-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_parallel.py
211 lines (187 loc) · 6.56 KB
/
run_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import logging
import warnings
from pathlib import Path
from time import sleep
from src.utils import Setup
log = logging.getLogger("run_parallel")
log.setLevel(logging.DEBUG)
from code_augs import post_augs
from src.struct_probing.probings import ProbingModelType, ProbingTask, supported_probings
from supported_models import FINETUNED_MODELS, PRETRAINED_MODELS
from utils.slurm import get_slurm_str, submit_job, submit_local
def iter_models(args):
# if args.block == "pretrained":
for model_name in PRETRAINED_MODELS:
yield model_name
# elif args.block == "finetuned":
for model_name in FINETUNED_MODELS:
yield model_name
def get_probings(args):
if args.probing == "all":
return supported_probings
else:
return {
key: probing
for key, probing in supported_probings.items()
if key == args.probing
}
def get_path(
dataset_name,
code_aug_type,
model_name,
embeddings_name,
probing,
probing_mode,
post_aug,
):
result_file = args.result_file
result_file = "result_fx.csv"
# if probing == "Variable Is Undeclared Hard Mean":
# result_file = "result_fx.csv"
base_path = Path(
Setup.get_raw_path(
dataset_name,
code_aug_type,
model_name,
embeddings_name,
".", # "../..",
post_aug_name=post_aug,
),
"probing_results",
probing,
str(probing_mode),
)
save_path = Path(
base_path,
result_file,
)
return save_path
def iter_tasks(args):
probings = get_probings(args)
for model_name in iter_models(args):
# continue
if args.model != "all":
if model_name != args.model:
continue
probing_mode = args.probing_model
for probing in probings:
probing_task: ProbingTask = supported_probings[probing]
# probing defines code augmentation (default: identity)
# warnings.warn(f"setting code_aug_type: {probing.get_augmentation()}")
code_aug_type = probing_task.get_augmentation()
dataset_name = probing_task.get_dataset()
embeddings_name = probing_task.get_embedding_type()
save_path = get_path(
dataset_name,
code_aug_type,
model_name,
embeddings_name,
probing,
probing_mode,
post_aug=args.post_aug,
)
if args.if_no_result and save_path.exists():
pass
# logging.info(f"already exists, skip : ------ {save_path}")
else:
logging.info(save_path)
data_dir = Path(*save_path.parts[:-4])
assert (
"data_all.pkz" in [p.name for p in data_dir.glob("*")]
or model_name == "Codex"
), data_dir
if not "data_all.pkz" in [p.name for p in data_dir.glob("*")]:
print("NO DATA", data_dir)
continue
# assert "data_train.pkz" in [p.name for p in data_dir.glob("*")], data_dir
task_str = f"python3 src/struct_probing/run_probing.py \
--dataset_name '{dataset_name}' \
--model_name '{model_name}' \
--embeddings_name '{embeddings_name}' \
--probing_mode '{probing_mode}' \
--probing '{probing}'"
yield model_name, probing, task_str
if model_name == "MLM":
for probing_mode in ProbingModelType.BOW, ProbingModelType.LOWERBOUND:
task_str = f"python3 src/struct_probing/run_probing.py \
--dataset_name '{dataset_name}' \
--model_name '{model_name}' \
--embeddings_name '{embeddings_name}' \
--probing_mode '{probing_mode}' \
--probing '{probing}'"
yield model_name, probing, task_str
return
def main(args):
logging.info("start run_parallel.py")
save_dir = args.save_dir
Path(save_dir).mkdir(exist_ok=True)
for model_name, task_name, command_str in iter_tasks(args):
if args.sbatch:
slurm_str = get_slurm_str(
save_dir,
cpus=args.cpus,
gpus=args.gpus,
name=model_name,
task=task_name,
constraint=args.constraint,
)
command = f'{slurm_str} --wrap "{command_str}"'
if not args.preview:
logging.info(command)
submit_job(command)
# sleep(2)
else:
if not args.preview:
logging.info(command_str)
submit_local(command_str)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", type=str, default="CodeAnalysis/")
parser.add_argument("--model", default="all", type=str)
parser.add_argument(
"--probing", default="all", choices=["all"] + list(supported_probings.keys())
)
parser.add_argument(
"--probing_model",
type=ProbingModelType,
choices=list(ProbingModelType),
default=ProbingModelType.LINEAR,
help="probing model name",
)
parser.add_argument(
"--sbatch", action="store_true", help="run in parallel on slurm cluster"
)
parser.add_argument(
"--block", default="pretrained", choices=["pretrained", "finetuned"]
)
parser.add_argument(
"-e",
"--embeddings",
default="dummy",
choices=[
"dummy"
],
)
parser.add_argument(
"--post_aug",
type=str,
choices=list([aug().name for aug in post_augs]),
default=None,
help="ablation augs",
)
# Debug
parser.add_argument("--debug", action="store_true")
parser.add_argument("--gpus", type=int, default=0)
parser.add_argument("--cpus", type=int, default=6)
parser.add_argument(
"--constraint",
type=str,
default="type_b",
choices=["type_e", "", "type_b", "type_c"],
)
parser.add_argument("--preview", action="store_true")
parser.add_argument("--if_no_result", action="store_true")
parser.add_argument("--result_file", default="result_fx.csv", type=str)
args = parser.parse_args()
main(args)