-
Notifications
You must be signed in to change notification settings - Fork 6
/
main.py
457 lines (425 loc) · 23.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import argparse
import torch
import os
import multiprocessing
import numpy as np
from vizdoom import ViZDoomErrorException, ViZDoomIsNotRunningException, ViZDoomUnexpectedExitException
from gym.spaces import Box, Discrete
from pathlib import Path
from collections import deque
from tensorboardX import SummaryWriter
from utils.buffer import ReplayBuffer
from utils.env_wrappers import SubprocVecEnv
from utils.misc import apply_to_all_elements, timeout, RunningMeanStd
from algorithms.sac import SAC
from envs.ma_vizdoom.ma_vizdoom import VizdoomMultiAgentEnv
from envs.magw.multiagent_env import GridWorld, VectObsEnv
AGENT_CMAPS = ['Reds', 'Blues', 'Greens', 'Wistia']
def get_count_based_novelties(env, state_inds, device='cpu'):
env_visit_counts = env.get_visit_counts()
# samp_visit_counts[i,j,k] is # of times agent j has visited the state that agent k occupies at time i
samp_visit_counts = np.concatenate(
[np.concatenate(
[env_visit_counts[j][tuple(zip(*state_inds[k]))].reshape(-1, 1, 1)
for j in range(config.num_agents)], axis=1)
for k in range(config.num_agents)], axis=2)
# how novel each agent considers all agents observations at every step
novelties = np.power(np.maximum(samp_visit_counts, 1), -config.decay)
return torch.tensor(novelties, device=device, dtype=torch.float32)
def get_intrinsic_rewards(novelties, config, intr_rew_rms,
update_irrms=False, active_envs=None, device='cpu'):
if update_irrms:
assert active_envs is not None
intr_rews = []
for i, exp_type in enumerate(config.explr_types):
if exp_type == 0: # independent
intr_rews.append([novelties[:, ai, ai] for ai in range(config.num_agents)])
elif exp_type == 1: # min
intr_rews.append([novelties[:, :, ai].min(axis=1)[0] for ai in range(config.num_agents)])
elif exp_type == 2: # covering
type_rews = []
for ai in range(config.num_agents):
rew = novelties[:, ai, ai] - novelties[:, :, ai].mean(axis=1)
rew[rew > 0.0] += novelties[rew > 0.0, :, ai].mean(axis=1)
rew[rew < 0.0] = 0.0
type_rews.append(rew)
intr_rews.append(type_rews)
elif exp_type == 3: # burrowing
type_rews = []
for ai in range(config.num_agents):
rew = novelties[:, ai, ai] - novelties[:, :, ai].mean(axis=1)
rew[rew > 0.0] = 0.0
rew[rew < 0.0] += novelties[rew < 0.0, :, ai].mean(axis=1)
type_rews.append(rew)
intr_rews.append(type_rews)
elif exp_type == 4: # leader-follow
type_rews = []
for ai in range(config.num_agents):
rew = novelties[:, ai, ai] - novelties[:, :, ai].mean(axis=1)
if ai == 0:
rew[rew > 0.0] = 0.0
rew[rew < 0.0] += novelties[rew < 0.0, :, ai].mean(axis=1)
else:
rew[rew > 0.0] += novelties[rew > 0.0, :, ai].mean(axis=1)
rew[rew < 0.0] = 0.0
type_rews.append(rew)
intr_rews.append(type_rews)
for i in range(len(config.explr_types)):
for j in range(config.num_agents):
if update_irrms:
intr_rew_rms[i][j].update(intr_rews[i][j].cpu().numpy(), active_envs=active_envs)
intr_rews[i][j] = intr_rews[i][j].to(device)
norm_fac = torch.tensor(np.sqrt(intr_rew_rms[i][j].var),
device=device, dtype=torch.float32)
intr_rews[i][j] /= norm_fac
return intr_rews
def make_parallel_env(config, seed):
lock = multiprocessing.Lock()
def get_env_fn(rank):
def init_env():
if config.env_type == 'gridworld':
env = VectObsEnv(GridWorld(config.map_ind,
seed=(seed * 1000),
task_config=config.task_config,
num_agents=config.num_agents,
need_get=False,
stay_act=True), l=3)
else: # vizdoom
env = VizdoomMultiAgentEnv(task_id=config.task_config,
env_id=(seed - 1) * 64 + rank, # assumes no more than 64 environments per run
seed=seed * 640 + rank * 10, # assumes no more than 10 agents per run
lock=lock,
skip_frames=config.frame_skip)
return env
