$ ssh [email protected]
In OSX you need to install and open XQuartz.
Then loging to the server enabling X11 forwarding.
$ ssh -X [email protected]
Go ahead and open any GUI you need (e.g., $ gedit textfile).
Before executing of submiting a task you have to load the modules you will need:
module use -a /mgmt/modules/eb/modules/all #Add the path where the Anacoda module is located.
module load Anaconda3/5.1.0
Recommended:
Put above two lines in your .bashrc (nano ~/.bashrc)
Before installing any python package it is recommended to create an enviroment as:
$ conda create --name myenv
You can create a new enviroment with all your required packages using a a .yml file like:
$ conda create -f my_packages.yml
To activate the enviroment just type:
$ source activate myenv
If you forgot any packages in your enviorment you can add new ones using:
$ conda install package_name
More information about anaconda enviroments can be found here.
#!/bin/bash
#$ -P rittscher.prjb -q gpu9.q
#$ -l gpu=1
module use -a /mgmt/modules/eb/modules/all
module load Anaconda3/5.1.0
source activate pytorch90-env
python -c "import torch; print('N GPU: {}'.format(torch.cuda.device_count()))"
echo "Finished at :"`date`
exit 0
Here are instructions.
In brief install osxfuse and sshfs using homebrew. You can mount the files typing something like:
$ sudo sshfs -o allow_other,defer_permissions [email protected]:/well/rittscher/users/ /Volumes/rescomp1
note: for LINUX/Ubuntu defer_permissions has to be replaced with default_permissions
$ scp -r fullPathofYourLocalDirectory [email protected]:/well/rittscher/users/yourAccountName
or
$ rsync -aP fullPathofYourLocalDirectory [email protected]:/well/rittscher/users/yourAccountName
$ qlogin -P rittscher.prjb -q short.qb -pe shmem 1 (prj* -q short.q*, '*'--> a/b/c)
For GPU clusters you have to specify the number of gpu's or you will not be allowed to start the session.
$ qlogin -P rittscher.prjb -q gpu8.q -pe shmem 1 -l gpu=1
Start a remote session using tunneling:
$ ssh -L 8080:localhost:8080 [email protected]
$ jupyter notebook --no-browser --port=8080
Ipython should print a link with an access token. You can then we can just copy and paste the link in your local browser and execute jupyter scripts.
Sometimes the port might be in use. Then change the port and start again.
You can also use jupyter on the GPU nodes by doing another tunneling between rescomp and your node. For example, to run a jupyter notebook on port 8888 of compG008 and accessible on port 8080 of rescomp, you would use the following tunneling:
[LOCAL_COMPUTER]$ ssh -L 8080:localhost:8080 [email protected]
[RESCOMP_LOGIN_NODE]$ ssh -L 8080:localhost:8888 compG008
[compG008]$ jupyter notebook --no-browser --port=8888
Here are instructions
Few most commonly used:
$ qsub myScript.sh
$ qsub -l h_vmem=1G,h_rt=01:50:20 -N testCluster myScript.sh
To see the jobs in queue or all:
$ qstat -u $USER
$ qstat -s p/r
$ qsum -u $USER (compact summary, use -h for help)
See jobs not in queue:
$ qstat -f -ne
Kill your jobs:
$ qdel $jobID
$ qselect -u <username> | xargs qdel
Check/monitor state of execution hosts:
$ qhost -q
$ qconf -sql
$ qload -u $USER
$ qload -nh -v
Assigning your job to a specific node (TODO: need to be checked!!):
$ qsub -q gpu.q@compG002 -N testGPU myScript.sh (use qhost -q to check possibilities)
$ qsub -q himem.qh@compH000 -N testHighMem myScript.sh
Check softwares on the server before you install one:
$ /apps/well/
$ /mgmt/modules/eb/modules
$ modules avail
Check GPU type and capacities:
$ nvidia-smi
$ print(torch.version.cuda)