From 48bd1dd75f378050213216daeaf50f1096d0c2c8 Mon Sep 17 00:00:00 2001 From: Martin Kim <46072231+martinkim0@users.noreply.github.com> Date: Thu, 7 Dec 2023 11:28:58 -0800 Subject: [PATCH] Fix autotune tutorial (#200) --- tuning/autotune_scvi.ipynb | 332 +++---------------------------------- 1 file changed, 25 insertions(+), 307 deletions(-) diff --git a/tuning/autotune_scvi.ipynb b/tuning/autotune_scvi.ipynb index 10c2f6e..3a5f5a2 100644 --- a/tuning/autotune_scvi.ipynb +++ b/tuning/autotune_scvi.ipynb @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -65,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -81,24 +81,9 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Global seed set to 0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Last run with scvi-tools version: 1.0.3\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "scvi.settings.seed = 0\n", "print(\"Last run with scvi-tools version:\", scvi.__version__)" @@ -113,13 +98,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sc.set_figure_params(figsize=(4, 4), frameon=False)\n", "torch.set_float32_matmul_precision(\"high\")\n", "save_dir = tempfile.TemporaryDirectory()\n", + "scvi.settings.logging_dir = save_dir.name\n", "\n", "%config InlineBackend.print_figure_kwargs={\"facecolor\" : \"w\"}\n", "%config InlineBackend.figure_format=\"retina\"" @@ -135,31 +121,9 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[34mINFO \u001b[0m Downloading file at \u001b[35m/tmp/tmp51dvndw4/\u001b[0m\u001b[95mhca_subsampled_20k.h5ad\u001b[0m \n", - "Downloading...: 100%|██████████| 65714/65714.0 [00:00<00:00, 110628.59it/s]\n" - ] - }, - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 18641 × 26662\n", - " obs: 'NRP', 'age_group', 'cell_source', 'cell_type', 'donor', 'gender', 'n_counts', 'n_genes', 'percent_mito', 'percent_ribo', 'region', 'sample', 'scrublet_score', 'source', 'type', 'version', 'cell_states', 'Used'\n", - " var: 'gene_ids-Harvard-Nuclei', 'feature_types-Harvard-Nuclei', 'gene_ids-Sanger-Nuclei', 'feature_types-Sanger-Nuclei', 'gene_ids-Sanger-Cells', 'feature_types-Sanger-Cells', 'gene_ids-Sanger-CD45', 'feature_types-Sanger-CD45', 'n_counts'\n", - " uns: 'cell_type_colors'" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "adata = scvi.data.heart_cell_atlas_subsampled(save_path=save_dir.name)\n", "adata" @@ -175,23 +139,9 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 18641 × 2000\n", - " obs: 'NRP', 'age_group', 'cell_source', 'cell_type', 'donor', 'gender', 'n_counts', 'n_genes', 'percent_mito', 'percent_ribo', 'region', 'sample', 'scrublet_score', 'source', 'type', 'version', 'cell_states', 'Used'\n", - " var: 'gene_ids-Harvard-Nuclei', 'feature_types-Harvard-Nuclei', 'gene_ids-Sanger-Nuclei', 'feature_types-Sanger-Nuclei', 'gene_ids-Sanger-Cells', 'feature_types-Sanger-Cells', 'gene_ids-Sanger-CD45', 'feature_types-Sanger-CD45', 'n_counts', 'highly_variable', 'highly_variable_rank', 'means', 'variances', 'variances_norm'\n", - " uns: 'cell_type_colors', 'hvg'" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "sc.pp.highly_variable_genes(adata, n_top_genes=2000, flavor=\"seurat_v3\", subset=True)\n", "adata" @@ -215,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -233,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -254,144 +204,9 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
ModelTuner registry for SCVI\n",
-       "
\n" - ], - "text/plain": [ - "ModelTuner registry for SCVI\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
                  Tunable hyperparameters                  \n",
-       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┓\n",
-       "┃      Hyperparameter       Default value     Source    ┃\n",
-       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━┩\n",
-       "│         n_hidden               128           VAE      │\n",
-       "│         n_latent               10            VAE      │\n",
-       "│         n_layers                1            VAE      │\n",
-       "│       dropout_rate             0.1           VAE      │\n",
-       "│        dispersion             gene           VAE      │\n",
-       "│     log_variational           True           VAE      │\n",
-       "│     gene_likelihood           zinb           VAE      │\n",
-       "│   latent_distribution        normal          VAE      │\n",
-       "│    encode_covariates          False          VAE      │\n",
-       "│ deeply_inject_covariates      True           VAE      │\n",
-       "│      use_batch_norm           both           VAE      │\n",
-       "│      use_layer_norm           none           VAE      │\n",
-       "│  use_observed_lib_size        True           VAE      │\n",
-       "│      var_activation           None           VAE      │\n",
-       "│        optimizer              Adam       TrainingPlan │\n",
-       "│            lr                 0.001      TrainingPlan │\n",
-       "│       weight_decay            1e-06      TrainingPlan │\n",
-       "│           eps                 0.01       TrainingPlan │\n",
-       "│    n_steps_kl_warmup          None       TrainingPlan │\n",
-       "│    n_epochs_kl_warmup          400       TrainingPlan │\n",
-       "│   reduce_lr_on_plateau        False      TrainingPlan │\n",
-       "│        lr_factor               0.6       TrainingPlan │\n",
-       "│       lr_patience              30        TrainingPlan │\n",
-       "│       lr_threshold             0.0       TrainingPlan │\n",
-       "│          lr_min                 0        TrainingPlan │\n",
-       "│      max_kl_weight             1.0       TrainingPlan │\n",
-       "│      min_kl_weight             0.0       TrainingPlan │\n",
-       "└──────────────────────────┴───────────────┴──────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[3m Tunable hyperparameters \u001b[0m\n", - "┏━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1m Hyperparameter \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mDefault value\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Source \u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━┩\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_hidden \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 128 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_latent \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 10 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_layers \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 1 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m dropout_rate \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.1 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m dispersion \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m gene \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m log_variational \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m True \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m gene_likelihood \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m zinb \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m latent_distribution \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m normal \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m encode_covariates \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m False \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33mdeeply_inject_covariates\u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m True \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m use_batch_norm \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m both \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m use_layer_norm \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m none \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m use_observed_lib_size \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m True \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m var_activation \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m None \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m VAE \u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m optimizer \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m Adam \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m lr \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.001 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m weight_decay \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 1e-06 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m eps \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.01 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_steps_kl_warmup \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m None \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_epochs_kl_warmup \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 400 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m reduce_lr_on_plateau \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m False \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m lr_factor \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.6 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m lr_patience \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 30 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m lr_threshold \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.0 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m lr_min \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m max_kl_weight \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 1.0 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m min_kl_weight \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m 0.0 \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32mTrainingPlan\u001b[0m\u001b[32m \u001b[0m│\n", - "└──────────────────────────┴───────────────┴──────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
       Available metrics        \n",
-       "┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓\n",
-       "┃     Metric          Mode    ┃\n",
-       "┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩\n",
-       "│ validation_loss     min     │\n",
-       "└─────────────────┴────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[3m Available metrics \u001b[0m\n", - "┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1m Metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Mode \u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33mvalidation_loss\u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m min \u001b[0m\u001b[38;5;128m \u001b[0m│\n", - "└─────────────────┴────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
                         Default search space                         \n",
-       "┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
-       "┃ Hyperparameter  Sample function   Arguments   Keyword arguments ┃\n",
-       "┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
-       "│    n_hidden         choice       [[64, 128]]         {}         │\n",
-       "└────────────────┴─────────────────┴─────────────┴───────────────────┘\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[3m Default search space \u001b[0m\n", - "┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", - "┃\u001b[1m \u001b[0m\u001b[1mHyperparameter\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mSample function\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Arguments \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mKeyword arguments\u001b[0m\u001b[1m \u001b[0m┃\n", - "┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[38;5;33m \u001b[0m\u001b[38;5;33m n_hidden \u001b[0m\u001b[38;5;33m \u001b[0m│\u001b[38;5;128m \u001b[0m\u001b[38;5;128m choice \u001b[0m\u001b[38;5;128m \u001b[0m│\u001b[32m \u001b[0m\u001b[32m[[64, 128]]\u001b[0m\u001b[32m \u001b[0m│\u001b[38;5;208m \u001b[0m\u001b[38;5;208m {} \u001b[0m\u001b[38;5;208m \u001b[0m│\n", - "└────────────────┴─────────────────┴─────────────┴───────────────────┘\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "scvi_tuner.info()" ] @@ -414,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -460,97 +275,9 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "
\n", - "
\n", - "