return init_env
return SubprocVecEnv([get_env_fn(i) for i in
range(config.n_rollout_threads)])
def run(config):
torch.set_num_threads(1)
env_descr = 'map%i_%iagents_task%i' % (config.map_ind, config.num_agents,
config.task_config)
model_dir = Path('./models') / config.env_type / env_descr / config.model_name
if not model_dir.exists():
run_num = 1
else:
exst_run_nums = [int(str(folder.name).split('run')[1]) for folder in
model_dir.iterdir() if
str(folder.name).startswith('run')]
if len(exst_run_nums) == 0:
run_num = 1
else:
run_num = max(exst_run_nums) + 1
curr_run = 'run%i' % run_num
run_dir = model_dir / curr_run
log_dir = run_dir / 'logs'
os.makedirs(log_dir)
logger = SummaryWriter(str(log_dir))
torch.manual_seed(run_num)
np.random.seed(run_num)
env = make_parallel_env(config, run_num)
if config.nonlinearity == 'relu':
nonlin = torch.nn.functional.relu
elif config.nonlinearity == 'leaky_relu':
nonlin = torch.nn.functional.leaky_relu
if config.intrinsic_reward == 0:
n_intr_rew_types = 0
sep_extr_head = True
else:
n_intr_rew_types = len(config.explr_types)
sep_extr_head = False
n_rew_heads = n_intr_rew_types + int(sep_extr_head)
model = SAC.init_from_env(env,
nagents=config.num_agents,
tau=config.tau,
hard_update_interval=config.hard_update,
pi_lr=config.pi_lr,
q_lr=config.q_lr,
phi_lr=config.phi_lr,
adam_eps=config.adam_eps,
q_decay=config.q_decay,
phi_decay=config.phi_decay,
gamma_e=config.gamma_e,
gamma_i=config.gamma_i,
pol_hidden_dim=config.pol_hidden_dim,
critic_hidden_dim=config.critic_hidden_dim,
nonlin=nonlin,
reward_scale=config.reward_scale,
head_reward_scale=config.head_reward_scale,
beta=config.beta,
n_intr_rew_types=n_intr_rew_types,
sep_extr_head=sep_extr_head)
replay_buffer = ReplayBuffer(config.buffer_length, model.nagents,
env.state_space,
env.observation_space,
env.action_space)
intr_rew_rms = [[RunningMeanStd()
for i in range(config.num_agents)]
for j in range(n_intr_rew_types)]
eps_this_turn = 0 # episodes so far this turn
active_envs = np.ones(config.n_rollout_threads) # binary indicator of whether env is active
env_times = np.zeros(config.n_rollout_threads, dtype=int)
env_ep_extr_rews = np.zeros(config.n_rollout_threads)
env_extr_rets = np.zeros(config.n_rollout_threads)
env_ep_intr_rews = [[np.zeros(config.n_rollout_threads) for i in range(config.num_agents)]
for j in range(n_intr_rew_types)]
recent_ep_extr_rews = deque(maxlen=100)
recent_ep_intr_rews = [[deque(maxlen=100) for i in range(config.num_agents)]
for j in range(n_intr_rew_types)]
recent_ep_lens = deque(maxlen=100)
recent_found_treasures = [deque(maxlen=100) for i in range(config.num_agents)]
recent_tiers_completed = deque(maxlen=100)
meta_turn_rets = []
extr_ret_rms = [RunningMeanStd() for i in range(n_rew_heads)]
t = 0
steps_since_update = 0
state, obs = env.reset()
while t < config.train_time:
model.prep_rollouts(device='cuda' if config.gpu_rollout else 'cpu')
# convert to torch tensor
torch_obs = apply_to_all_elements(obs, lambda x: torch.tensor(x, dtype=torch.float32, device='cuda' if config.gpu_rollout else 'cpu'))
# get actions as torch tensors
torch_agent_actions = model.step(torch_obs, explore=True)
# convert actions to numpy arrays
agent_actions = apply_to_all_elements(torch_agent_actions, lambda x: x.cpu().data.numpy())
# rearrange actions to be per environment
actions = [[ac[i] for ac in agent_actions] for i in range(int(active_envs.sum()))]
try:
with timeout(seconds=1):
next_state, next_obs, rewards, dones, infos = env.step(actions, env_mask=active_envs)
# either environment got stuck or vizdoom crashed (vizdoom is unstable w/ multi-agent scenarios)
except (TimeoutError, ViZDoomErrorException, ViZDoomIsNotRunningException, ViZDoomUnexpectedExitException) as e:
print("Environments are broken...")
