-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
57 lines (43 loc) · 1.97 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import pandas as pd
import scipy.stats as stats
# Load expected results from CSV
pollster_df = pd.read_csv('pollsters.csv', dtype={'Pollster': str, 'Nat': float, 'Lab': float, 'Grn': float, 'Act': float, 'NZF': float, 'TPM': float})
# Load actual results from CSV
actual_df = pd.read_csv('actual_results.csv', dtype={'Nat': float, 'Lab': float, 'Grn': float, 'Act': float, 'NZF': float, 'TPM': float})
# Assuming there is only one row in actual results, extract the actual values
actual_values = actual_df.iloc[0].values.astype(float) # Ensure the data is float
# Prepare a list to hold the results
results = []
# Calculate SSD, R^2, and Chi-Squared for each pollster
for index, row in pollster_df.iterrows():
pollster_name = row['Pollster']
expected_values = row[1:].values.astype(float) # Ensure the expected values are float
# Calculate SSD
ssd = np.sum((actual_values - expected_values) ** 2)
# Calculate R^2
mean_actual = np.mean(actual_values)
ss_total = np.sum((actual_values - mean_actual) ** 2)
ss_residual = np.sum((actual_values - expected_values) ** 2)
r_squared = 1 - (ss_residual / ss_total)
# Normalize expected values for Chi-Squared Test
observed_sum = np.sum(actual_values)
expected_sum = np.sum(expected_values)
if observed_sum != expected_sum:
scale_factor = observed_sum / expected_sum
expected_values = expected_values * scale_factor
# Calculate Chi-Squared
chi2, p_value = stats.chisquare(f_obs=actual_values, f_exp=expected_values)
# Append results to the list
results.append({
'Pollster': pollster_name,
'SSD': ssd,
'R^2': r_squared,
'Chi-Squared': chi2,
'P-Value': p_value
})
# Create a DataFrame from the results
results_df = pd.DataFrame(results)
# Save results to a CSV file
results_df.to_csv('polling_analysis_results.csv', index=False)
print("Results have been saved to polling_analysis_results.csv")