forked from DataDog/dd-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregator.py
360 lines (290 loc) · 11.2 KB
/
aggregator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import logging
from time import time
logger = logging.getLogger(__name__)
class Infinity(Exception): pass
class UnknownValue(Exception): pass
class Metric(object):
"""
A base metric class that accepts points, slices them into time intervals
and performs roll-ups within those intervals.
"""
def sample(self, value, sample_rate):
""" Add a point to the given metric. """
raise NotImplementedError()
def flush(self, timestamp, interval):
""" Flush all metrics up to the given timestamp. """
raise NotImplementedError()
class Gauge(Metric):
""" A metric that tracks a value at particular points in time. """
def __init__(self, formatter, name, tags, hostname, device_name):
self.formatter = formatter
self.name = name
self.value = None
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.last_sample_time = None
def sample(self, value, sample_rate):
self.value = value
self.last_sample_time = time()
def flush(self, timestamp, interval):
if self.value is not None:
res = [self.formatter(
metric=self.name,
timestamp=timestamp,
value=self.value,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name
)]
self.value = None
return res
return []
class Counter(Metric):
""" A metric that tracks a counter value. """
def __init__(self, formatter, name, tags, hostname, device_name):
self.formatter = formatter
self.name = name
self.value = 0
self.tags = tags
self.hostname = hostname
self.device_name = device_name
def sample(self, value, sample_rate):
self.value += value * int(1 / sample_rate)
self.last_sample_time = time()
def flush(self, timestamp, interval):
try:
value = self.value / interval
return [self.formatter(
metric=self.name,
value=value,
timestamp=timestamp,
tags=self.tags,
hostname=self.hostname,
device_name=self.device_name
)]
finally:
self.value = 0
class Histogram(Metric):
""" A metric to track the distribution of a set of values. """
def __init__(self, formatter, name, tags, hostname, device_name):
self.formatter = formatter
self.name = name
self.count = 0
self.samples = []
self.percentiles = [0.95]
self.tags = tags
self.hostname = hostname
self.device_name = device_name
def sample(self, value, sample_rate):
self.count += int(1 / sample_rate)
self.samples.append(value)
self.last_sample_time = time()
def flush(self, ts, interval):
if not self.count:
return []
self.samples.sort()
length = len(self.samples)
max_ = self.samples[-1]
med = self.samples[int(round(length/2 - 1))]
avg = sum(self.samples) / float(length)
metric_aggrs = [
('max', max_),
('median', med),
('avg', avg),
('count', self.count/interval)
]
metrics = [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric='%s.%s' % (self.name, suffix),
value=value,
timestamp=ts
) for suffix, value in metric_aggrs
]
for p in self.percentiles:
val = self.samples[int(round(p * length - 1))]
name = '%s.%spercentile' % (self.name, int(p * 100))
metrics.append(self.formatter(
hostname=self.hostname,
tags=self.tags,
metric=name,
value=val,
timestamp=ts
))
# Reset our state.
self.samples = []
self.count = 0
return metrics
class Set(Metric):
""" A metric to track the number of unique elements in a set. """
def __init__(self, formatter, name, tags, hostname, device_name):
self.formatter = formatter
self.name = name
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.values = set()
def sample(self, value, sample_rate):
self.values.add(value)
self.last_sample_time = time()
def flush(self, timestamp, interval):
if not self.values:
return []
try:
return [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric=self.name,
value=len(self.values),
timestamp=timestamp
)]
finally:
self.values = set()
class Rate(Metric):
""" Track the rate of metrics over each flush interval """
def __init__(self, formatter, name, tags, hostname, device_name):
self.formatter = formatter
self.name = name
self.tags = tags
self.hostname = hostname
self.device_name = device_name
self.samples = []
def sample(self, value, sample_rate):
ts = time()
self.samples.append((int(ts), value))
self.last_sample_time = ts
def _rate(self, sample1, sample2):
interval = sample2[0] - sample1[0]
if interval == 0:
logger.warn('Metric %s has an interval of 0. Not flushing.' % self.name)
raise Infinity()
delta = sample2[1] - sample1[1]
if delta < 0:
logger.warn('Metric %s has a rate < 0. Not flushing.' % self.name)
raise UnknownValue()
return (delta / interval)
def flush(self, timestamp, interval):
if len(self.samples) < 2:
return []
try:
try:
val = self._rate(self.samples[-2], self.samples[-1])
except:
return []
return [self.formatter(
hostname=self.hostname,
device_name=self.device_name,
tags=self.tags,
metric=self.name,
value=val,
timestamp=timestamp
)]
finally:
self.samples = self.samples[-1:]
class MetricsAggregator(object):
"""
A metric aggregator class.
