forked from samuelschen/DSB2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathckpt.py
277 lines (269 loc) · 13 KB
/
ckpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import argparse
import torch
from helper import config, load_ckpt, save_ckpt
camunet_mapping = {
'c1.conv1.weight' : 'c1.block1.conv.weight',
'c1.conv1.bias' : 'c1.block1.conv.bias',
'c1.norm1.weight' : 'c1.block1.norm.weight',
'c1.norm1.bias': 'c1.block1.norm.bias',
'c1.norm1.running_mean' : 'c1.block1.norm.running_mean',
'c1.norm1.running_var' : 'c1.block1.norm.running_var',
'c1.conv2.weight' : 'c1.block2.conv.weight',
'c1.conv2.bias' : 'c1.block2.conv.bias',
'c1.norm2.weight' : 'c1.block2.norm.weight',
'c1.norm2.bias' : 'c1.block2.norm.bias',
'c1.norm2.running_mean' : 'c1.block2.norm.running_mean',
'c1.norm2.running_var' : 'c1.block2.norm.running_var',
'c2.conv1.weight' : 'c2.block1.conv.weight',
'c2.conv1.bias' : 'c2.block1.conv.bias',
'c2.norm1.weight' : 'c2.block1.norm.weight',
'c2.norm1.bias': 'c2.block1.norm.bias',
'c2.norm1.running_mean' : 'c2.block1.norm.running_mean',
'c2.norm1.running_var' : 'c2.block1.norm.running_var',
'c2.conv2.weight' : 'c2.block2.conv.weight',
'c2.conv2.bias' : 'c2.block2.conv.bias',
'c2.norm2.weight' : 'c2.block2.norm.weight',
'c2.norm2.bias' : 'c2.block2.norm.bias',
'c2.norm2.running_mean' : 'c2.block2.norm.running_mean',
'c2.norm2.running_var' : 'c2.block2.norm.running_var',
'c3.conv1.weight' : 'c3.block1.conv.weight',
'c3.conv1.bias' : 'c3.block1.conv.bias',
'c3.norm1.weight' : 'c3.block1.norm.weight',
'c3.norm1.bias': 'c3.block1.norm.bias',
'c3.norm1.running_mean' : 'c3.block1.norm.running_mean',
'c3.norm1.running_var' : 'c3.block1.norm.running_var',
'c3.conv2.weight' : 'c3.block2.conv.weight',
'c3.conv2.bias' : 'c3.block2.conv.bias',
'c3.norm2.weight' : 'c3.block2.norm.weight',
'c3.norm2.bias' : 'c3.block2.norm.bias',
'c3.norm2.running_mean' : 'c3.block2.norm.running_mean',
'c3.norm2.running_var' : 'c3.block2.norm.running_var',
'c4.conv1.weight' : 'c4.block1.conv.weight',
'c4.conv1.bias' : 'c4.block1.conv.bias',
'c4.norm1.weight' : 'c4.block1.norm.weight',
'c4.norm1.bias': 'c4.block1.norm.bias',
'c4.norm1.running_mean' : 'c4.block1.norm.running_mean',
'c4.norm1.running_var' : 'c4.block1.norm.running_var',
'c4.conv2.weight' : 'c4.block2.conv.weight',
'c4.conv2.bias' : 'c4.block2.conv.bias',
'c4.norm2.weight' : 'c4.block2.norm.weight',
'c4.norm2.bias' : 'c4.block2.norm.bias',
'c4.norm2.running_mean' : 'c4.block2.norm.running_mean',
'c4.norm2.running_var' : 'c4.block2.norm.running_var',
'cu.conv1.weight' : 'cu.block1.conv.weight',
'cu.conv1.bias' : 'cu.block1.conv.bias',
'cu.norm1.weight' : 'cu.block1.norm.weight',
'cu.norm1.bias' : 'cu.block1.norm.bias',
'cu.norm1.running_mean' : 'cu.block1.norm.running_mean',
'cu.norm1.running_var' : 'cu.block1.norm.running_var',
'cu.conv2.weight' : 'cu.block2.conv.weight',
'cu.conv2.bias' : 'cu.block2.conv.bias',
'cu.norm2.weight' : 'cu.block2.norm.weight',
'cu.norm2.bias' : 'cu.block2.norm.bias',
'cu.norm2.running_mean' : 'cu.block2.norm.running_mean',
