-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSEED.py
105 lines (85 loc) · 4.11 KB
/
SEED.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
#Import the packages
import pandas as pd
import glob
import os
import numpy as np
import scipy.stats as scs
from scipy.stats import pearson3, skew, norm
import matplotlib.pyplot as plt
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
class SEED:
def __init__(self, file_path, column_name, target_id, event_type):
self.file_path = file_path
self.column_name = column_name
self.target_id = target_id
self.event_type = event_type
def load_data(self):
data = pd.read_csv(self.file_path)
return data[data['Station'] == self.target_id][self.column_name]
def numeric_data(self, data):
numeric_data = pd.to_numeric(data, errors='coerce') # Convert to numeric, ignoring non-numeric values
return numeric_data
# def fit_lp(self, data, return_interval):
# # Calculate skewness coefficient (P) for the data
# log_data = np.log10(data) # Apply log10 to each data value individually
# skewness_coefficient = skew(log_data, nan_policy='omit')
# mean_data = np.mean(log_data)
# sd_data = np.std(log_data)
# print(skewness_coefficient, mean_data, sd_data)
# # Calculate probability of exceedance (D) for each data value
# sorted_data = np.sort(data)[::-1] # Sort data in descending order
# prob_exceedance = np.arange(1, len(sorted_data) + 1) / (len(sorted_data) + 1) * 100
# print(prob_exceedance)
# # Initialize an empty list to store fitted data values
# fitted_data_values = []
# # Iterate through each data value and calculate fitted data
# # for i in range(len(data)):
# # P = prob_exceedance[i]
# # z_value = norm.ppf(1 - (1/return_interval*100)/100, 0, 1)
# # K = 2/skewness_coefficient * (((z_value - skewness_coefficient/6) * (skewness_coefficient/6) + 1)**3 - 1)
# # print(K)
# # fitted_data = mean_data + K * sd_data
# # data_lp = 10**fitted_data
# # fitted_data_values.append(data_lp)
# return_interval = int(return_interval)
# z_value = norm.ppf(1 - (1/return_interval*100)/100, 0, 1)
# K = 2/skewness_coefficient * (((z_value - skewness_coefficient/6) * (skewness_coefficient/6) + 1)**3 - 1)
# print(K)
# fitted_data = mean_data + K * sd_data
# data_lp = 10**fitted_data
# fitted_data_values.append(data_lp)
# return fitted_data_values
def fit_lp(self, data, return_interval, event_type):
# Calculate skewness coefficient (P) for the data
log_data = np.log10(data) # Apply log10 to each data value individually
skewness_coefficient = skew(log_data, nan_policy='omit')
mean_data = np.mean(log_data)
sd_data = np.std(log_data)
print(skewness_coefficient, mean_data, sd_data)
# Calculate probability of exceedance (D) for each data value
if event_type == 'flood':
sorted_data = np.sort(data)[::-1] # Sort data in descending order
elif event_type == 'drought':
sorted_data = np.sort(data) # Sort data in ascending order for drought/low values
else:
raise ValueError("Invalid event_type. Use 'flood' or 'drought'.")
prob_exceedance = np.arange(1, len(sorted_data) + 1) / (len(sorted_data) + 1) * 100
print(prob_exceedance)
# Initialize an empty list to store fitted data values
fitted_data_values = []
return_interval = int(return_interval)
if event_type == 'flood':
z_value = norm.ppf(1 - (1/return_interval*100)/100, 0, 1) #For non-exceedance probability
if event_type == 'drought':
z_value = norm.ppf((1/return_interval*100)/100, 0, 1) #For exceedance probability
K = 2/skewness_coefficient * (((z_value - skewness_coefficient/6) * (skewness_coefficient/6) + 1)**3 - 1)
print(K)
fitted_data = mean_data + K * sd_data
data_lp = 10**fitted_data
fitted_data_values.append(data_lp)
return fitted_data_values