-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGA.m
119 lines (107 loc) · 3.96 KB
/
GA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
function [population, generation, legend, era] = GA(f, a, b, delta, stringsAll, stringsCrossed, stringsMutated, bitsAll, bitsCrossed, bitsMutated)
out = fopen('outs.txt', 'at');
fprintf('\n');
fprintf(out, '\n');
% Initializing the population
% Code the two variable x and y separately to strengthen the linkage of bits of each one
rng('shuffle');
population = randi([a, b]/delta, stringsAll, 2, 'int32');
generation = 0;
V = 16^2;
rng('shuffle'); Rp = rng;
rng('shuffle'); Rs = rng;
rng('shuffle'); RsC = rng;
rng('shuffle'); RsM = rng;
rng('shuffle'); RbC = rng;
rng('shuffle'); RbM = rng;
legend = population(1, :); era = 0;
while true
Population = [legend; population];
Samples = delta * double(Population);
[~, t] = max(f(Samples(:, 1), Samples(:, 2)));
if t > 1; legend = Population(t, :); era = generation; end
% Selecting the strings
% Decoding the strings
samples = delta * double(population);
% Evaluating the samples
evaluations = f(samples(:, 1), samples(:, 2));
% Scaling the evaluations
evaluations = evaluations - min(evaluations);
% Getting the fitnesses
fitnesses = evaluations / mean(evaluations);
% Sampling on the remainders stochastically
remainders = fitnesses - floor(fitnesses);
selections = int32(floor(fitnesses));
% Spinning the roulette wheel
rng(Rp); ptr = randi(intmax); Rp = rng;
% Initializing the intermediate population
intermediation = zeros(stringsAll, 2, 'int32');
rear = int32(0);
% Shuffling the population
rng(Rs); I = randperm(stringsAll); Rs = rng;
for i = I
ptr = ptr - intmax * remainders(i);
% Determining whether or not a copy of a string is awarded
if ptr <= 0
selections(i) = selections(i) + 1;
ptr = ptr + intmax;
end
% Generating the intermediate population
for j = 1:selections(i)
rear = rear + 1;
intermediation(rear, :) = population(i, :);
end
end
% Determining whether or not the GA is converged
stringsMean = mean(intermediation);
stringsVar = [0 0];
for i = 1: stringsAll
stringsVar = stringsVar + (double(intermediation(i, :)) - stringsMean).^2;
end
fprintf('G = %4d, V = (%15.0f, %15.0f)\n', generation, stringsVar(1), stringsVar(2));
fprintf(out, 'G = %4d, V = (%15.0f, %15.0f)\n', generation, stringsVar(1), stringsVar(2));
if all(stringsVar < V) || generation >= 1000
population = intermediation;
break
end
% Picking the pairs of strings to cross stochastically
rng(RsC); I = randperm(stringsAll, stringsCrossed); RsC = rng;
for i = 1: 2: stringsCrossed
rng(RbC);
for j = randperm(bitsAll, bitsCrossed)
k = 1;
J = j;
if j > bitsAll/2
k = 2;
J = j - bitsAll/2;
end
intermediation(I([i i+1]), k) = bitset(intermediation(I([i i+1]), k), J, bitget(intermediation(I([i+1 i]), k), J));
end
RbC = rng;
end
% Picking the strings to mutate stochastically
rng(RsM); I = randperm(stringsAll, stringsMutated); RsM = rng;
for i = I
rng(RbM);
for j = randperm(bitsAll, bitsMutated)
k = 1;
J = j;
if j > bitsAll/2
k = 2;
J = j - bitsAll/2;
end
intermediation(i, k) = bitset(intermediation(i, k), J, 1-bitget(intermediation(i, k), J));
end
RbM = rng;
end
% Generating the next population
population = bitshift(bitshift(intermediation, 32-bitsAll/2), bitsAll/2-32);
for i = 1: (stringsAll * 2)
if population(i) < a/delta; population(i) = a/delta; end
if population(i) > b/delta; population(i) = b/delta; end
end
generation = generation + 1;
end
fprintf('\n');
fclose(out);
end