-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpnn.py
372 lines (316 loc) · 15.6 KB
/
pnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#-*- coding: utf-8 -*
'''
配置说明:
1. 原位深遥感图像,通过逐像素点除以2047(即2^11)的方式归一化,制作成网络输入,将网络输出保存成图像前,再乘以2047,
复原到原位深图像
2. GF:trainset: 19976 ×(128×128),testset: 90 ×(512×512)
3. QB:trainset: 18123 ×(128×128),testset: 24 ×(512×512)
5. SGD,momentum=0.9, learning_rate 前2层:0.0001,第3层:0.00001
6. MSE loss
7. total epochs: 600, batchsize:128, total_iterations: 1125000
'''
import numpy as np
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
import torch.nn as nn
from torch.nn import init
import time
import scipy.io as sio
import gdal, ogr, os, osr
from os.path import join
from visdom import Visdom
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark =True
## 超参数设置
version = 1 # 版本号
mav_value = 1023 # GF:1023 QB:2047
satellite = 'gf' # gf,qb
method = 'pnn'
train_batch_size = 128
test_batch_size = 1
total_epochs = 600
lr = 0.0001
test_freq = 20
model_backup_freq = 20
num_workers = 1
## 文件夹设置
traindata_dir = '../TIF/train/'
testdata_dir = '../TIF/test/'
testsample_dir = '../pnn-results/test-samples-v{}/'.format(version) # 保存测试阶段G生成的图片
evalsample_dir = '../pnn-results/eval-samples-v{}/'.format(version)
record_dir = '../pnn-results/record-v{}/'.format(version) # 保存训练阶段的损失值
model_dir = '../pnn-results/models-v{}/'.format(version)
backup_model_dir = join(model_dir, 'backup_model/')
checkpoint_model = join(model_dir, '{}-{}-model.pth'.format(satellite, method))
## 创建文件夹
if not os.path.exists(evalsample_dir):
os.makedirs(evalsample_dir)
if not os.path.exists(testsample_dir):
os.makedirs(testsample_dir)
if not os.path.exists(record_dir):
os.makedirs(record_dir)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
if not os.path.exists(backup_model_dir):
os.makedirs(backup_model_dir)
## Device configuration
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('==> gpu or cpu:', device, ', how many gpus available:', torch.cuda.device_count())
def is_image_file(filename):
return any(filename.endswith(extension) for extension in ["mul.tif"])
def load_image(filepath):
img = gdal.Open(filepath) # 原始数据
img = img.ReadAsArray() # [C,W,H]
if filepath.split('_')[1] != 'pan.tif':
img = img.transpose(1, 2, 0) # [W,H,C]
img = img.astype(np.float32) / mav_value # 归一化处理
return img
class DatasetFromFolder(Dataset):
def __init__(self, img_dir, transform=None):
self.img_dir = img_dir
self.transform = transform
self.image_filenames = [join(img_dir, x.split('_')[0]) for x in os.listdir(img_dir) if is_image_file(x)]
def __len__(self):
return len(self.image_filenames)
def __getitem__(self, index): # idx的范围是从0到len(self)
input_pan = load_image('%s_pan.tif'%self.image_filenames[index])
input_lr_u = load_image('%s_lr_u.tif'%self.image_filenames[index])
target = load_image('%s_mul.tif'%self.image_filenames[index])
if self.transform:
input_pan = self.transform(input_pan)
input_lr_u = self.transform(input_lr_u)
target = self.transform(target)
return input_pan, input_lr_u, target
class ToTensor(object):
def __call__(self, input):
if input.ndim == 3:
input = np.transpose(input, (2, 0, 1))
input = torch.from_numpy(input).type(torch.FloatTensor)
else:
input = torch.from_numpy(input).unsqueeze(0).type(torch.FloatTensor)
return input
def get_train_set(traindata_dir):
return DatasetFromFolder(traindata_dir,
transform = transforms.Compose([ToTensor()]))
def get_test_set(testdata_dir):
return DatasetFromFolder(testdata_dir,
transform = transforms.Compose([ToTensor()]))
transformed_trainset = get_train_set(traindata_dir)
transformed_testset = get_test_set(testdata_dir)
## 训练集 ## 验证集 ## 测试集
trainset_dataloader = DataLoader(dataset=transformed_trainset, batch_size=train_batch_size, shuffle=True,
