-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_dice.py
160 lines (137 loc) · 6.01 KB
/
compute_dice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
# -*- coding: utf-8
# Computes mean dice coefficient across manual segmentations from candidates and ground truth segmentations.
#
# For usage, type: python compute_dice.py -h
#
# Authors: Sandrine Bédard
import argparse
import logging
import os
import sys
import pandas as pd
import numpy as np
import shutil
import pipeline_ukbiobank.utils as utils
from textwrap import dedent
FNAME_LOG = 'log_dice_coeff.txt'
# Initialize logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) # default: logging.DEBUG, logging.INFO
hdlr = logging.StreamHandler(sys.stdout)
logging.root.addHandler(hdlr)
class SmartFormatter(argparse.HelpFormatter):
def _split_lines(self, text, width):
if text.startswith('R|'):
return text[2:].splitlines()
# this is the RawTextHelpFormatter._split_lines
return argparse.HelpFormatter._split_lines(self, text, width)
def get_parser():
parser = argparse.ArgumentParser(
description="Computes dice coefficient between manual segmentations of candidates and ground truth segmentations.",
prog=os.path.basename(__file__).strip('.py'),
formatter_class=SmartFormatter
)
parser.add_argument('-path-ref',
required=True,
type=str,
metavar='<dir_path>',
help="Path to the derivative folder of the ground truth segmentations. Example: derivatives/")
parser.add_argument('-path-seg',
required=True,
type=str,
metavar='<dir_path>',
help=
"R|Path to the folder including all manual segmentations from candidates.\n"
"Example of structure of the folder:\n"
+ dedent(
"""
candidates_segmentations
├── surname_name1
| └── derivatives
├── surname_name2
| └── derivatives
...
"""
))
parser.add_argument('-path-out',
required=False,
type=str,
default='./',
metavar='<filename>',
help="Path where results will be written.")
return parser
def splitext(fname):
"""
Split a fname (folder/file + ext) into a folder/file and extension.
Note: for .nii.gz the extension is understandably .nii.gz, not .gz
(``os.path.splitext()`` would want to do the latter, hence the special case).
"""
dir, filename = os.path.split(fname)
for special_ext in ['.nii.gz', '.tar.gz']:
if filename.endswith(special_ext):
stem, ext = filename[:-len(special_ext)], special_ext
return os.path.join(dir, stem), ext
# If no special case, behaves like the regular splitext
stem, ext = os.path.splitext(filename)
return os.path.join(dir, stem), ext
def compute_dice(fname_ref_seg, fname_manual_seg):
"""
Computes dice coefficient between the ground truth segmentation and a candidate's manual segmentation.
Args:
fname_ref_seg (str): file name of the ground truth segmentation.
fname_manual_seg (str): file name of the segmentation from a candidate.
Returns:
dice (float): dice coefficient.
"""
# Get the name and extension of the reference segmentation.
stem, ext = splitext(fname_ref_seg)
# Creates a temporary copy of the segmentation. Note: sct_dice_coefficient can't compute dice coefficient of files with the same name.
ref_copy = os.path.join(stem + '-tmp'+ ext)
shutil.copyfile(fname_ref_seg, ref_copy) # Creates a copy of the ref seg.
# Compute dice coefficient
os.system('sct_dice_coefficient -i ' + fname_manual_seg + ' -d ' + ref_copy + ' -o dice_coeff.txt')
os.remove(ref_copy) # Remove copy of ref seg
# Read the .txt file with the dice coeff
with open('dice_coeff.txt', 'r') as reader:
text = reader.read()
dice = float(text.split()[-1])
os.remove('dice_coeff.txt') # Delete .txt file
return dice
def main():
# Parse the command line arguments
parser = get_parser()
args = parser.parse_args()
# Dump log file there
path_log = os.path.join(args.path_out, FNAME_LOG)
if os.path.exists(path_log):
os.remove(path_log)
fh = logging.FileHandler(path_log)
logging.root.addHandler(fh)
# Check if SCT is installed
if not utils.check_software_installed():
sys.exit("SCT is not installed. Exit program.")
# Initialize empty DataFrame
df = pd.DataFrame()
# Loop through candidates
for candidate in os.listdir(args.path_seg):
path_manual_seg = os.path.join(args.path_seg, candidate, 'derivatives', 'labels')
# Loop through subjects
for subject in os.listdir(path_manual_seg):
# Loop through files in anat/ folder
for filename in os.listdir(os.path.join(path_manual_seg, subject, 'anat')):
if filename.endswith('.nii.gz'): # Is there another type to include?
# Get path of manual segmentation
manual_seg = os.path.join(path_manual_seg, subject, 'anat', filename)
# Get path of reference segmentation
ref_seg = os.path.join(args.path_ref,'labels', subject, 'anat', filename)
# Compute dice coefficient
dice = compute_dice(ref_seg, manual_seg)
# Add a row to the DataFrame with dice coefficient
df.loc[filename, candidate] = dice
# Compute mean dice coefficient for all segmentations from a candidate
df.loc['mean dice coeff',:] = df.mean(axis=0)
# Write dataframe to log
logger.info('Dice coefficients are:\n{}'.format(df))
if __name__ == '__main__':
main()