-
Notifications
You must be signed in to change notification settings - Fork 26
/
pre.py
675 lines (581 loc) · 27 KB
/
pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, The HugginFace Inc. team and University of Washington.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import json
import logging
import random
import h5py
import six
import torch
from tqdm import tqdm
import copy
import numpy as np
import tokenization
from post import _improve_answer_span, _check_is_max_context
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class SquadExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self,
qas_id=None,
question_text=None,
doc_tokens=None,
orig_answer_text=None,
start_position=None,
end_position=None,
title="",
doc_idx=0,
pid=0):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.title = title
self.doc_idx = doc_idx
self.pid = pid
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
s += ", question_text: %s" % (
tokenization.printable_text(self.question_text))
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
return s
class ContextFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
start_position=None,
end_position=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.start_position = start_position
self.end_position = end_position
class QuestionFeatures(object):
def __init__(self,
unique_id,
example_index,
input_ids,
input_mask,
tokens):
self.unique_id = unique_id
self.example_index = example_index
self.input_ids = input_ids
self.input_mask = input_mask
self.tokens = tokens
def read_squad_examples(input_file, is_training, context_only=False, question_only=False,
draft=False, draft_num_examples=12, tokenizer=None):
"""Read a SQuAD json file into a list of SquadExample."""
print("reading", input_file)
with open(input_file, "r") as reader:
input_data = json.load(reader)["data"]
examples = []
for doc_idx, entry in enumerate(input_data):
title = entry['title']
for pid, paragraph in enumerate(entry["paragraphs"]):
if not question_only:
paragraph_text = paragraph["context"]
doc_tokens, char_to_word_offset = context_to_tokens_and_offset(paragraph_text, tokenizer=tokenizer)
if context_only:
example = SquadExample(
doc_tokens=doc_tokens,
title=title,
doc_idx=doc_idx,
pid=pid)
examples.append(example)
if draft and len(examples) == draft_num_examples:
return examples
continue
else:
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
end_position = None
orig_answer_text = None
if is_training:
if False: # len(qa["answers"]) > 1:
raise ValueError(
"For training, each question should have exactly 1 answer.")
elif len(qa["answers"]) == 0:
orig_answer_text = ""
start_position = -1
end_position = -1
else:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
cleaned_answer_text = " ".join(
tokenization.whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'",
actual_text, cleaned_answer_text)
continue
if question_only:
example = SquadExample(
qas_id=qas_id,
question_text=question_text)
else:
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
title=title,
pid=pid)
examples.append(example)
if draft and len(examples) == draft_num_examples:
return examples
return examples
# This is for training and direct evaluation (slow eval)
def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
features = []
question_features = []
for (example_index, example) in enumerate(tqdm(examples, desc='converting')):
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
example.orig_answer_text)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - 2
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
tokens_ = []
token_to_orig_map = {}
token_is_max_context = {}
tokens.append("[CLS]")
tokens_.append("[CLS]")
for token in query_tokens:
tokens_.append(token)
tokens_.append("[SEP]")
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
tokens.append("[SEP]")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids_ = tokenizer.convert_tokens_to_ids(tokens_)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
input_mask_ = [1] * len(input_ids_)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
while len(input_ids_) < max_query_length + 2:
input_ids_.append(0)
input_mask_.append(0)
assert len(input_ids_) == max_query_length + 2
assert len(input_mask_) == max_query_length + 2
start_position = None
end_position = None
if example.start_position is not None and example.start_position < 0:
start_position, end_position = -1, -1
elif is_training:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
if (example.start_position < doc_start or
example.end_position < doc_start or
example.start_position > doc_end or example.end_position > doc_end):
continue
doc_offset = 1
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if example_index < 20:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
logger.info("token_to_orig_map: %s" % " ".join(
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
logger.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
if is_training:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
logger.info("start_position: %d" % (start_position))
logger.info("end_position: %d" % (end_position))
logger.info(
"answer: %s" % (tokenization.printable_text(answer_text)))
features.append(
ContextFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
start_position=start_position,
end_position=end_position))
question_features.append(
QuestionFeatures(
unique_id=unique_id,
example_index=example_index,
input_ids=input_ids_,
input_mask=input_mask_,
tokens=tokens_))
unique_id += 1
return features, question_features
# This is for embedding questions
def convert_questions_to_features(examples, tokenizer, max_query_length=None):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
question_features = []
for (example_index, example) in enumerate(tqdm(examples, desc='converting')):
query_tokens = tokenizer.tokenize(example.question_text)
if max_query_length is None:
max_query_length = len(query_tokens)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
for _ in enumerate(range(1)):
tokens_ = []
tokens_.append("[CLS]")
for token in query_tokens:
tokens_.append(token)
tokens_.append("[SEP]")
input_ids_ = tokenizer.convert_tokens_to_ids(tokens_)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask_ = [1] * len(input_ids_)