num_workers=num_workers, pin_memory= True, drop_last=True)
testset_dataloader = DataLoader(dataset=transformed_testset, batch_size=test_batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True, drop_last=True)
class DataPrefetcher():
def __init__(self, loader):
self.loader = iter(loader)
# self.opt = opt
self.stream = torch.cuda.Stream()
self.preload()
def preload(self):
try:
self.batch = next(self.loader)
except StopIteration:
self.batch = None
return
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
self.preload()
return batch
class PNN(nn.Module):
def __init__(self):
super(PNN, self).__init__()
self.conv_1 = nn.Conv2d(in_channels=7, out_channels=48, kernel_size=9, stride=1, padding=4)
self.conv_2 = nn.Conv2d(in_channels=48, out_channels=32, kernel_size=5, stride=1, padding=2)
self.conv_3 = nn.Conv2d(in_channels=32, out_channels=4, kernel_size=5, stride=1, padding=2)
self.relu = nn.ReLU()
def forward(self, x):
fea = self.relu(self.conv_1(x)) # [batch_size,7,128,128]
fea = self.relu(self.conv_2(fea))
out = self.conv_3(fea)
return out
def array2raster(newRasterfn, rasterOrigin, pixelWidth, pixelHeight, array, bandSize):
if (bandSize == 4):
cols = array.shape[2]
rows = array.shape[1]
originX = rasterOrigin[0]
originY = rasterOrigin[1]
driver = gdal.GetDriverByName('GTiff') # #存的数据格式
outRaster = driver.Create(newRasterfn, cols, rows, 4, gdal.GDT_UInt16)
outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
for i in range(1, 5):
outband = outRaster.GetRasterBand(i)
outband.WriteArray(array[i - 1, :, :])
outRasterSRS = osr.SpatialReference()
outRasterSRS.ImportFromEPSG(4326)
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
elif (bandSize == 1):
cols = array.shape[1]
rows = array.shape[0]
originX = rasterOrigin[0]
originY = rasterOrigin[1]
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_UInt16)
outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
def denorm(x):
x = (x * mav_value).astype(np.uint16)
return x
def eval_img_save(x,name,k):
x = x.numpy()
x = np.transpose(x, (0, 2, 3, 1)) # [batch_size,512,512,4]
if name == 'real_images':
array2raster(join(evalsample_dir, 'real_images_{}_epoch{}.tif'.format(k + 1,total_epochs)),
[0, 0], 8, 8, denorm(x[0].transpose(2, 0, 1)), 4)
else:
array2raster(join(evalsample_dir, '{}_v{}_eval_fused_images_{}_epoch{}.tif'.format(method, version, k + 1,total_epochs)),
[0, 0], 8, 8, denorm(x[0].transpose(2, 0, 1)), 4)
def test_img_save(x,name,epoch):
x = np.transpose(x, (0, 2, 3, 1))
x = x.numpy() # [batch_size,512,512,4]
if name == 'test_fused_images':
array2raster(join(testsample_dir, 'test_fused_images_9_epoch{}.tif'.format(epoch)),
[0, 0], 8, 8, denorm(x[0].transpose(2, 0, 1)), 4)
elif name == 'real_images':
array2raster(join(testsample_dir, 'real_images_9_epoch{}.tif'.format(epoch)),
[0, 0], 8, 8, denorm(x[0].transpose(2, 0, 1)), 4)
elif name == 'test_pan_images':
array2raster(join(testsample_dir, 'test_pan_images_9_epoch{}.tif'.format(epoch)),
[0, 0], 8, 8, denorm(x[0].reshape(x.shape[1], x.shape[2])), 1)
else:
array2raster(join(testsample_dir, 'test_lrms_images_9_epoch{}.tif'.format(epoch)),
[0, 0], 8, 8, denorm(x[0].transpose(2, 0, 1)), 4)
criterion = nn.MSELoss().to(device)
model = PNN()
model.to(device)
# 前2层lr,第3层lr * 0.1
conv_3_params = list(map(id, model.conv_3.parameters()))
base_params = filter(lambda p: id(p) not in conv_3_params,
model.parameters())
optimizer = torch.optim.SGD([{'params': base_params},
{'params': model.conv_3.parameters(), 'lr': lr * 0.1}],lr=lr, momentum=0.9)
if (torch.cuda.device_count() > 1):
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
# 模型训练
def train(model, trainset_dataloader, start_epoch):
print('===>Begin Training!')