'cu.norm2.running_var' : 'cu.block2.norm.running_var',
'u5s.up.weight' : 'u5s.up.weight',
'u5s.up.bias' : 'u5s.up.bias',
'u5s.conv1.weight' : 'u5s.block1.conv.weight',
'u5s.conv1.bias' : 'u5s.block1.conv.bias',
'u5s.norm1.weight' : 'u5s.block1.norm.weight',
'u5s.norm1.bias' : 'u5s.block1.norm.bias',
'u5s.norm1.running_mean' : 'u5s.block1.norm.running_mean',
'u5s.norm1.running_var' : 'u5s.block1.norm.running_var',
'u5s.conv2.weight' : 'u5s.block2.conv.weight',
'u5s.conv2.bias' : 'u5s.block2.conv.bias',
'u5s.norm2.weight' : 'u5s.block2.norm.weight',
'u5s.norm2.bias' : 'u5s.block2.norm.bias',
'u5s.norm2.running_mean' : 'u5s.block2.norm.running_mean',
'u5s.norm2.running_var' : 'u5s.block2.norm.running_var',
'u6s.up.weight' : 'u6s.up.weight',
'u6s.up.bias' : 'u6s.up.bias',
'u6s.conv1.weight' : 'u6s.block1.conv.weight',
'u6s.conv1.bias' : 'u6s.block1.conv.bias',
'u6s.norm1.weight' : 'u6s.block1.norm.weight',
'u6s.norm1.bias' : 'u6s.block1.norm.bias',
'u6s.norm1.running_mean' : 'u6s.block1.norm.running_mean',
'u6s.norm1.running_var' : 'u6s.block1.norm.running_var',
'u6s.conv2.weight' : 'u6s.block2.conv.weight',
'u6s.conv2.bias' : 'u6s.block2.conv.bias',
'u6s.norm2.weight' : 'u6s.block2.norm.weight',
'u6s.norm2.bias' : 'u6s.block2.norm.bias',
'u6s.norm2.running_mean' : 'u6s.block2.norm.running_mean',
'u6s.norm2.running_var' : 'u6s.block2.norm.running_var',
'u7s.up.weight' : 'u7s.up.weight',
'u7s.up.bias' : 'u7s.up.bias',
'u7s.conv1.weight' : 'u7s.block1.conv.weight',
'u7s.conv1.bias' : 'u7s.block1.conv.bias',
'u7s.norm1.weight' : 'u7s.block1.norm.weight',
'u7s.norm1.bias' : 'u7s.block1.norm.bias',
'u7s.norm1.running_mean' : 'u7s.block1.norm.running_mean',
'u7s.norm1.running_var' : 'u7s.block1.norm.running_var',
'u7s.conv2.weight' : 'u7s.block2.conv.weight',
'u7s.conv2.bias' : 'u7s.block2.conv.bias',
'u7s.norm2.weight' : 'u7s.block2.norm.weight',
'u7s.norm2.bias' : 'u7s.block2.norm.bias',
'u7s.norm2.running_mean' : 'u7s.block2.norm.running_mean',
'u7s.norm2.running_var' : 'u7s.block2.norm.running_var',
'u8s.up.weight' : 'u8s.up.weight',
'u8s.up.bias' : 'u8s.up.bias',
'u8s.conv1.weight' : 'u8s.block1.conv.weight',
'u8s.conv1.bias' : 'u8s.block1.conv.bias',
'u8s.norm1.weight' : 'u8s.block1.norm.weight',
'u8s.norm1.bias' : 'u8s.block1.norm.bias',
'u8s.norm1.running_mean' : 'u8s.block1.norm.running_mean',
'u8s.norm1.running_var' : 'u8s.block1.norm.running_var',
'u8s.conv2.weight' : 'u8s.block2.conv.weight',
'u8s.conv2.bias' : 'u8s.block2.conv.bias',
'u8s.norm2.weight' : 'u8s.block2.norm.weight',
'u8s.norm2.bias' : 'u8s.block2.norm.bias',
'u8s.norm2.running_mean' : 'u8s.block2.norm.running_mean',
'u8s.norm2.running_var' : 'u8s.block2.norm.running_var',
'ces.weight' : 'ces.weight',
'ces.bias' : 'ces.bias',
'u5c.up.weight' : 'u5c.up.weight',
'u5c.up.bias' : 'u5c.up.bias',
'u5c.conv1.weight' : 'u5c.block1.conv.weight',
'u5c.conv1.bias' : 'u5c.block1.conv.bias',
'u5c.norm1.weight' : 'u5c.block1.norm.weight',
'u5c.norm1.bias' : 'u5c.block1.norm.bias',
'u5c.norm1.running_mean' : 'u5c.block1.norm.running_mean',
