script
python ~/balgrist-sci/file_loader.py \
-dicom-folder ~/data/experiments/balgrist-sci/source_data/dir_20231010 \
-bids-folder ~/data/experiments/balgrist-sci/bids \
-participant sub-001 \
-session ses-01 \
-contrasts T2w dwi
Input file structure:
└── source_data
└── dir_20231010
├── MRc.1.3.12.2.543543
├── ...
└── SRe. 1.3.12.2.5432233
Output file structure:
├── bids
│ └── sub-001
│ └── ses-01
│ ├── anat
│ │ ├── sub-001_ses-01_T2w.json
│ │ └── sub-001_ses-01_T2w.nii.gz
│ └── dwi
│ ├── sub-001_ses-01_dwi.bval
│ ├── sub-001_ses-01_dwi.bvec
│ ├── sub-001_ses-01_dwi.json
│ └── sub-001_ses-01_dwi.nii.gz
└── source_data
└── dir_20231010
├── MRc.1.3.12.2.543543
├── ...
└── SRe. 1.3.12.2.5432233
Author: Jan Valosek
AI assistance: Claude 3.5 Sonnet, ChatGPT-4o, and GitHub Copilot
"""
import os
import shutil
import argparse
import pandas as pd
import nibabel as nib
import logging
import time
import csv
from datetime import datetime
def get_parser():
"""
Parse command-line arguments.
Returns:
argparse.Namespace: Parsed arguments
"""
parser = argparse.ArgumentParser(
description="Convert DICOM to NIfTI and identify images for the further analysis.",
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument(
"-dicom-folder",
help="Path to the folder containing DICOM images. "
"Example: ~/sci-balgrist-study/sourcedata/dir_20230711",
required=True
)
parser.add_argument(
"-bids-folder",
help="Path to the BIDS folder where the converted NIfTI images will be stored. "
"Example: ~/sci-balgrist-study/bids",
required=True
)
parser.add_argument(
"-participant",
help="Participant ID. Example: sub-001",
required=True
)
parser.add_argument(
"-session",
help="Session ID. Example: ses-01",
required=True
)
parser.add_argument(
"-contrasts",
help="MRI contrasts to use. Separate multiple contrasts with a space. Example: 'T2w dwi'\n"
"To distinguish between two images of the same contrast with different orientation, use the 'acq' tag, "
"for example: 'acq-axial_T2w acq-sag_T2w'",
nargs='+',
default=["T2w", "dwi"],
required=False
)
parser.add_argument(
"-age",
help="Age of the subject at the time of the MRI scan. "
"Example: 25. Default: n/a",
default='n/a',
required=False
)
parser.add_argument(
"-sex",
help="Sex of the subject. "
"Example: M. Default: n/a",
default='n/a',
choices=['M', 'F', 'n/a'],
required=False
)
parser.add_argument(
"-debug",
help="If used, the temporary folder with NIfTI images will NOT be removed.",
action="store_true",
default=False,
required=False
)
return parser.parse_args()
def get_image_info(file_path):
"""
Get the dimensions and pixel size of the image at the given file path.
:param file_path: Path to the image file
"""
img = nib.load(file_path)
zooms = img.header.get_zooms()
dimensions = f"{img.shape[0]}×{img.shape[1]}×{img.shape[2]}"
pixel_size = f"{zooms[0]:.2f}×{zooms[1]:.2f}×{zooms[2]:.2f}"
return dimensions, pixel_size
def run_dcm2niix(dicom_folder, temp_folder):
"""
Run dcm2niix command to convert DICOM images to NIfTI format.
:param dicom_folder: Path to the folder containing DICOM images.
:param temp_folder: Path to the temporary folder where the NIfTI images will be stored.
"""
cmd = [
"dcm2niix",
"-z", "y", # Compress output
"-f", "%d_%p_%s", # Custom filename format: %d - series description, %p - protocol name, %s - series number
"-i", "y", # Ignore derived, localizer and 2D images
"-o", temp_folder,
dicom_folder
]
logging.info("\nInfo: Starting DICOM to NIfTI conversion using dcm2niix...\n")
os.system(" ".join(cmd))
def select_image(contrast, nii_info_df, temp_folder):
"""
Select an image from the list of images and return the selected image path.
:param contrast: Contrast type, e.g., T2w, dwi
:param nii_info_df: DataFrame with image information
:param temp_folder: Path to the temporary folder with NIfTI images
:return: Path to the selected image
"""
# Ask the user to provide a row number (df index) corresponding to the image
while True:
time.sleep(0.5)
logging.info(f"Please specify the row number (from 0 to {len(nii_info_df)-1}) of the {contrast} "
f"image you want to use: ")
user_input = input("")
# Check for empty input
if not user_input.strip():
logging.info("Warning: Input cannot be empty. Please try again.")
continue
# Check for non-integer input
try:
row_number = int(user_input)
except ValueError:
logging.info("Warning: Invalid input. Please enter a valid row number.")
continue
if row_number < 0 or row_number >= len(nii_info_df):
logging.info("Warning: Invalid image number. Please try again.")
continue
else:
fname = nii_info_df.iloc[row_number]['File Name']
if contrast == "dwi":
if not validate_dwi_image(os.path.join(temp_folder, fname)):
continue
logging.info(f"Selected {contrast} image: {fname}")
return os.path.join(temp_folder, fname)
def validate_dwi_image(fname):
"""
Check the existence of bval and bvec files for the DWI image.
