forked from tbepler/protein-sequence-embedding-iclr2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_similarity.py
262 lines (199 loc) · 8.19 KB
/
eval_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from __future__ import print_function, division
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from scipy.stats import pearsonr,spearmanr
from src.utils import pack_sequences, unpack_sequences
from src.alphabets import Uniprot21
from src.alignment import nw_score
from src.metrics import average_precision
def encode_sequence(x, alphabet):
# convert to bytes and uppercase
x = x.encode('utf-8').upper()
# convert to alphabet index
x = alphabet.encode(x)
return x
def load_pairs(path, alphabet):
table = pd.read_csv(path, sep='\t')
x0 = [encode_sequence(x, alphabet) for x in table['sequence_A']]
x1 = [encode_sequence(x, alphabet) for x in table['sequence_B']]
y = table['similarity'].values
return x0, x1, y
class NWAlign:
def __init__(self, alphabet):
from Bio.SubsMat import MatrixInfo as matlist
L = len(alphabet)
subst = np.zeros((L,L), dtype=np.int32)
for i in range(L):
for j in range(i,L):
a = alphabet[i]
b = alphabet[j]
subst[i,j] = subst[j,i] = matlist.blosum62[(b,a)]
self.subst = subst
self.gap = -11
self.extend = -1
def __call__(self, x, y):
b = len(x)
scores = np.zeros(b)
for i in range(b):
scores[i] = nw_score(x[i], y[i], self.subst, self.gap, self.extend)
return scores
class TorchModel:
def __init__(self, model, use_cuda, mode='ssa'):
self.model = model
self.use_cuda = use_cuda
self.mode = mode
def __call__(self, x, y):
n = len(x)
c = [torch.from_numpy(x_).long() for x_ in x] + [torch.from_numpy(y_).long() for y_ in y]
c,order = pack_sequences(c)
if self.use_cuda:
c = c.cuda()
with torch.no_grad():
z = self.model(c) # embed the sequences
z = unpack_sequences(z, order)
scores = np.zeros(n)
if self.mode == 'align':
for i in range(n):
z_x = z[i]
z_y = z[i+n]
logits = self.model.score(z_x, z_y)
p = F.sigmoid(logits).cpu()
p_ge = torch.ones(p.size(0)+1)
p_ge[1:] = p
p_lt = torch.ones(p.size(0)+1)
p_lt[:-1] = 1 - p
p = p_ge*p_lt
p = p/p.sum() # make sure p is normalized
levels = torch.arange(5).float()
scores[i] = torch.sum(p*levels).item()
elif self.mode == 'coarse':
z_x = z[:n]
z_y = z[n:]
z_x = torch.stack([z.mean(0) for z in z_x], 0)
z_y = torch.stack([z.mean(0) for z in z_y], 0)
scores[:] = -torch.sum(torch.abs(z_x - z_y), 1).cpu().numpy()
return scores
def find_best_threshold(x, y, tr0=-np.inf):
order = np.argsort(x)
tp = np.zeros(len(x)+1)
tp[0] = y.sum()
tn = np.zeros(len(x)+1)
tn[0] = 0
for i in range(len(x)):
j = order[i]
tp[i+1] = tp[i] - y[j]
tn[i+1] = tn[i] + 1 - y[j]
acc = (tp + tn)/len(y)
i = np.argmax(acc) - 1
tr = x[order[i]]
if i < 0:
tr = tr0
return tr
def find_best_thresholds(x, y):
thresholds = np.zeros(5)
thresholds[0] = -np.inf
for i in range(4):
mask = (x > thresholds[i])
xi = x[mask]
labels = (y[mask] > i)
tr = find_best_threshold(xi, labels, tr0=thresholds[i])
thresholds[i+1] = tr
return thresholds
def calculate_metrics(scores, y, thresholds):
## calculate accuracy, r, rho
pred_level = np.digitize(scores, thresholds[1:], right=True)
accuracy = np.mean(pred_level == y)
r,_ = pearsonr(scores, y)
rho,_ = spearmanr(scores, y)
## calculate average-precision score for each structural level
aupr = np.zeros(4, dtype=np.float32)
for i in range(4):
target = (y > i).astype(np.float32)
aupr[i] = average_precision(target, scores.astype(np.float32))
return accuracy, r, rho, aupr
def score_pairs(model, x0, x1, batch_size=100):
scores = []
for i in range(0, len(x0), batch_size):
x0_mb = x0[i:i+batch_size]
x1_mb = x1[i:i+batch_size]
scores.append(model(x0_mb, x1_mb))
scores = np.concatenate(scores, 0)
return scores
def main():
import argparse
parser = argparse.ArgumentParser('Script for evaluating similarity model on SCOP test set.')