"""
def __init__(self, hostname, interval=1.0, expiry_seconds=300, formatter=None):
self.metrics = {}
self.total_count = 0
self.count = 0
self.metric_type_to_class = {
'g': Gauge,
'c': Counter,
'h': Histogram,
'ms' : Histogram,
's' : Set,
'_dd-r': Rate,
}
self.hostname = hostname
self.expiry_seconds = expiry_seconds
self.formatter = formatter or self.api_formatter
self.interval = float(interval)
def packets_per_second(self, interval):
return round(float(self.count)/interval, 2)
def submit_packets(self, packets):
for packet in packets.split("\n"):
self.count += 1
# We can have colons in tags, so split once.
name_and_metadata = packet.split(':', 1)
if not packet.strip():
continue
if len(name_and_metadata) != 2:
raise Exception('Unparseable packet: %s' % packet)
name = name_and_metadata[0]
metadata = name_and_metadata[1].split('|')
if len(metadata) < 2:
raise Exception('Unparseable packet: %s' % packet)
# Try to cast as an int first to avoid precision issues, then as a
# float.
try:
value = int(metadata[0])
except ValueError:
try:
value = float(metadata[0])
except ValueError:
raise Exception('Metric value must be a number: %s, %s' % name, metadata[0])
# Parse the optional values - sample rate & tags.
sample_rate = 1
tags = None
for m in metadata[2:]:
# Parse the sample rate
if m[0] == '@':
sample_rate = float(m[1:])
assert 0 <= sample_rate <= 1
elif m[0] == '#':
tags = tuple(sorted(m[1:].split(',')))
# Submit the metric
mtype = metadata[1]
self.submit_metric(name, value, mtype, tags=tags, sample_rate=sample_rate)
def submit_metric(self, name, value, mtype, tags=None, hostname=None,
device_name=None, timestamp=None, sample_rate=1):
context = (name, tuple(tags or []), hostname, device_name)
if context not in self.metrics:
metric_class = self.metric_type_to_class[mtype]
self.metrics[context] = metric_class(self.formatter, name, tags,
hostname or self.hostname, device_name)
self.metrics[context].sample(value, sample_rate)
def gauge(self, name, value, tags=None, hostname=None, device_name=None, timestamp=None):
self.submit_metric(name, value, 'g', tags, hostname, device_name, timestamp)
def increment(self, name, value=1, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'c', tags, hostname, device_name)
def decrement(self, name, value=-1, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'c', tags, hostname, device_name)
def rate(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, '_dd-r', tags, hostname, device_name)
def histogram(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 'h', tags, hostname, device_name)
def set(self, name, value, tags=None, hostname=None, device_name=None):
self.submit_metric(name, value, 's', tags, hostname, device_name)
def flush(self):
timestamp = time()
expiry_timestamp = timestamp - self.expiry_seconds
# Flush points and remove expired metrics. We mutate this dictionary
# while iterating so don't use an iterator.
metrics = []
for context, metric in self.metrics.items():
if metric.last_sample_time < expiry_timestamp:
logger.debug("%s hasn't been submitted in %ss. Expiring." % (context, self.expiry_seconds))
del self.metrics[context]
else:
metrics += metric.flush(timestamp, self.interval)
# Save some stats.
logger.debug("received %s payloads since last flush" % self.count)
self.total_count += self.count
self.count = 0
return metrics
def send_packet_count(self, metric_name):
self.submit_metric(metric_name, self.count, 'g')
def api_formatter(self, metric, value, timestamp, tags, hostname, device_name=None):
return {
'metric' : metric,
'points' : [(timestamp, value)],
'tags' : tags,
'host' : hostname,
'device_name': device_name
}