:param fname: DWI image file name
"""
# Check for bval and bvec files
dwi_base = fname.replace('.nii', '').replace('.gz', '')
fname_bval = f"{dwi_base}.bval"
fname_bvec = f"{dwi_base}.bvec"
# Check whether both bval and bvec files exist (we need them for DWI processing)
if not os.path.isfile(fname_bval) or not os.path.isfile(fname_bvec):
logging.info("Warning: bval or bvec file is missing for the provided DWI image."
"\nPlease try another DWI image.")
return False
else:
return True
def get_nii_info_dataframe(temp_folder):
"""
Get the information about the NIfTI images in the temporary folder and store it in a DataFrame.
:param temp_folder: Path to the temporary folder with NIfTI images
:return: DataFrame with image information
"""
# Get all nii files in the temporary folder
nii_files = [f for f in os.listdir(temp_folder) if f.endswith('.nii.gz')]
# Check if there are any NIfTI files in the folder, if not, print error message and exit
if not nii_files:
logging.error("Error: No NIfTI files found in the temporary folder.")
exit(1)
# Sort nii files based on the series number (the last number in the file name before the .nii.gz extension)
nii_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
# Create lists to store the information
file_names = []
dimensions_list = []
pixel_sizes = []
# Collect information for each file
for nii_file in nii_files:
nii_path = os.path.join(temp_folder, nii_file)
dimensions, pixel_size = get_image_info(nii_path)
file_names.append(nii_file)
dimensions_list.append(dimensions)
pixel_sizes.append(pixel_size)
# Create a DataFrame
df = pd.DataFrame({
'File Name': file_names,
'Dimensions': dimensions_list,
'Pixel Size [mm]': pixel_sizes
})
return df
def copy_files_to_bids_folder(contrast, fname, output_folder, participant_id, session_id):
"""
Copy the converted nii image and its accompanying JSON sidecar from the temporary folder to the output BIDS folder.
For DWI images, also copy the bval and bvec files.
:param contrast: Contrast type, e.g., T2w, dwi
:param fname: Path to the converted nii image in the temporary folder
:param output_folder: temporary folder with the converted nii images
:param participant_id: participant ID, e.g., sub-001
:param session_id: session ID, e.g., ses-01
:return: Path to the copied image in the BIDS folder
"""
# First, create anat and dwi subfolders if they do not exist
if contrast == "dwi":
contrast_folder = "dwi"
else:
contrast_folder = "anat"
output_folder = os.path.join(output_folder, contrast_folder)
os.makedirs(output_folder, exist_ok=True)
# Second, move the images and JSON sidecars to the respective folders
fname_output = os.path.join(output_folder, f"{participant_id}_{session_id}_{contrast}.nii.gz")
logging.info(f"Copying {fname} to {fname_output}")
shutil.copy(fname, fname_output)
shutil.copy(fname.replace('.nii.gz', '.json'), fname_output.replace('.nii.gz', '.json'))
# For DWI, we also need to copy the bval and bvec files
if contrast == "dwi":
shutil.copy(fname.replace('.nii.gz', '.bval'), fname_output.replace('.nii.gz', '.bval'))
shutil.copy(fname.replace('.nii.gz', '.bvec'), fname_output.replace('.nii.gz', '.bvec'))
return fname_output
def write_participants_tsv(bids_folder, participant_id, session_id, source_id, age=None, sex=None):
"""
Write a new entry into the participants.tsv file.
:param bids_folder: Path to the BIDS folder
:param participant_id: Participant ID (e.g., 'sub-001')
:param session_id: Session ID (e.g., 'ses-01')
:param source_id: Source ID (e.g., 'dir_20230711')
:param age: Age of the participant (optional)
:param sex: Sex of the participant (optional)
"""
participants_file = os.path.join(bids_folder, 'participants.tsv')
file_exists = os.path.isfile(participants_file)
with open(participants_file, 'a', newline='') as tsvfile:
writer = csv.writer(tsvfile, delimiter='\t')
# Write header if file is new
if not file_exists:
writer.writerow(['participant_id', 'ses_id', 'source_id', 'age', 'sex'])
logging.info(f"Created new participants.tsv file at {participants_file}")
# Write participant data
writer.writerow([
participant_id,
session_id,
source_id,
age if age is not None else 'n/a',
sex if sex is not None else 'n/a'
])
logging.info(f"Info: Added entry for {participant_id}/{session_id} to participants.tsv")
def print_script_finished():
"""
Print a message that the script has finished successfully.