parser.add_argument('model', help='path to saved model file or "nw-align" for Needleman-Wunsch alignment score baseline')
parser.add_argument('--dev', action='store_true', help='use train/dev split')
parser.add_argument('--batch-size', default=64, type=int, help='number of sequence pairs to process in each batch (default: 64)')
parser.add_argument('-d', '--device', type=int, default=-2, help='compute device to use')
parser.add_argument('--coarse', action='store_true', help='use coarse comparison rather than full SSA')
args = parser.parse_args()
scop_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.sampledpairs.txt'
eval_paths = [ ( '2.06-test'
, 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.test.sampledpairs.txt')
, ( '2.07-new'
, 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.07-new.allpairs.txt')
]
if args.dev:
scop_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.train.sampledpairs.txt'
eval_paths = [ ( '2.06-dev'
, 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.dev.sampledpairs.txt')
]
## load the data
alphabet = Uniprot21()
x0_train, x1_train, y_train = load_pairs(scop_train_path, alphabet)
## load the model
if args.model == 'nw-align':
model = NWAlign(alphabet)
elif args.model in ['hhalign', 'phmmer', 'TMalign']:
model = args.model
else:
model = torch.load(args.model)
model.eval()
## set the device
d = args.device
use_cuda = (d != -1) and torch.cuda.is_available()
if d >= 0:
torch.cuda.set_device(d)
if use_cuda:
model.cuda()
mode = 'align'
if args.coarse:
mode = 'coarse'
model = TorchModel(model, use_cuda, mode=mode)
batch_size = args.batch_size
## for calculating the classification accuracy, first find the best partitions using the training set
if type(model) is str:
path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.sampledpairs.' \
+ model + '.npy'
scores = np.load(path)
scores = scores.mean(1)
else:
scores = score_pairs(model, x0_train, x1_train, batch_size)
thresholds = find_best_thresholds(scores, y_train)
print('Dataset\tAccuracy\tPearson\'s r\tSpearman\'s rho\tClass\tFold\tSuperfamily\tFamily')
accuracy, r, rho, aupr = calculate_metrics(scores, y_train, thresholds)
template = '{:.5f}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.5f}\t{:.5f}'
line = '2.06-train\t' + template.format(accuracy, r, rho, aupr[0], aupr[1], aupr[2], aupr[3])
#line = '\t'.join(['2.06-train', str(accuracy), str(r), str(rho), str(aupr[0]), str(aupr[1]), str(aupr[2]), str(aupr[3])])
print(line)
for dset,path in eval_paths:
x0_test, x1_test, y_test = load_pairs(path, alphabet)
if type(model) is str:
path = os.path.splitext(path)[0]
path = path + '.' + model + '.npy'
scores = np.load(path)
scores = scores.mean(1)
else:
scores = score_pairs(model, x0_test, x1_test, batch_size)
accuracy, r, rho, aupr = calculate_metrics(scores, y_test, thresholds)
line = dset + '\t' + template.format(accuracy, r, rho, aupr[0], aupr[1], aupr[2], aupr[3])
#line = '\t'.join([dset, str(accuracy), str(r), str(rho), str(aupr[0]), str(aupr[1]), str(aupr[2]), str(aupr[3])])
print(line)
if __name__ == '__main__':
main()