env.close(force=True)
print("Closed environments, starting new...")
env = make_parallel_env(config, run_num)
state, obs = env.reset()
env_ep_extr_rews[active_envs.astype(bool)] = 0.0
env_extr_rets[active_envs.astype(bool)] = 0.0
for i in range(n_intr_rew_types):
for j in range(config.num_agents):
env_ep_intr_rews[i][j][active_envs.astype(bool)] = 0.0
env_times = np.zeros(config.n_rollout_threads, dtype=int)
state = apply_to_all_elements(state, lambda x: x[active_envs.astype(bool)])
obs = apply_to_all_elements(obs, lambda x: x[active_envs.astype(bool)])
continue
steps_since_update += int(active_envs.sum())
if config.intrinsic_reward == 1:
# if using state-visit counts, store state indices
# shape = (n_envs, n_agents, n_inds)
state_inds = np.array([i['visit_count_lookup'] for i in infos],
dtype=int)
state_inds_t = state_inds.transpose(1, 0, 2)
novelties = get_count_based_novelties(env, state_inds_t, device='cpu')
intr_rews = get_intrinsic_rewards(novelties, config, intr_rew_rms,
update_irrms=True, active_envs=active_envs,
device='cpu')
intr_rews = apply_to_all_elements(intr_rews, lambda x: x.numpy().flatten())
else:
intr_rews = None
state_inds = None
state_inds_t = None
replay_buffer.push(state, obs, agent_actions, rewards, next_state, next_obs, dones,
state_inds=state_inds)
env_ep_extr_rews[active_envs.astype(bool)] += np.array(rewards)
env_extr_rets[active_envs.astype(bool)] += np.array(rewards) * config.gamma_e**(env_times[active_envs.astype(bool)])
env_times += active_envs.astype(int)
if intr_rews is not None:
for i in range(n_intr_rew_types):
for j in range(config.num_agents):
env_ep_intr_rews[i][j][active_envs.astype(bool)] += intr_rews[i][j]
over_time = env_times >= config.max_episode_length
full_dones = np.zeros(config.n_rollout_threads)
for i, env_i in enumerate(np.where(active_envs)[0]):
full_dones[env_i] = dones[i]
need_reset = np.logical_or(full_dones, over_time)
# create masks ONLY for active envs
active_over_time = env_times[active_envs.astype(bool)] >= config.max_episode_length
active_need_reset = np.logical_or(dones, active_over_time)
if any(need_reset):
try:
with timeout(seconds=1):
# reset any environments that are past the max number of time steps or done
state, obs = env.reset(need_reset=need_reset)
# either environment got stuck or vizdoom crashed (vizdoom is unstable w/ multi-agent scenarios)
except (TimeoutError, ViZDoomErrorException, ViZDoomIsNotRunningException, ViZDoomUnexpectedExitException) as e:
print("Environments are broken...")
env.close(force=True)
print("Closed environments, starting new...")
