-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.py
63 lines (43 loc) · 1.21 KB
/
histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
img = cv.imread("./Resources/Photos/cats.jpg")
cv.imshow("cats", img)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow("Gray", gray)
# # grayscale histogram
# gray_hist = cv.calcHist([gray], [0], None, [256], [0,256])
# plt.figure()
# plt.title("Grayscale histogram")
# plt.xlabel('Bins')
# plt.ylabel('* of pixels')
# plt.plot(gray_hist)
# plt.xlim(0,256)
# plt.show()
# -----
# create a mask and compute histogram only for the mask
blank = np.zeros(img.shape[:2], dtype="uint8")
mask = cv.circle(blank, (img.shape[1]//2, img.shape[0]//2), 100, 255, -1)
masked = cv.bitwise_and(img, img, mask=mask)
cv.imshow("mask", masked)
# gray_hist = cv.calcHist([gray], [0], mask, [256], [0,256])
# plt.figure()
# plt.title("Grayscale histogram")
# plt.xlabel('Bins')
# plt.ylabel('* of pixels')
# plt.plot(gray_hist)
# plt.xlim(0,256)
# plt.show()
# -------
# color histogram
plt.figure()
plt.title('Colour Histogram')
plt.xlabel('Bins')
plt.ylabel('# of pixels')
colors = ('b', 'g', 'r')
for i,col in enumerate(colors):
hist = cv.calcHist([img], [i], mask, [256], [0,256])
plt.plot(hist, color=col)
plt.xlim([0,256])
plt.show()
cv.waitKey(0)