model.train()
steps_per_epoch = len(trainset_dataloader)
total_iterations = total_epochs * steps_per_epoch
print('total_iterations:{}'.format(total_iterations))
train_loss_record = open('%s/train_loss_record.txt' % record_dir, "w")
epoch_time_record = open('%s/epoch_time_record.txt' % record_dir, "w")
time_sum = 0
viz = Visdom()
viz.line(np.array([0.]), np.array([0.]), win='pnn_train_loss', opts=dict(title='pnn_train loss'))
for epoch in range(start_epoch + 1, total_epochs + 1):
start = time.time() # 记录每轮训练的开始时刻
prefetcher = DataPrefetcher(trainset_dataloader)
data = prefetcher.next()
i = 0
while data is not None:
i += 1
if i >= iters_per_epoch:
break
img_pan, img_lr_u, target = data[0].to(device), data[1].to(device), data[2].to(device) # cuda tensor [batchsize,C,W,H]
NDWI = ((img_lr_u[:, 1, :, :] - img_lr_u[:, 3, :, :]) / (img_lr_u[:, 1, :, :] + img_lr_u[:, 3, :, :])).unsqueeze(1)
NDVI = ((img_lr_u[:, 3, :, :] - img_lr_u[:, 2, :, :]) / (img_lr_u[:, 3, :, :] + img_lr_u[:, 2, :, :])).unsqueeze(1)
input_joint = torch.cat([img_lr_u, img_pan, NDWI, NDVI], dim=1) # [batch_size,5+2,128,128]
train_fused_images = model(input_joint) # 网络输出
train_loss = criterion(train_fused_images, target)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
data = prefetcher.next()
print('=> {}-{}-Epoch[{}/{}]: train_loss: {:.15f}'.format(satellite, method, epoch, total_epochs, train_loss.item()))
train_loss_record.write("Epoch[{}/{}]: train_loss: {:.15f}\n".format(epoch, total_epochs, train_loss.item()))
viz.line(np.array([train_loss.item()]), np.array([epoch]), win='pnn_train_loss', update='append')
# Save the model checkpoints and backup
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
torch.save(state, checkpoint_model)
# backup a model every epoch
if epoch % model_backup_freq == 0:
torch.save(model.state_dict(), join(backup_model_dir, '{}-{}-model-epochs{}.pth'.format(satellite, method, epoch)))
if epoch % test_freq == 0:
checkpoint = torch.load(checkpoint_model)
model.load_state_dict(checkpoint['model'])
print('==>Testing the model after training {} epochs'.format(epoch))
test(model,testset_dataloader, epoch)
# 输出每轮训练花费时间
time_epoch = (time.time() - start)
time_sum += time_epoch
print('==>No:{} epoch training costs {:.4f}min'.format(epoch, time_epoch / 60))
epoch_time_record.write(
"No:{} epoch training costs {:.4f}min\n".format(epoch, time_epoch / 60))
def test(model, testset_dataloader,epoch):
avg_test_loss = 0
model.eval()
test_loss_record = open('%s/test_loss_record.txt' % record_dir, "a")
with torch.no_grad():
for k, data in enumerate(testset_dataloader):
img_pan, img_lr_u, target = data[0].to(device), data[1].to(device), data[2].to(device) # 此时数据类型是cuda tensor [batchsize,C,W,H]
