-
Notifications
You must be signed in to change notification settings - Fork 58
/
cloudpickle.py
974 lines (807 loc) · 34.8 KB
/
cloudpickle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
"""
This class is defined to override standard pickle functionality
The goals of it follow:
-Serialize lambdas and nested functions to compiled byte code
-Deal with main module correctly
-Deal with other non-serializable objects
It does not include an unpickler, as standard python unpickling suffices.
This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<http://www.picloud.com>`_.
Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <http://www.picloud.com>`_.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the University of California, Berkeley nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import operator
import os
import pickle
import struct
import sys
import types
from functools import partial
import itertools
from copy_reg import _extension_registry, _inverted_registry, _extension_cache
import new
import dis
import traceback
#relevant opcodes
STORE_GLOBAL = chr(dis.opname.index('STORE_GLOBAL'))
DELETE_GLOBAL = chr(dis.opname.index('DELETE_GLOBAL'))
LOAD_GLOBAL = chr(dis.opname.index('LOAD_GLOBAL'))
GLOBAL_OPS = [STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL]
HAVE_ARGUMENT = chr(dis.HAVE_ARGUMENT)
EXTENDED_ARG = chr(dis.EXTENDED_ARG)
import logging
cloudLog = logging.getLogger("Cloud.Transport")
try:
import ctypes
except (MemoryError, ImportError):
logging.warning('Exception raised on importing ctypes. Likely python bug.. some functionality will be disabled', exc_info = True)
ctypes = None
PyObject_HEAD = None
else:
# for reading internal structures
PyObject_HEAD = [
('ob_refcnt', ctypes.c_size_t),
('ob_type', ctypes.c_void_p),
]
try:
from cStringIO import StringIO
except ImportError:
from StringIO import StringIO
# These helper functions were copied from PiCloud's util module.
def islambda(func):
return getattr(func,'func_name') == '<lambda>'
def xrange_params(xrangeobj):
"""Returns a 3 element tuple describing the xrange start, step, and len
respectively
Note: Only guarentees that elements of xrange are the same. parameters may
be different.
e.g. xrange(1,1) is interpretted as xrange(0,0); both behave the same
though w/ iteration
"""
xrange_len = len(xrangeobj)
if not xrange_len: #empty
return (0,1,0)
start = xrangeobj[0]
if xrange_len == 1: #one element
return start, 1, 1
return (start, xrangeobj[1] - xrangeobj[0], xrange_len)
#debug variables intended for developer use:
printSerialization = False
printMemoization = False
useForcedImports = True #Should I use forced imports for tracking?
class CloudPickler(pickle.Pickler):
dispatch = pickle.Pickler.dispatch.copy()
savedForceImports = False
savedDjangoEnv = False #hack tro transport django environment
def __init__(self, file, protocol=None, min_size_to_save= 0):
pickle.Pickler.__init__(self,file,protocol)
self.modules = set() #set of modules needed to depickle
self.globals_ref = {} # map ids to dictionary. used to ensure that functions can share global env
def dump(self, obj):
# note: not thread safe
# minimal side-effects, so not fixing
recurse_limit = 3000
base_recurse = sys.getrecursionlimit()
if base_recurse < recurse_limit:
sys.setrecursionlimit(recurse_limit)
self.inject_addons()
try:
return pickle.Pickler.dump(self, obj)
except RuntimeError, e:
if 'recursion' in e.args[0]:
msg = """Could not pickle object as excessively deep recursion required.
Try _fast_serialization=2 or contact PiCloud support"""
raise pickle.PicklingError(msg)
finally:
new_recurse = sys.getrecursionlimit()
if new_recurse == recurse_limit:
sys.setrecursionlimit(base_recurse)
def save_buffer(self, obj):
"""Fallback to save_string"""
pickle.Pickler.save_string(self,str(obj))
dispatch[buffer] = save_buffer
#block broken objects
def save_unsupported(self, obj, pack=None):
raise pickle.PicklingError("Cannot pickle objects of type %s" % type(obj))
dispatch[types.GeneratorType] = save_unsupported
#python2.6+ supports slice pickling. some py2.5 extensions might as well. We just test it
try:
slice(0,1).__reduce__()
except TypeError: #can't pickle -
dispatch[slice] = save_unsupported
#itertools objects do not pickle!