'u5c.norm1.running_var' : 'u5c.block1.norm.running_var',
'u5c.conv2.weight' : 'u5c.block2.conv.weight',
'u5c.conv2.bias' : 'u5c.block2.conv.bias',
'u5c.norm2.weight' : 'u5c.block2.norm.weight',
'u5c.norm2.bias' : 'u5c.block2.norm.bias',
'u5c.norm2.running_mean' : 'u5c.block2.norm.running_mean',
'u5c.norm2.running_var' : 'u5c.block2.norm.running_var',
'u6c.up.weight' : 'u6c.up.weight',
'u6c.up.bias' : 'u6c.up.bias',
'u6c.conv1.weight' : 'u6c.block1.conv.weight',
'u6c.conv1.bias' : 'u6c.block1.conv.bias',
'u6c.norm1.weight' : 'u6c.block1.norm.weight',
'u6c.norm1.bias' : 'u6c.block1.norm.bias',
'u6c.norm1.running_mean' : 'u6c.block1.norm.running_mean',
'u6c.norm1.running_var' : 'u6c.block1.norm.running_var',
'u6c.conv2.weight' : 'u6c.block2.conv.weight',
'u6c.conv2.bias' : 'u6c.block2.conv.bias',
'u6c.norm2.weight' : 'u6c.block2.norm.weight',
'u6c.norm2.bias' : 'u6c.block2.norm.bias',
'u6c.norm2.running_mean' : 'u6c.block2.norm.running_mean',
'u6c.norm2.running_var' : 'u6c.block2.norm.running_var',
'u7c.up.weight' : 'u7c.up.weight',
'u7c.up.bias' : 'u7c.up.bias',
'u7c.conv1.weight' : 'u7c.block1.conv.weight',
'u7c.conv1.bias' : 'u7c.block1.conv.bias',
'u7c.norm1.weight' : 'u7c.block1.norm.weight',
'u7c.norm1.bias' : 'u7c.block1.norm.bias',
'u7c.norm1.running_mean' : 'u7c.block1.norm.running_mean',
'u7c.norm1.running_var' : 'u7c.block1.norm.running_var',
'u7c.conv2.weight' : 'u7c.block2.conv.weight',
'u7c.conv2.bias' : 'u7c.block2.conv.bias',
'u7c.norm2.weight' : 'u7c.block2.norm.weight',
'u7c.norm2.bias' : 'u7c.block2.norm.bias',
'u7c.norm2.running_mean' : 'u7c.block2.norm.running_mean',
'u7c.norm2.running_var' : 'u7c.block2.norm.running_var',
'u8c.up.weight' : 'u8c.up.weight',
'u8c.up.bias' : 'u8c.up.bias',
'u8c.conv1.weight' : 'u8c.block1.conv.weight',
'u8c.conv1.bias' : 'u8c.block1.conv.bias',
'u8c.norm1.weight' : 'u8c.block1.norm.weight',
'u8c.norm1.bias' : 'u8c.block1.norm.bias',
'u8c.norm1.running_mean' : 'u8c.block1.norm.running_mean',
'u8c.norm1.running_var' : 'u8c.block1.norm.running_var',
'u8c.conv2.weight' : 'u8c.block2.conv.weight',
'u8c.conv2.bias' : 'u8c.block2.conv.bias',
'u8c.norm2.weight' : 'u8c.block2.norm.weight',
'u8c.norm2.bias' : 'u8c.block2.norm.bias',
'u8c.norm2.running_mean' : 'u8c.block2.norm.running_mean',
'u8c.norm2.running_var' : 'u8c.block2.norm.running_var',
'cec.weight' : 'cec.weight',
'cec.bias' : 'cec.bias',
'u5m.up.weight' : 'u5m.up.weight',
'u5m.up.bias' : 'u5m.up.bias',
'u5m.conv1.weight' : 'u5m.block1.conv.weight',
'u5m.conv1.bias' : 'u5m.block1.conv.bias',
'u5m.norm1.weight' : 'u5m.block1.norm.weight',
'u5m.norm1.bias' : 'u5m.block1.norm.bias',
'u5m.norm1.running_mean' : 'u5m.block1.norm.running_mean',
'u5m.norm1.running_var' : 'u5m.block1.norm.running_var',
'u5m.conv2.weight' : 'u5m.block2.conv.weight',
'u5m.conv2.bias' : 'u5m.block2.conv.bias',
'u5m.norm2.weight' : 'u5m.block2.norm.weight',
'u5m.norm2.bias' : 'u5m.block2.norm.bias',
'u5m.norm2.running_mean' : 'u5m.block2.norm.running_mean',
'u5m.norm2.running_var' : 'u5m.block2.norm.running_var',
'u6m.up.weight' : 'u6m.up.weight',