Tune Status

\n", - " \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
Current time:2023-07-27 03:16:53
Running for: 00:02:40.69
Memory: 34.8/125.7 GiB
\n", - "
\n", - "
\n", - "
\n", - "

System Info

\n", - " Using AsyncHyperBand: num_stopped=5
Bracket: Iter 64.000: -451.93446350097656 | Iter 32.000: -453.1311798095703 | Iter 16.000: -459.6698303222656 | Iter 8.000: -469.3856506347656 | Iter 4.000: -481.6686248779297 | Iter 2.000: -517.1959228515625 | Iter 1.000: -642.4600219726562
Logical resource usage: 10.0/20 CPUs, 1.0/1 GPUs (0.0/1.0 accelerator_type:G)\n", - "
\n", - " \n", - "
\n", - "
\n", - "
\n", - "

Trial Status

\n", - " \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
Trial name status loc n_hidden n_layers lr validation_loss
_trainable_9ca2fa7cTERMINATED128.32.142.133:965309 256 30.000589003 455.212
_trainable_7d98a8b2TERMINATED128.32.142.133:965309 64 20.000350049 737.187
_trainable_ff1772f6TERMINATED128.32.142.133:965309 64 30.000918661 556.365
_trainable_5fa3a6f6TERMINATED128.32.142.133:965309 256 30.000161977 770.872
_trainable_53fa3aa1TERMINATED128.32.142.133:965309 128 10.00122786 452.142
\n", - "
\n", - "
\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/martin/bin/mambaforge/envs/scvi-tools-dev/lib/python3.11/site-packages/ray/air/config.py:803: UserWarning: Setting a `RunConfig.local_dir` is deprecated and will be removed in the future. If you are not using remote storage,set the `RunConfig.storage_path` instead. Otherwise, set the`RAY_AIR_LOCAL_CACHE_DIR` environment variable to control the local cache location.\n", - " warnings.warn(\n", - "2023-07-27 03:14:12,825\tINFO tune.py:657 -- [output] This uses the legacy output and progress reporter, as Jupyter notebooks are not supported by the new engine, yet. For more information, please see https://github.com/ray-project/ray/issues/36949\n", - "2023-07-27 03:16:53,535\tINFO tune.py:1148 -- Total run time: 160.71 seconds (160.69 seconds for the tuning loop).\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ray.init(log_to_driver=False)\n", "results = scvi_tuner.fit(\n", @@ -565,18 +292,9 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'n_hidden': 128, 'n_layers': 1}\n", - "{'plan_kwargs': {'lr': 0.001227857394187722}}\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(results.model_kwargs)\n", "print(results.train_kwargs)"