for v in itertools.__dict__.values():
if type(v) is type:
dispatch[v] = save_unsupported
def save_dict(self, obj):
"""hack fix
If the dict is a global, deal with it in a special way
"""
#print 'saving', obj
if obj is __builtins__:
self.save_reduce(_get_module_builtins, (), obj=obj)
else:
pickle.Pickler.save_dict(self, obj)
dispatch[pickle.DictionaryType] = save_dict
def save_module(self, obj, pack=struct.pack):
"""
Save a module as an import
"""
#print 'try save import', obj.__name__
self.modules.add(obj)
self.save_reduce(subimport,(obj.__name__,), obj=obj)
dispatch[types.ModuleType] = save_module #new type
def save_codeobject(self, obj, pack=struct.pack):
"""
Save a code object
"""
#print 'try to save codeobj: ', obj
args = (
obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code,
obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name,
obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars
)
self.save_reduce(types.CodeType, args, obj=obj)
dispatch[types.CodeType] = save_codeobject #new type
def save_function(self, obj, name=None, pack=struct.pack):
""" Registered with the dispatch to handle all function types.
Determines what kind of function obj is (e.g. lambda, defined at
interactive prompt, etc) and handles the pickling appropriately.
"""
write = self.write
name = obj.__name__
modname = pickle.whichmodule(obj, name)
#print 'which gives %s %s %s' % (modname, obj, name)
try:
themodule = sys.modules[modname]
except KeyError: # eval'd items such as namedtuple give invalid items for their function __module__
modname = '__main__'
if modname == '__main__':
themodule = None
if themodule:
self.modules.add(themodule)
if not self.savedDjangoEnv:
#hack for django - if we detect the settings module, we transport it
django_settings = os.environ.get('DJANGO_SETTINGS_MODULE', '')
if django_settings:
django_mod = sys.modules.get(django_settings)
if django_mod:
cloudLog.debug('Transporting django settings %s during save of %s', django_mod, name)
self.savedDjangoEnv = True
self.modules.add(django_mod)
write(pickle.MARK)
self.save_reduce(django_settings_load, (django_mod.__name__,), obj=django_mod)
write(pickle.POP_MARK)
# if func is lambda, def'ed at prompt, is in main, or is nested, then
# we'll pickle the actual function object rather than simply saving a
# reference (as is done in default pickler), via save_function_tuple.
if islambda(obj) or obj.func_code.co_filename == '<stdin>' or themodule == None:
#Force server to import modules that have been imported in main
modList = None
if themodule == None and not self.savedForceImports:
mainmod = sys.modules['__main__']
if useForcedImports and hasattr(mainmod,'___pyc_forcedImports__'):
modList = list(mainmod.___pyc_forcedImports__)
self.savedForceImports = True
self.save_function_tuple(obj, modList)
return
else: # func is nested
klass = getattr(themodule, name, None)
if klass is None or klass is not obj:
self.save_function_tuple(obj, [themodule])
return
if obj.__dict__:
# essentially save_reduce, but workaround needed to avoid recursion
self.save(_restore_attr)
write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
self.save(obj.__dict__)
write(pickle.TUPLE + pickle.REDUCE)
else:
write(pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
dispatch[types.FunctionType] = save_function
def save_function_tuple(self, func, forced_imports):
""" Pickles an actual func object.
A func comprises: code, globals, defaults, closure, and dict. We
extract and save these, injecting reducing functions at certain points
to recreate the func object. Keep in mind that some of these pieces
can contain a ref to the func itself. Thus, a naive save on these
pieces could trigger an infinite loop of save's. To get around that,
we first create a skeleton func object using just the code (this is
safe, since this won't contain a ref to the func), and memoize it as
soon as it's created. The other stuff can then be filled in later.