'u6m.up.bias' : 'u6m.up.bias',
'u6m.conv1.weight' : 'u6m.block1.conv.weight',
'u6m.conv1.bias' : 'u6m.block1.conv.bias',
'u6m.norm1.weight' : 'u6m.block1.norm.weight',
'u6m.norm1.bias' : 'u6m.block1.norm.bias',
'u6m.norm1.running_mean' : 'u6m.block1.norm.running_mean',
'u6m.norm1.running_var' : 'u6m.block1.norm.running_var',
'u6m.conv2.weight' : 'u6m.block2.conv.weight',
'u6m.conv2.bias' : 'u6m.block2.conv.bias',
'u6m.norm2.weight' : 'u6m.block2.norm.weight',
'u6m.norm2.bias' : 'u6m.block2.norm.bias',
'u6m.norm2.running_mean' : 'u6m.block2.norm.running_mean',
'u6m.norm2.running_var' : 'u6m.block2.norm.running_var',
'u7m.up.weight' : 'u7m.up.weight',
'u7m.up.bias' : 'u7m.up.bias',
'u7m.conv1.weight' : 'u7m.block1.conv.weight',
'u7m.conv1.bias' : 'u7m.block1.conv.bias',
'u7m.norm1.weight' : 'u7m.block1.norm.weight',
'u7m.norm1.bias' : 'u7m.block1.norm.bias',
'u7m.norm1.running_mean' : 'u7m.block1.norm.running_mean',
'u7m.norm1.running_var' : 'u7m.block1.norm.running_var',
'u7m.conv2.weight' : 'u7m.block2.conv.weight',
'u7m.conv2.bias' : 'u7m.block2.conv.bias',
'u7m.norm2.weight' : 'u7m.block2.norm.weight',
'u7m.norm2.bias' : 'u7m.block2.norm.bias',
'u7m.norm2.running_mean' : 'u7m.block2.norm.running_mean',
'u7m.norm2.running_var' : 'u7m.block2.norm.running_var',
'u8m.up.weight' : 'u8m.up.weight',
'u8m.up.bias' : 'u8m.up.bias',
'u8m.conv1.weight' : 'u8m.block1.conv.weight',
'u8m.conv1.bias' : 'u8m.block1.conv.bias',
'u8m.norm1.weight' : 'u8m.block1.norm.weight',
'u8m.norm1.bias' : 'u8m.block1.norm.bias',
'u8m.norm1.running_mean' : 'u8m.block1.norm.running_mean',
'u8m.norm1.running_var' : 'u8m.block1.norm.running_var',
'u8m.conv2.weight' : 'u8m.block2.conv.weight',
'u8m.conv2.bias' : 'u8m.block2.conv.bias',
'u8m.norm2.weight' : 'u8m.block2.norm.weight',
'u8m.norm2.bias' : 'u8m.block2.norm.bias',
'u8m.norm2.running_mean' : 'u8m.block2.norm.running_mean',
'u8m.norm2.running_var' : 'u8m.block2.norm.running_var',
'cem.weight' : 'cem.weight',
'cem.bias' : 'cem.bias',
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('ckpt', nargs='*', help='checkpoint filepath')
parser.add_argument('--model', help='model name of checkpoint')
parser.add_argument('--migrate', action='store_true', help='migrate checkpoint format')
args = parser.parse_args()
if args.model:
model_name = args.model.lower()
else:
model_name = config['param']['model']
for fn in args.ckpt:
# load ckpt
if torch.cuda.is_available():
# Load all tensors onto previous state
checkpoint = torch.load(fn)
else:
# Load all tensors onto the CPU
checkpoint = torch.load(fn, map_location=lambda storage, loc: storage)
if model_name == 'camunet' and args.migrate is True:
for old_name, new_name in camunet_mapping.items():
if old_name != new_name:
checkpoint['model'][new_name] = checkpoint['model'][old_name]
del checkpoint['model'][old_name]
if 'name' in checkpoint:
print("Model name {} has existed in checkpoint".format(checkpoint['name'], fn))
continue
checkpoint['name'] = model_name
torch.save(checkpoint, fn)
print("Model name {} has insert into checkpoint {}".format(model_name, fn))