-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpost_augs_java.py
163 lines (131 loc) · 5.21 KB
/
post_augs_java.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import json
import logging
import shutil
import warnings
from collections import Counter, defaultdict
from cProfile import label
from pathlib import Path
import numpy as np
import pandas as pd
from src.models.available_models import MODELS
from src.struct_probing.code_augs import (CodeAugmentation,
available_augs, post_augs)
from src.struct_probing.code_augs.aug import (LabeledToken,
LabeledTokenTyped)
from src.utils import Saver, Setup, get_aug_data
from tasks import DATASETS
from tasks.mlm.dataset import AugDataset
from sklearn.model_selection import KFold
from tqdm import tqdm
log = logging.getLogger("save_embeddings")
log.setLevel(logging.INFO)
def get_dataset(args):
return DATASETS[args.task]()
def iter_models(args):
if args.model == "all":
models = MODELS.items()
else:
models = list(filter(lambda x: x[0] == args.model, MODELS.items()))
for name, model in models:
yield name, model
def get_code_augmentation(args) -> CodeAugmentation:
aug = available_augs[args.insert]()
if aug.type != args.insert:
warnings.warn(f"aug.type != args.insert, {aug.type}, {args.insert}")
# aug.type = args.insert
return aug
def apply_post_sugs(args, saver: Saver) -> Saver:
"""
Returns:
Saver: saver with additional augmentation applied for data
"""
def main(args):
global post_augs
code_aug = get_code_augmentation(args)
if code_aug.required_dataset() is not None:
warnings.warn(
f"changed task data: {args.task} -> {code_aug.required_dataset()}"
)
args.task = code_aug.required_dataset()
read_path = str(
Setup.get_aug_path(args.task, args.insert, data_dir=args.data_dir)
)
dataset = AugDataset(Saver(read_path, mode="all").load_json(), type=args.task)
print(dataset[0].keys())
basic_aug = CodeAugmentation()
print("post_augs", [aug().name for aug in post_augs])
dataset_per_aug = defaultdict(list)
counter = Counter()
for ii, elem in enumerate(tqdm(dataset)):
code = elem["code_joined"]
labeled_tokens = [LabeledToken.from_json(t) for t in elem["labeled_tokens"]]
code_joined = " ".join(map(lambda x: x.value, labeled_tokens))
tokens, ast = basic_aug.process(code)
types = [tok.node.type for tok in tokens]
if "ERROR" in types:
continue
counter.update(types)
assert len(tokens) == len(labeled_tokens), (len(tokens), len(labeled_tokens))
for a, b in zip(tokens, labeled_tokens):
assert a.value == b.value
labeled_tokens_typed = [
LabeledTokenTyped(lab_token.value, token.node.type, lab_token.label)
for lab_token, token in zip(labeled_tokens, tokens)
]
for post_aug in post_augs:
post_aug = post_aug()
if ii < 3:
print("-" * 40, post_aug.name, "-" * 40, flush=True)
new_labeled_tokens = [post_aug(tok) for tok in labeled_tokens_typed]
code_joined_new = " ".join(map(lambda x: x.value, new_labeled_tokens))
if ii < 3:
print(code_joined_new, flush=True)
meta = {
"code": elem["code"],
"code_joined": code_joined_new,
"code_joined_no_aug": code_joined,
"target": elem["target"],
"labeled_tokens": [t.to_json() for t in new_labeled_tokens],
"labeled_edges": elem["labeled_edges"],
"aug_info": elem["aug_info"],
"sent_id": elem["sent_id"],
}
dataset_per_aug[post_aug.name].append(meta)
if args.debug:
if ii % 100 == 0:
pass
# print(counter.most_common())
# input("press any key")
if not args.debug:
for name in dataset_per_aug.keys():
print(name, len(dataset_per_aug[name]))
# print(dataset_per_aug[name][0])
save_path = Setup.get_aug_path(
args.task, f"{args.insert}__{name}", data_dir=args.output_dir
)
print(f"saving {name} to {save_path}")
saver = Saver(save_path, mode="all")
saver.data = dataset_per_aug[name]
saver.save_json()
for file in "train.json", "test.json":
shutil.copy(Path(read_path, file), Path(save_path, file))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default="CodeAnalysis", help="data-dir")
parser.add_argument("--output_dir", default="CodeAnalysisAug", help="output-dir")
parser.add_argument("--task", default="mlm", help="data-dir")
parser.add_argument("--n_samples", type=int, default=1000000)
parser.add_argument(
"-i",
"--insert",
type=str,
choices=list(available_augs.keys()),
default="identity",
help="data augmentation for probing tasks (bug detection)",
)
# Debug
parser.add_argument("--debug", action="store_true")
# parser.add_argument("--preview", action="store_true")
args = parser.parse_args()
main(args)