"""
save = self.save
write = self.write
# save the modules (if any)
if forced_imports:
write(pickle.MARK)
save(_modules_to_main)
#print 'forced imports are', forced_imports
forced_names = map(lambda m: m.__name__, forced_imports)
save((forced_names,))
#save((forced_imports,))
write(pickle.REDUCE)
write(pickle.POP_MARK)
code, f_globals, defaults, closure, dct, base_globals = self.extract_func_data(func)
save(_fill_function) # skeleton function updater
write(pickle.MARK) # beginning of tuple that _fill_function expects
# create a skeleton function object and memoize it
save(_make_skel_func)
save((code, len(closure), base_globals))
write(pickle.REDUCE)
self.memoize(func)
# save the rest of the func data needed by _fill_function
save(f_globals)
save(defaults)
save(closure)
save(dct)
write(pickle.TUPLE)
write(pickle.REDUCE) # applies _fill_function on the tuple
@staticmethod
def extract_code_globals(co):
"""
Find all globals names read or written to by codeblock co
"""
code = co.co_code
names = co.co_names
out_names = set()
n = len(code)
i = 0
extended_arg = 0
while i < n:
op = code[i]
i = i+1
if op >= HAVE_ARGUMENT:
oparg = ord(code[i]) + ord(code[i+1])*256 + extended_arg
extended_arg = 0
i = i+2
if op == EXTENDED_ARG:
extended_arg = oparg*65536L
if op in GLOBAL_OPS:
out_names.add(names[oparg])
#print 'extracted', out_names, ' from ', names
return out_names
def extract_func_data(self, func):
"""
Turn the function into a tuple of data necessary to recreate it:
code, globals, defaults, closure, dict
"""
code = func.func_code
# extract all global ref's
func_global_refs = CloudPickler.extract_code_globals(code)
if code.co_consts: # see if nested function have any global refs
for const in code.co_consts:
if type(const) is types.CodeType and const.co_names:
func_global_refs = func_global_refs.union( CloudPickler.extract_code_globals(const))
# process all variables referenced by global environment
f_globals = {}
for var in func_global_refs:
#Some names, such as class functions are not global - we don't need them
if func.func_globals.has_key(var):
f_globals[var] = func.func_globals[var]
# defaults requires no processing
defaults = func.func_defaults
def get_contents(cell):
try:
return cell.cell_contents
except ValueError, e: #cell is empty error on not yet assigned
raise pickle.PicklingError('Function to be pickled has free variables that are referenced before assignment in enclosing scope')
# process closure
if func.func_closure:
closure = map(get_contents, func.func_closure)
else:
closure = []
# save the dict
dct = func.func_dict
if printSerialization:
outvars = ['code: ' + str(code) ]
outvars.append('globals: ' + str(f_globals))
outvars.append('defaults: ' + str(defaults))
outvars.append('closure: ' + str(closure))
print 'function ', func, 'is extracted to: ', ', '.join(outvars)
base_globals = self.globals_ref.get(id(func.func_globals), {})
self.globals_ref[id(func.func_globals)] = base_globals
return (code, f_globals, defaults, closure, dct, base_globals)
def save_global(self, obj, name=None, pack=struct.pack):
write = self.write
memo = self.memo
if name is None:
name = obj.__name__
modname = getattr(obj, "__module__", None)
if modname is None:
modname = pickle.whichmodule(obj, name)
try:
__import__(modname)
themodule = sys.modules[modname]
except (ImportError, KeyError, AttributeError): #should never occur
raise pickle.PicklingError(
"Can't pickle %r: Module %s cannot be found" %
(obj, modname))
if modname == '__main__':
themodule = None
if themodule:
self.modules.add(themodule)
sendRef = True
typ = type(obj)
#print 'saving', obj, typ
try:
try: #Deal with case when getattribute fails with exceptions
klass = getattr(themodule, name)
except (AttributeError):
if modname == '__builtin__': #new.* are misrepeported
modname = 'new'
__import__(modname)
themodule = sys.modules[modname]
try:
klass = getattr(themodule, name)
except AttributeError, a:
#print themodule, name, obj, type(obj)
raise pickle.PicklingError("Can't pickle builtin %s" % obj)
else:
raise
except (ImportError, KeyError, AttributeError):
if typ == types.TypeType or typ == types.ClassType:
sendRef = False
else: #we can't deal with this
raise
else:
if klass is not obj and (typ == types.TypeType or typ == types.ClassType):
sendRef = False
if not sendRef:
#note: Third party types might crash this - add better checks!