env = make_parallel_env(config, run_num)
state, obs = env.reset()
# other envs that were force reset (rest taken care of in subsequent code)
other_reset = np.logical_not(need_reset)
env_ep_extr_rews[other_reset.astype(bool)] = 0.0
env_extr_rets[other_reset.astype(bool)] = 0.0
for i in range(n_intr_rew_types):
for j in range(config.num_agents):
env_ep_intr_rews[i][j][other_reset.astype(bool)] = 0.0
env_times = np.zeros(config.n_rollout_threads, dtype=int)
else:
state, obs = next_state, next_obs
for env_i in np.where(need_reset)[0]:
recent_ep_extr_rews.append(env_ep_extr_rews[env_i])
meta_turn_rets.append(env_extr_rets[env_i])
if intr_rews is not None:
for j in range(n_intr_rew_types):
for k in range(config.num_agents):
# record intrinsic rewards per step (so we don't confuse shorter episodes with less intrinsic rewards)
recent_ep_intr_rews[j][k].append(env_ep_intr_rews[j][k][env_i] / env_times[env_i])
env_ep_intr_rews[j][k][env_i] = 0
recent_ep_lens.append(env_times[env_i])
env_times[env_i] = 0
env_ep_extr_rews[env_i] = 0
env_extr_rets[env_i] = 0
eps_this_turn += 1
if eps_this_turn + active_envs.sum() - 1 >= config.metapol_episodes:
active_envs[env_i] = 0
for i in np.where(active_need_reset)[0]:
for j in range(config.num_agents):
# len(infos) = number of active envs
recent_found_treasures[j].append(infos[i]['n_found_treasures'][j])
if config.env_type == 'gridworld':
recent_tiers_completed.append(infos[i]['tiers_completed'])
if eps_this_turn >= config.metapol_episodes:
if not config.uniform_heads and n_rew_heads > 1:
meta_turn_rets = np.array(meta_turn_rets)
if all(errms.count < 1 for errms in extr_ret_rms):
for errms in extr_ret_rms:
errms.mean = meta_turn_rets.mean()
extr_ret_rms[model.curr_pol_heads[0]].update(meta_turn_rets)
for i in range(config.metapol_updates):
model.update_heads_onpol(meta_turn_rets, extr_ret_rms, logger=logger)
pol_heads = model.sample_pol_heads(uniform=config.uniform_heads)
model.set_pol_heads(pol_heads)
eps_this_turn = 0
meta_turn_rets = []
active_envs = np.ones(config.n_rollout_threads)
if any(need_reset): # reset returns state and obs for all envs, so make sure we're only looking at active
state = apply_to_all_elements(state, lambda x: x[active_envs.astype(bool)])
obs = apply_to_all_elements(obs, lambda x: x[active_envs.astype(bool)])
if (len(replay_buffer) >= max(config.batch_size,
config.steps_before_update) and
(steps_since_update >= config.steps_per_update)):
steps_since_update = 0
print('Updating at time step %i' % t)
model.prep_training(device='cuda' if config.use_gpu else 'cpu')
for u_i in range(config.num_updates):
sample = replay_buffer.sample(config.batch_size,
to_gpu=config.use_gpu,
state_inds=(config.intrinsic_reward == 1))
if config.intrinsic_reward == 0: # no intrinsic reward
intr_rews = None
state_inds = None
else:
sample, state_inds = sample
novelties = get_count_based_novelties(
env, state_inds,
device='cuda' if config.use_gpu else 'cpu')
intr_rews = get_intrinsic_rewards(novelties, config, intr_rew_rms,
update_irrms=False,
device='cuda' if config.use_gpu else 'cpu')
model.update_critic(sample, logger=logger, intr_rews=intr_rews)
model.update_policies(sample, logger=logger)
model.update_all_targets()
if len(recent_ep_extr_rews) > 10:
logger.add_scalar('episode_rewards/extrinsic/mean',
np.mean(recent_ep_extr_rews), t)
logger.add_scalar('episode_lengths/mean',
np.mean(recent_ep_lens), t)
if config.intrinsic_reward == 1:
for i in range(n_intr_rew_types):
for j in range(config.num_agents):
logger.add_scalar('episode_rewards/intrinsic%i_agent%i/mean' % (i, j),
np.mean(recent_ep_intr_rews[i][j]), t)
for i in range(config.num_agents):
logger.add_scalar('agent%i/n_found_treasures' % i, np.mean(recent_found_treasures[i]), t)
logger.add_scalar('total_n_found_treasures', sum(np.array(recent_found_treasures[i]) for i in range(config.num_agents)).mean(), t)
if config.env_type == 'gridworld':
logger.add_scalar('tiers_completed', np.mean(recent_tiers_completed), t)
if t % config.save_interval < config.n_rollout_threads:
model.prep_training(device='cpu')
os.makedirs(run_dir / 'incremental', exist_ok=True)
model.save(run_dir / 'incremental' / ('model_%isteps.pt' % (t + 1)))
