-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathface_landmarks.py
82 lines (63 loc) · 2.45 KB
/
face_landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import sys
import cv2
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions
import ic_utils as ic
def draw_face_mesh(img, face_landmarks):
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
face_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
face_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=lm.x, y=lm.y, z=lm.z)
for lm in face_landmarks])
solutions.drawing_utils.draw_landmarks(
img_rgb,
face_landmarks_proto,
solutions.face_mesh.FACEMESH_TESSELATION,
None,
solutions.drawing_styles.get_default_face_mesh_tesselation_style())
solutions.drawing_utils.draw_landmarks(
img_rgb,
face_landmarks_proto,
solutions.face_mesh.FACEMESH_CONTOURS,
None,
solutions.drawing_styles.get_default_face_mesh_contours_style())
solutions.drawing_utils.draw_landmarks(
img_rgb,
face_landmarks_proto,
solutions.face_mesh.FACEMESH_IRISES,
None,
solutions.drawing_styles.get_default_face_mesh_iris_connections_style())
return cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
def main():
cap = ic.select_capture_source(sys.argv)
base_options = python.BaseOptions(model_asset_path='face_landmarker.task')
options = vision.FaceLandmarkerOptions(base_options=base_options,
num_faces=2)
detector = vision.FaceLandmarker.create_from_options(options)
cv2.namedWindow('result')
cv2.createTrackbar('highlight', 'result', 0, 477, ic.do_nothing)
while True:
grabbed, img = cap.read()
if not grabbed:
break
height = img.shape[0]
width = img.shape[1]
img_mp = mp.Image(image_format=mp.ImageFormat.SRGB, data=img)
results = detector.detect(img_mp)
highlight_index = cv2.getTrackbarPos('highlight', 'result')
num_detected_faces = len(results.face_landmarks)
for k in range(num_detected_faces):
img = draw_face_mesh(img, results.face_landmarks[k])
lm = results.face_landmarks[k][highlight_index]
x = int(lm.x * width)
y = int(lm.y * height)
cv2.circle(img, (x, y), 3, (0, 0, 255), -1)
cv2.imshow('result', img)
key = cv2.waitKey(30)
if key == ord('q'):
break
if __name__ == '__main__':
main()