d = dict(obj.__dict__) #copy dict proxy to a dict
if not isinstance(d.get('__dict__', None), property): # don't extract dict that are properties
d.pop('__dict__',None)
d.pop('__weakref__',None)
# hack as __new__ is stored differently in the __dict__
new_override = d.get('__new__', None)
if new_override:
d['__new__'] = obj.__new__
self.save_reduce(type(obj),(obj.__name__,obj.__bases__,
d),obj=obj)
#print 'internal reduce dask %s %s' % (obj, d)
return
if self.proto >= 2:
code = _extension_registry.get((modname, name))
if code:
assert code > 0
if code <= 0xff:
write(pickle.EXT1 + chr(code))
elif code <= 0xffff:
write("%c%c%c" % (pickle.EXT2, code&0xff, code>>8))
else:
write(pickle.EXT4 + pack("<i", code))
return
write(pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
dispatch[types.ClassType] = save_global
dispatch[types.BuiltinFunctionType] = save_global
dispatch[types.TypeType] = save_global
def save_instancemethod(self, obj):
#Memoization rarely is ever useful due to python bounding
self.save_reduce(types.MethodType, (obj.im_func, obj.im_self,obj.im_class), obj=obj)
dispatch[types.MethodType] = save_instancemethod
def save_inst_logic(self, obj):
"""Inner logic to save instance. Based off pickle.save_inst
Supports __transient__"""
cls = obj.__class__
memo = self.memo
write = self.write
save = self.save
if hasattr(obj, '__getinitargs__'):
args = obj.__getinitargs__()
len(args) # XXX Assert it's a sequence
pickle._keep_alive(args, memo)
else:
args = ()
write(pickle.MARK)
if self.bin:
save(cls)
for arg in args:
save(arg)
write(pickle.OBJ)
else:
for arg in args:
save(arg)
write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n')
self.memoize(obj)
try:
getstate = obj.__getstate__
except AttributeError:
stuff = obj.__dict__
#remove items if transient
if hasattr(obj, '__transient__'):
transient = obj.__transient__
stuff = stuff.copy()
for k in list(stuff.keys()):
if k in transient:
del stuff[k]
else:
stuff = getstate()
pickle._keep_alive(stuff, memo)
save(stuff)
write(pickle.BUILD)
def save_inst(self, obj):
# Hack to detect PIL Image instances without importing Imaging
# PIL can be loaded with multiple names, so we don't check sys.modules for it
if hasattr(obj,'im') and hasattr(obj,'palette') and 'Image' in obj.__module__:
self.save_image(obj)
else:
self.save_inst_logic(obj)
dispatch[types.InstanceType] = save_inst
def save_property(self, obj):
# properties not correctly saved in python
self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj)
dispatch[property] = save_property
def save_itemgetter(self, obj):
"""itemgetter serializer (needed for namedtuple support)
a bit of a pain as we need to read ctypes internals"""
class ItemGetterType(ctypes.Structure):
_fields_ = PyObject_HEAD + [
('nitems', ctypes.c_size_t),
('item', ctypes.py_object)
]
itemgetter_obj = ctypes.cast(ctypes.c_void_p(id(obj)), ctypes.POINTER(ItemGetterType)).contents
return self.save_reduce(operator.itemgetter, (itemgetter_obj.item,))
if PyObject_HEAD:
dispatch[operator.itemgetter] = save_itemgetter
def save_reduce(self, func, args, state=None,
listitems=None, dictitems=None, obj=None):
"""Modified to support __transient__ on new objects
Change only affects protocol level 2 (which is always used by PiCloud"""
# Assert that args is a tuple or None
if not isinstance(args, types.TupleType):
raise pickle.PicklingError("args from reduce() should be a tuple")
# Assert that func is callable
if not hasattr(func, '__call__'):
raise pickle.PicklingError("func from reduce should be callable")
save = self.save
write = self.write
# Protocol 2 special case: if func's name is __newobj__, use NEWOBJ
if self.proto >= 2 and getattr(func, "__name__", "") == "__newobj__":
#Added fix to allow transient
cls = args[0]
if not hasattr(cls, "__new__"):
raise pickle.PicklingError(
"args[0] from __newobj__ args has no __new__")
if obj is not None and cls is not obj.__class__:
raise pickle.PicklingError(
"args[0] from __newobj__ args has the wrong class")
args = args[1:]
save(cls)
#Don't pickle transient entries
if hasattr(obj, '__transient__'):
transient = obj.__transient__
state = state.copy()
for k in list(state.keys()):
if k in transient:
del state[k]
save(args)
write(pickle.NEWOBJ)
else:
save(func)
save(args)
write(pickle.REDUCE)
if obj is not None:
self.memoize(obj)