# Zero-pad up to the sequence length.
while len(input_ids_) < max_query_length + 2:
input_ids_.append(0)
input_mask_.append(0)
assert len(input_ids_) == max_query_length + 2
assert len(input_mask_) == max_query_length + 2
if example_index < 20:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in query_tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids_]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask_]))
question_features.append(
QuestionFeatures(
unique_id=unique_id,
example_index=example_index,
input_ids=input_ids_,
input_mask=input_mask_,
tokens=tokens_))
unique_id += 1
return question_features
def convert_documents_to_features(examples, tokenizer, max_seq_length, doc_stride):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
features = []
for (example_index, example) in enumerate(tqdm(examples, desc='converting')):
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - 2
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
tokens.append("[CLS]")
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
tokens.append("[SEP]")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
if example_index < 20:
logger.info("*** Example ***")
logger.info("unique_id: %s" % (unique_id))
logger.info("example_index: %s" % (example_index))
logger.info("doc_span_index: %s" % (doc_span_index))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
logger.info("token_to_orig_map: %s" % " ".join(
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
logger.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
features.append(
ContextFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask))
unique_id += 1
return features
def _context_to_tokens_and_offset(context):
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
for c in context:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
return doc_tokens, char_to_word_offset
def context_to_tokens_and_offset(context, tokenizer=None):
if tokenizer is None:
return _context_to_tokens_and_offset(context)
# Tokenizer must be content-preserving (e.g. PTB changes " to '', which is not acceptable)
doc_tokens = tokenizer(context)
char_to_word_offset = []
cur_pos = 0
for word_pos, token in enumerate(doc_tokens):
new_pos = context.find(token, cur_pos)
# set previous word's offset
assert cur_pos >= 0, "cannot find `%s` in `%s`" % (token, context)
char_to_word_offset.extend([max(0, word_pos - 1)] * (new_pos - cur_pos))
assert context[len(char_to_word_offset)] == token[0]
char_to_word_offset.extend([word_pos] * len(token))
cur_pos = new_pos + len(token)
return doc_tokens, char_to_word_offset
def inject_noise(input_ids, input_mask,
clamp=False, clamp_prob=0.5, min_len=0, max_len=300, pad=0,
replace=False, replace_prob=0.3, unk_prob=0.1, vocab_size=30522, unk=100, min_id=999,
shuffle=False, shuffle_prob=0.2):
input_ids = input_ids[:]
input_mask = input_mask[:]
if clamp and random.random() < clamp_prob:
len_ = sum(input_mask) - 2
new_len = random.choice(range(min_len, max_len + 1))
if new_len < len_:
input_ids[new_len + 1] = input_ids[len_ + 1]
for i in range(new_len + 2, len(input_ids)):
input_ids[i] = pad
input_mask[i] = 0
len_ = sum(input_mask) - 2
if replace:
for i in range(1, len_ + 1):
if random.random() < replace_prob:
if random.random() < unk_prob:
new_id = unk
else:
new_id = random.choice(range(min_id, vocab_size))
input_ids[i] = new_id
if shuffle:
for i in range(1, len_ + 1):
if random.random() < shuffle_prob:
new_id = random.choice(input_ids[1:len_ + 1])
input_ids[i] = new_id
return input_ids, input_mask
def inject_noise_to_neg_features(features,
clamp=False, clamp_prob=1.0, min_len=0, max_len=300, pad=0,
replace=False, replace_prob=1.0, unk_prob=1.0, vocab_size=30522, unk=100, min_id=999,
shuffle=False, shuffle_prob=1.0):
features = copy.deepcopy(features)
input_ids = features.input_ids
input_mask = features.input_mask
if clamp and random.random() < clamp_prob:
len_ = sum(input_mask) - 2
new_len = random.choice(range(min_len, min(len_, max_len) + 1))
input_ids[new_len + 1] = input_ids[len_ + 1]
for i in range(new_len + 2, len(input_ids)):
input_ids[i] = pad
input_mask[i] = 0
len_ = sum(input_mask) - 2
if replace:
for i in range(1, len_ + 1):
if random.random() < replace_prob:
if random.random() < unk_prob:
new_id = unk
else:
new_id = random.choice(range(min_id, vocab_size))
input_ids[i] = new_id
if shuffle:
for i in range(1, len_ + 1):
if random.random() < shuffle_prob:
new_id = random.choice(input_ids[1:len_ + 1])
input_ids[i] = new_id
return features
def inject_noise_to_neg_features_list(features_list, noise_prob=1.0, **kwargs):
out = [inject_noise_to_neg_features(features, **kwargs) if random.random() < noise_prob
else features for features in features_list]
return out
def sample_similar_questions(examples, features, question_emb_file, cuda=False):
with h5py.File(question_emb_file, 'r') as fp:
ids = []
mats = []
for id_, mat in fp.items():
ids.append(id_)
mats.append(mat[:])
id2idx = {id_: idx for idx, id_ in enumerate(ids)}
large_mat = np.concatenate(mats, axis=0)
large_mat = torch.tensor(large_mat).float()
if cuda:
large_mat = large_mat.to(torch.device('cuda'))
"""
sim = large_mat.matmul(large_mat.t())
sim_argsort = (-sim).argsort(dim=1).cpu().numpy()
"""
id2features = collections.defaultdict(list)
for feature in features:
id_ = examples[feature.example_index].qas_id
id2features[id_].append(feature)
sampled_features = []
for feature in tqdm(features, desc='sampling'):
example = examples[feature.example_index]
example_tup = (example.title, example.doc_idx, example.pid)
id_ = example.qas_id
idx = id2idx[id_]
similar_feature = None
sim = (large_mat.matmul(large_mat[idx:idx+1, :].t()).squeeze(1))
sim_argsort = (-sim).argsort(dim=0).cpu().numpy()
for target_idx in sim_argsort:
target_features = id2features[ids[target_idx]]
for target_feature in target_features:
target_example = examples[target_feature.example_index]
target_tup = (target_example.title, target_example.doc_idx, target_example.pid)
if example_tup != target_tup:
similar_feature = target_feature
break
if similar_feature is not None:
break
assert similar_feature is not None
sampled_features.append(similar_feature)
return sampled_features