model.save(run_dir / 'model.pt')
t += active_envs.sum()
model.prep_training(device='cpu')
model.save(run_dir / 'model.pt')
logger.close()
env.close(force=(config.env_type == 'vizdoom'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("model_name",
help="Name of directory to store " +
"model/training contents")
parser.add_argument("--env_type", type=str, default='gridworld', choices=['gridworld', 'vizdoom'])
parser.add_argument("--map_ind", help="Index of map to use (only for gridworld)", type=int,
default=1)
parser.add_argument("--num_agents", help="Number of agents (vizdoom only supports 2 at the moment)", type=int,
default=2)
parser.add_argument("--task_config", help="Index of task configuration",
type=int, default=1)
parser.add_argument("--frame_skip", help="How many frames to skip per step (only for vizdoom)", type=int,
default=2)
parser.add_argument("--intrinsic_reward", type=int, default=1,
help="Use intrinsic reward for exploration\n" +
"0: No intrinsic reward\n" +
"1 (default): Intrinsic reward using state visit counts")
parser.add_argument("--explr_types", type=int, nargs='*', default=[0, 1, 2, 3, 4],
help="Type of exploration, can provide multiple\n" +
"0: Independent exploration\n" +
"1: Minimum exploration\n" +
"2: Covering exploration\n" +
"3: Burrowing exploration\n" +
"4: Leader-Follower exploration\n")
parser.add_argument("--uniform_heads", action="store_true",
help="Meta-policy samples all heads uniformly")
parser.add_argument("--beta", type=float, default=0.1,
help="Weighting for intrinsic reward")
parser.add_argument("--decay", type=float, default=0.7,
help="Decay rate for state-visit counts in intrinsic reward")
parser.add_argument("--n_rollout_threads", default=12, type=int)
parser.add_argument("--buffer_length", default=int(1e6), type=int,
help="Set to 5e5 for ViZDoom (if memory limited)")
parser.add_argument("--train_time", default=int(1e6), type=int)
parser.add_argument("--max_episode_length", default=500, type=int)
parser.add_argument("--steps_per_update", default=100, type=int)
parser.add_argument("--metapol_episodes", default=12, type=int,
help="Number of episodes to rollout before updating the meta-policy " +
"(policy selector). Better if a multiple of n_rollout_threads")
parser.add_argument("--steps_before_update", default=0, type=int)
parser.add_argument("--num_updates", default=50, type=int,
help="Number of SAC updates per cycle")
parser.add_argument("--metapol_updates", default=100, type=int,
help="Number of updates for meta-policy per turn")
parser.add_argument("--batch_size",
default=1024, type=int,
help="Batch size for training. \n"
"Set to 128 for ViZDoom scenarios")
parser.add_argument("--save_interval", default=100000, type=int)
parser.add_argument("--pol_hidden_dim", default=32, type=int)
parser.add_argument("--critic_hidden_dim", default=128, type=int,
help="Set to 256 for ViZDoom scenarios")
parser.add_argument("--nonlinearity", default="relu", type=str,
choices=["relu", "leaky_relu"])
parser.add_argument("--pi_lr", default=0.001, type=float,
help="Set to 0.0005 for ViZDoom scenarios")
parser.add_argument("--q_lr", default=0.001, type=float,
help="Set to 0.0005 for ViZDoom scenarios")
parser.add_argument("--phi_lr", default=0.04, type=float)
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument("--q_decay", default=1e-3, type=float)
parser.add_argument("--phi_decay", default=1e-3, type=float)
parser.add_argument("--tau", default=0.005, type=float)
parser.add_argument("--hard_update", default=None, type=int,
help="If specified, use hard update for target critic" +
"every _ steps instead of soft update w/ tau")
parser.add_argument("--gamma_e", default=0.99, type=float)
parser.add_argument("--gamma_i", default=0.99, type=float)
parser.add_argument("--reward_scale", default=100., type=float)
parser.add_argument("--head_reward_scale", default=5., type=float)
parser.add_argument("--use_gpu", action='store_true',
help='Use GPU for training')
parser.add_argument("--gpu_rollout", action='store_true',
help='Use GPU for rollouts (more useful for lots of '
'parallel envs or image-based observations')
config = parser.parse_args()
run(config)