# More new special cases (that work with older protocols as
# well): when __reduce__ returns a tuple with 4 or 5 items,
# the 4th and 5th item should be iterators that provide list
# items and dict items (as (key, value) tuples), or None.
if listitems is not None:
self._batch_appends(listitems)
if dictitems is not None:
self._batch_setitems(dictitems)
if state is not None:
#print 'obj %s has state %s' % (obj, state)
save(state)
write(pickle.BUILD)
def save_xrange(self, obj):
"""Save an xrange object in python 2.5
Python 2.6 supports this natively
"""
range_params = xrange_params(obj)
self.save_reduce(_build_xrange,range_params)
#python2.6+ supports xrange pickling. some py2.5 extensions might as well. We just test it
try:
xrange(0).__reduce__()
except TypeError: #can't pickle -- use PiCloud pickler
dispatch[xrange] = save_xrange
def save_partial(self, obj):
"""Partial objects do not serialize correctly in python2.x -- this fixes the bugs"""
self.save_reduce(_genpartial, (obj.func, obj.args, obj.keywords))
if sys.version_info < (2,7): #2.7 supports partial pickling
dispatch[partial] = save_partial
def save_file(self, obj):
"""Save a file"""
import StringIO as pystringIO #we can't use cStringIO as it lacks the name attribute
from ..transport.adapter import SerializingAdapter
if not hasattr(obj, 'name') or not hasattr(obj, 'mode'):
raise pickle.PicklingError("Cannot pickle files that do not map to an actual file")
if obj.name == '<stdout>':
return self.save_reduce(getattr, (sys,'stdout'), obj=obj)
if obj.name == '<stderr>':
return self.save_reduce(getattr, (sys,'stderr'), obj=obj)
if obj.name == '<stdin>':
raise pickle.PicklingError("Cannot pickle standard input")
if hasattr(obj, 'isatty') and obj.isatty():
raise pickle.PicklingError("Cannot pickle files that map to tty objects")
if 'r' not in obj.mode:
raise pickle.PicklingError("Cannot pickle files that are not opened for reading")
name = obj.name
try:
fsize = os.stat(name).st_size
except OSError:
raise pickle.PicklingError("Cannot pickle file %s as it cannot be stat" % name)
if obj.closed:
#create an empty closed string io
retval = pystringIO.StringIO("")
retval.close()
elif not fsize: #empty file
retval = pystringIO.StringIO("")
try:
tmpfile = file(name)
tst = tmpfile.read(1)
except IOError:
raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name)
tmpfile.close()
if tst != '':
raise pickle.PicklingError("Cannot pickle file %s as it does not appear to map to a physical, real file" % name)
elif fsize > SerializingAdapter.max_transmit_data:
raise pickle.PicklingError("Cannot pickle file %s as it exceeds cloudconf.py's max_transmit_data of %d" %
(name,SerializingAdapter.max_transmit_data))
else:
try:
tmpfile = file(name)
contents = tmpfile.read(SerializingAdapter.max_transmit_data)
tmpfile.close()
except IOError:
raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name)
retval = pystringIO.StringIO(contents)
curloc = obj.tell()
retval.seek(curloc)
retval.name = name
self.save(retval) #save stringIO
self.memoize(obj)
dispatch[file] = save_file
"""Special functions for Add-on libraries"""
def inject_numpy(self):
numpy = sys.modules.get('numpy')
if not numpy or not hasattr(numpy, 'ufunc'):
return
self.dispatch[numpy.ufunc] = self.__class__.save_ufunc
numpy_tst_mods = ['numpy', 'scipy.special']
def save_ufunc(self, obj):
"""Hack function for saving numpy ufunc objects"""
name = obj.__name__
for tst_mod_name in self.numpy_tst_mods:
tst_mod = sys.modules.get(tst_mod_name, None)
if tst_mod:
if name in tst_mod.__dict__:
self.save_reduce(_getobject, (tst_mod_name, name))
return
raise pickle.PicklingError('cannot save %s. Cannot resolve what module it is defined in' % str(obj))
def inject_timeseries(self):
"""Handle bugs with pickling scikits timeseries"""
tseries = sys.modules.get('scikits.timeseries.tseries')
if not tseries or not hasattr(tseries, 'Timeseries'):
return
self.dispatch[tseries.Timeseries] = self.__class__.save_timeseries
def save_timeseries(self, obj):
import scikits.timeseries.tseries as ts
func, reduce_args, state = obj.__reduce__()
if func != ts._tsreconstruct:
raise pickle.PicklingError('timeseries using unexpected reconstruction function %s' % str(func))
state = (1,
obj.shape,
obj.dtype,
obj.flags.fnc,
obj._data.tostring(),
ts.getmaskarray(obj).tostring(),
obj._fill_value,
obj._dates.shape,
obj._dates.__array__().tostring(),
obj._dates.dtype, #added -- preserve type
obj.freq,
obj._optinfo,
)
return self.save_reduce(_genTimeSeries, (reduce_args, state))
def inject_email(self):
"""Block email LazyImporters from being saved"""
email = sys.modules.get('email')
if not email:
return
self.dispatch[email.LazyImporter] = self.__class__.save_unsupported
def inject_addons(self):
"""Plug in system. Register additional pickling functions if modules already loaded"""
self.inject_numpy()
self.inject_timeseries()
self.inject_email()
"""Python Imaging Library"""
def save_image(self, obj):
if not obj.im and obj.fp and 'r' in obj.fp.mode and obj.fp.name \
and not obj.fp.closed and (not hasattr(obj, 'isatty') or not obj.isatty()):
#if image not loaded yet -- lazy load
self.save_reduce(_lazyloadImage,(obj.fp,), obj=obj)
else:
#image is loaded - just transmit it over
self.save_reduce(_generateImage, (obj.size, obj.mode, obj.tostring()), obj=obj)
"""
def memoize(self, obj):
pickle.Pickler.memoize(self, obj)
if printMemoization:
print 'memoizing ' + str(obj)
"""
# Shorthands for legacy support
def dump(obj, file, protocol=2):
CloudPickler(file, protocol).dump(obj)
def dumps(obj, protocol=2):
file = StringIO()
cp = CloudPickler(file,protocol)
cp.dump(obj)
#print 'cloud dumped', str(obj), str(cp.modules)
return file.getvalue()
#hack for __import__ not working as desired
def subimport(name):
__import__(name)
return sys.modules[name]
#hack to load django settings:
def django_settings_load(name):
modified_env = False
if 'DJANGO_SETTINGS_MODULE' not in os.environ:
os.environ['DJANGO_SETTINGS_MODULE'] = name # must set name first due to circular deps
modified_env = True
try:
module = subimport(name)
except Exception, i:
print >> sys.stderr, 'Cloud not import django settings %s:' % (name)
print_exec(sys.stderr)
if modified_env:
del os.environ['DJANGO_SETTINGS_MODULE']
else:
#add project directory to sys,path:
if hasattr(module,'__file__'):
dirname = os.path.split(module.__file__)[0] + '/'
sys.path.append(dirname)
# restores function attributes
def _restore_attr(obj, attr):
for key, val in attr.items():
setattr(obj, key, val)
return obj
def _get_module_builtins():
return pickle.__builtins__
def print_exec(stream):
ei = sys.exc_info()
traceback.print_exception(ei[0], ei[1], ei[2], None, stream)
def _modules_to_main(modList):
"""Force every module in modList to be placed into main"""
if not modList:
return
main = sys.modules['__main__']
for modname in modList:
if type(modname) is str:
try:
mod = __import__(modname)
except Exception, i: #catch all...