NDWI = ((img_lr_u[:, 1, :, :] - img_lr_u[:, 3, :, :]) / (img_lr_u[:, 1, :, :] + img_lr_u[:, 3, :, :])).unsqueeze(1)
NDVI = ((img_lr_u[:, 3, :, :] - img_lr_u[:, 2, :, :]) / (img_lr_u[:, 3, :, :] + img_lr_u[:, 2, :, :])).unsqueeze(1)
input_joint = torch.cat([img_lr_u, img_pan, NDWI, NDVI], dim=1) # [batch_size,5+2,128,128]
test_fused_images = model(input_joint) # # cuda tensor [bs,1,W,H]
# 损失函数
test_loss = criterion(test_fused_images,target)
avg_test_loss += test_loss.item()
# 保存融合图像
if k == 8:
print('==>Save the test_fused_images')
test_fused_images = test_fused_images.cpu()
test_img_save(test_fused_images, 'test_fused_images', epoch)
if epoch == test_freq:
print('==>Save the reference_images')
real_images, img_lr_u, img_pan = target.cpu(), img_lr_u.cpu(), img_pan.cpu()
test_img_save(real_images, 'real_images', epoch)
test_img_save(img_lr_u, 'test_lrms_images', epoch)
test_img_save(img_pan, 'test_pan_images', epoch)
print("===>Epoch{} Avg.test.loss: {:.10f} ".format(epoch, avg_test_loss / len(testset_dataloader)))
test_loss_record.write("Epoch{} Avg.test.loss: {:.10f}\n".format(epoch, avg_test_loss / len(testset_dataloader)))
test_loss_record.close()
def eval(model, testset_dataloader):
model.eval()
eval_loss_record = open('%s/eval_loss_record.txt' % record_dir, "w")
with torch.no_grad():
for k, data in enumerate(testset_dataloader):
img_pan, img_lr_u, target = data[0].to(device), data[1].to(device), data[2].to(device) # 此时数据类型是cuda tensor [batchsize,C,W,H]
NDWI = ((img_lr_u[:, 1, :, :] - img_lr_u[:, 3, :, :]) / (img_lr_u[:, 1, :, :] + img_lr_u[:, 3, :, :])).unsqueeze(1)
NDVI = ((img_lr_u[:, 3, :, :] - img_lr_u[:, 2, :, :]) / (img_lr_u[:, 3, :, :] + img_lr_u[:, 2, :, :])).unsqueeze(1)
input_joint = torch.cat([img_lr_u, img_pan, NDWI, NDVI], dim=1) # [batch_size,5+2,128,128]
eval_fused_images = model(input_joint) # # cuda tensor [bs,1,W,H]
# 损失函数
eval_loss = criterion(eval_fused_images,target)
print("===>Batch:{} Eval.loss: {:.10f} ".format(k+1, eval_loss.item()))
eval_loss_record.write("Batch:{} Eval.loss: {:.10f}\n".format(k+1, eval_loss.item()))
# 保存融合图像
print('==>Save the fused_images')
eval_fused_images, real_images = eval_fused_images.cpu(), target.cpu()
eval_img_save(eval_fused_images, 'eval_fused_images', k)
eval_img_save(real_images, 'real_images', k)
eval_loss_record.close()
def main():
# 如果有保存的模型,则加载模型,并在其基础上继续训练
if os.path.exists(checkpoint_model):
print("==> loading checkpoint '{}'".format(checkpoint_model))
checkpoint = torch.load(checkpoint_model)
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
print('==> 加载 epoch {} 成功!'.format(start_epoch))
else:
start_epoch = 0
print('==> 无保存模型,将从头开始训练!')
train(model, trainset_dataloader, start_epoch)
eval(model, testset_dataloader)
if __name__ == '__main__':
main()