"""
logging.info(100 * "-")
logging.info(f'{os.path.abspath(__file__)} finished successfully.')
logging.info(100 * "-")
def main():
"""
Main function
"""
args = get_parser()
dicom_folder = os.path.abspath(os.path.expanduser(args.dicom_folder))
bids_folder = os.path.abspath(os.path.expanduser(args.bids_folder))
participant_id = args.participant
session_id = args.session
contrasts = args.contrasts
# Configure logging
log_directory = os.path.join(bids_folder, "logs")
os.makedirs(log_directory, exist_ok=True)
log_filename = f"dicom_to_nifti_{participant_id}_{session_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
log_filepath = os.path.join(log_directory, log_filename)
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
handlers=[
logging.FileHandler(log_filepath),
logging.StreamHandler() # This will maintain console output
]
)
logging.info(100*"-")
logging.info(f'Starting DICOM to NIfTI conversion using the script: {os.path.abspath(__file__)}')
logging.info(100*"-")
logging.info(f'Dicom folder: {dicom_folder}')
logging.info(f'BIDS folder: {bids_folder}')
logging.info(f'Participant ID: {participant_id}')
logging.info(f'Session ID: {session_id}')
logging.info(f'MRI contrasts to use: {contrasts}')
logging.info(f'Age: {args.age}')
logging.info(f'Sex: {args.sex}')
logging.info(100*"-")
logging.info(f"Log file will be stored in: {log_filepath}")
# Check if the folder with DICOMs exists
if not os.path.isdir(dicom_folder):
logging.error(f"Error: Provided folder with DICOM images does not exist: {dicom_folder}")
exit(1)
# Check whether the BIDS folder already exists, if so, ask user whether to overwrite it
output_folder = os.path.join(bids_folder, participant_id, session_id)
if os.path.isdir(output_folder):
logging.info(f"Warning: BIDS folder for the provided participant and session already exists: {output_folder}")
while True:
user_input = input("Do you want to overwrite the existing folder? [yes/no]: ").lower()
if user_input in ['y', 'yes']:
logging.info("Overwriting the existing folder.")
try:
shutil.rmtree(output_folder)
logging.info(f"Removed existing folder: {output_folder}")
except Exception as e:
logging.error(f"Failed to remove existing folder: {e}")
raise
break
elif user_input in ['n', 'no']:
logging.info("Skipping the DICOM to NIfTI conversion.")
print_script_finished()
return False
else:
logging.info("Warning: Invalid input. Please enter 'yes' or 'no'.")
else:
# Create the output folder if it does not exist
os.makedirs(output_folder, exist_ok=True)
logging.info(f"Converted NIfTI images will be stored in: {output_folder}")
# Create a temporary folder to store dcm2niix output before renaming the files
temp_folder = os.path.join(output_folder, "temp_dcm2niix")
logging.info(f"Creating a temporary folder for DICOM to NIfTI conversion: {temp_folder}")
os.makedirs(temp_folder, exist_ok=True)
# Run DICOM to NIfTI conversion using the dcm2niix command
run_dcm2niix(dicom_folder, temp_folder)
logging.info(100*"-")
logging.info("DICOM to NIfTI is done. Please review the images and select images for further processing.")
logging.info(100*"-")
nii_info_df = get_nii_info_dataframe(temp_folder)
# Display the DataFrame
pd.set_option('display.max_colwidth', None)
logging.info(f'{nii_info_df}\n')
# Sleep for 1 second to ensure that the pandas output is displayed before the user input
time.sleep(1)
# Select images intended for further processing
images_to_use_dict = {}
for contrast in contrasts:
images_to_use_dict[contrast] = select_image(contrast, nii_info_df, temp_folder)
# Copy the files to the BIDS folder
images_bids_dict = dict()
logging.info('')
for contrast, fname in images_to_use_dict.items():
image_bids = copy_files_to_bids_folder(contrast, fname, output_folder, participant_id, session_id)
images_bids_dict[contrast] = image_bids
if args.debug:
logging.info(f"\nInfo: Temporary folder with NIfTI images is stored in: {temp_folder}")
# Remove the temporary folder
else:
logging.info(f"\nInfo: Removing the temporary folder {temp_folder}")
shutil.rmtree(temp_folder)
logging.info(100*"-")
logging.info("All files have been successfully converted and validated. You can find the images in the "
"BIDS folder:")
logging.info(f"\t{output_folder}")
logging.info(100*"-")
# Add call to write_participants_tsv
source_id = os.path.basename(os.path.normpath(dicom_folder))
write_participants_tsv(bids_folder, participant_id, session_id, source_id, args.age, args.sex)
print_script_finished()
if __name__ == "__main__":
main()