sys.stderr.write('warning: could not import %s\n. Your function may unexpectedly error due to this import failing; \
A version mismatch is likely. Specific error was:\n' % modname)
print_exec(sys.stderr)
else:
setattr(main,mod.__name__, mod)
else:
#REVERSE COMPATIBILITY FOR CLOUD CLIENT 1.5 (WITH EPD)
#In old version actual module was sent
setattr(main,modname.__name__, modname)
#object generators:
def _build_xrange(start, step, len):
"""Built xrange explicitly"""
return xrange(start, start + step*len, step)
def _genpartial(func, args, kwds):
if not args:
args = ()
if not kwds:
kwds = {}
return partial(func, *args, **kwds)
def _fill_function(func, globals, defaults, closure, dict):
""" Fills in the rest of function data into the skeleton function object
that were created via _make_skel_func().
"""
func.func_globals.update(globals)
func.func_defaults = defaults
func.func_dict = dict
if len(closure) != len(func.func_closure):
raise pickle.UnpicklingError("closure lengths don't match up")
for i in range(len(closure)):
_change_cell_value(func.func_closure[i], closure[i])
return func
def _make_skel_func(code, num_closures, base_globals = None):
""" Creates a skeleton function object that contains just the provided
code and the correct number of cells in func_closure. All other
func attributes (e.g. func_globals) are empty.
"""
#build closure (cells):
if not ctypes:
raise Exception('ctypes failed to import; cannot build function')
cellnew = ctypes.pythonapi.PyCell_New
cellnew.restype = ctypes.py_object
cellnew.argtypes = (ctypes.py_object,)
dummy_closure = tuple(map(lambda i: cellnew(None), range(num_closures)))
if base_globals is None:
base_globals = {}
base_globals['__builtins__'] = __builtins__
return types.FunctionType(code, base_globals,
None, None, dummy_closure)
# this piece of opaque code is needed below to modify 'cell' contents
cell_changer_code = new.code(
1, 1, 2, 0,
''.join([
chr(dis.opmap['LOAD_FAST']), '\x00\x00',
chr(dis.opmap['DUP_TOP']),
chr(dis.opmap['STORE_DEREF']), '\x00\x00',
chr(dis.opmap['RETURN_VALUE'])
]),
(), (), ('newval',), '<nowhere>', 'cell_changer', 1, '', ('c',), ()
)
def _change_cell_value(cell, newval):
""" Changes the contents of 'cell' object to newval """
return new.function(cell_changer_code, {}, None, (), (cell,))(newval)
"""Constructors for 3rd party libraries
Note: These can never be renamed due to client compatibility issues"""
def _getobject(modname, attribute):
mod = __import__(modname)
return mod.__dict__[attribute]
def _generateImage(size, mode, str_rep):
"""Generate image from string representation"""
import Image
i = Image.new(mode, size)
i.fromstring(str_rep)
return i
def _lazyloadImage(fp):
import Image
fp.seek(0) #works in almost any case
return Image.open(fp)
"""Timeseries"""
def _genTimeSeries(reduce_args, state):
import scikits.timeseries.tseries as ts
from numpy import ndarray
from numpy.ma import MaskedArray
time_series = ts._tsreconstruct(*reduce_args)
#from setstate modified
(ver, shp, typ, isf, raw, msk, flv, dsh, dtm, dtyp, frq, infodict) = state
#print 'regenerating %s' % dtyp
MaskedArray.__setstate__(time_series, (ver, shp, typ, isf, raw, msk, flv))
_dates = time_series._dates
#_dates.__setstate__((ver, dsh, typ, isf, dtm, frq)) #use remote typ
ndarray.__setstate__(_dates,(dsh,dtyp, isf, dtm))
_dates.freq = frq
_dates._cachedinfo.update(dict(full=None, hasdups=None, steps=None,
toobj=None, toord=None, tostr=None))
# Update the _optinfo dictionary
time_series._optinfo.update(infodict)
return time_series