-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtesting_unet.py
executable file
·217 lines (168 loc) · 7.89 KB
/
testing_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import division
from sklearn.metrics import f1_score
from eval.evaluation_mrbrain import evaluate
from lib.operations import *
from lib.utils import *
from preprocess.preprocess_mrbrains import *
F = tf.app.flags.FLAGS
d_bns = [batch_norm(name='u_bn{}'.format(i,)) for i in range(14)]
"""
Modified 3D U-Net
"""
def trained_network_dis(patch, reuse=False):
"""
Parameters:
* patch - input image for the network
* reuse - boolean variable to reuse weights
Returns:
* softmax of logits
"""
with tf.variable_scope('U') as scope:
if reuse:
scope.reuse_variables()
h0 = lrelu(conv3d_WN(patch, 32, name='u_h0_conv'))
h1 = lrelu(conv3d_WN(h0, 32, name='u_h1_conv'))
p1 = avg_pool3D(h1)
h2 = lrelu(conv3d_WN(p1, 64, name='u_h2_conv'))
h3 = lrelu(conv3d_WN(h2, 64, name='u_h3_conv'))
p3 = avg_pool3D(h3)
h4 = lrelu(conv3d_WN(p3, 128, name='u_h4_conv'))
h5 = lrelu(conv3d_WN(h4, 128, name='u_h5_conv'))
p5 = avg_pool3D(h5)
h6 = lrelu(conv3d_WN(p5, 256, name='u_h6_conv'))
h7 = lrelu(conv3d_WN(h6, 256, name='u_h7_conv'))
up1 = deconv3d_WN(h7,256,name='u_up1_deconv')
up1 = tf.concat([h5,up1],4)
h8 = lrelu(conv3d_WN(up1, 128, name='u_h8_conv'))
h9 = lrelu(conv3d_WN(h8, 128, name='u_h9_conv'))
up2 = deconv3d_WN(h9,128,name='u_up2_deconv')
up2 = tf.concat([h3,up2],4)
h10 = lrelu(conv3d_WN(up2, 64, name='u_h10_conv'))
h11 = lrelu(conv3d_WN(h10, 64, name='u_h11_conv'))
up3 = deconv3d_WN(h11,64,name='u_up3_deconv')
up3 = tf.concat([h1,up3],4)
h12 = lrelu(conv3d_WN(up3, 32, name='u_h12_conv'))
h13 = lrelu(conv3d_WN(h12, 32, name='u_h13_conv'))
h14 = conv3d_WN(h13, F.num_classes,name='u_h14_conv')
return tf.nn.softmax(h14)
"""
Actual 3D U-Net
"""
def trained_network( patch, phase, pshape, reuse=None):
"""
Parameters:
* patch - input image for the network
* phase - phase for batchnorm
* pshape - shape of the patch
* reuse - boolean variable to reuse weights
Returns:
* softmax of logits
"""
with tf.variable_scope('U') as scope:
if reuse:
scope.reuse_variables()
sh1, sh2, sh3 = int(pshape[0]/4),\
int(pshape[0]/2), int(pshape[0])
h0 = relu(d_bns[0](conv3d(patch, 32, name='u_h0_conv'),phase))
h1 = relu(d_bns[1](conv3d(h0, 32, name='u_h1_conv'),phase))
p1 = max_pool3D(h1)
h2 = relu(d_bns[2](conv3d(p1, 64, name='u_h2_conv'),phase))
h3 = relu(d_bns[3](conv3d(h2, 64, name='u_h3_conv'),phase))
p3 = max_pool3D(h3)
h4 = relu(d_bns[4](conv3d(p3, 128, name='u_h4_conv'),phase))
h5 = relu(d_bns[5](conv3d(h4, 128, name='u_h5_conv'),phase))
p5 = max_pool3D(h5)
h6 = relu(d_bns[6](conv3d(p5, 256, name='u_h6_conv'),phase))
h7 = relu(d_bns[7](conv3d(h6, 256, name='u_h7_conv'),phase))
up1 = deconv3d(h7,[F.batch_size,sh1,sh1,sh1,48],name='d_up1_deconv')
up1 = tf.concat([h5,up1],4)
h8 = relu(d_bns[8](conv3d(up1, 128, name='u_h8_conv'),phase))
h9 = relu(d_bns[9](conv3d(h8, 128, name='u_h9_conv'),phase))
up2 = deconv3d(h9,[F.batch_size,sh2,sh2,sh2,128],name='d_up2_deconv')
up2 = tf.concat([h3,up2],4)
h10 = relu(d_bns[10](conv3d(up2, 64, name='u_h10_conv'),phase))
h11 = relu(d_bns[11](conv3d(h10, 64, name='u_h11_conv'),phase))
up3 = deconv3d(h11,[F.batch_size,sh3,sh3,sh3,64],name='d_up3_deconv')
up3 = tf.concat([h1,up3],4)
h12 = relu(d_bns[12](conv3d(up3, 32, name='u_h12_conv'),phase))
h13 = relu(d_bns[13](conv3d(h12, 32, name='u_h13_conv'),phase))
h14 = conv3d(h13, F.num_classes, name='u_h14_conv')
return tf.nn.softmax(h14)
"""
Function to test the model and evaluate the predicted images
Parameters:
* patch_shape - shape of the patch
* extraction_step - stride while extracting patches
"""
def test(patch_shape,extraction_step):
with tf.Graph().as_default():
test_patches = tf.placeholder(tf.float32, [F.batch_size, patch_shape[0], patch_shape[1],
patch_shape[2], F.num_mod], name='real_patches')
phase = tf.placeholder(tf.bool)
# Define the network
# For using actual 3-D U-Net change ***trained_network*** function both in training and testing
#output_soft = trained_network(test_patches, phase, patch_shape, reuse=None)
output_soft = trained_network_dis(test_patches, reuse=None)
# To convert from one hat form
output=tf.argmax(output_soft, axis=-1)
print("Output Patch Shape:",output.get_shape())
# To load the saved checkpoint
saver = tf.train.Saver()
with tf.Session() as sess:
try:
load_model(F.best_checkpoint_dir, sess, saver)
print(" Checkpoint loaded succesfully!....\n")
except:
print(" [!] Checkpoint loading failed!....\n")
return
# Get patches from test images
patches_test, labels_test = preprocess_dynamic_lab(F.data_directory,
F.num_classes,extraction_step,patch_shape,
F.number_train_images,validating=F.training,
testing=F.testing,num_images_testing=F.number_test_images)
total_batches = int(patches_test.shape[0]/F.batch_size)
# Array to store the prediction results
predictions_test = np.zeros((patches_test.shape[0],patch_shape[0], patch_shape[1],
patch_shape[2]))
print("max and min of patches_test:",np.min(patches_test),np.max(patches_test))
# Batch wise prediction
print("Total number of Batches: ",total_batches)
for batch in range(total_batches):
patches_feed = patches_test[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:,:]
preds = sess.run(output, feed_dict={test_patches:patches_feed,phase:False})
predictions_test[batch*F.batch_size:(batch+1)*F.batch_size,:,:,:]=preds
print(("Processed_batch:[%8d/%8d]")%(batch,total_batches))
print("All patches Predicted")
print("Shape of predictions_test, min and max:",predictions_test.shape,np.min(predictions_test),
np.max(predictions_test))
#To stitch the image back
images_pred = recompose3D_overlap(predictions_test,220, 220, 48, extraction_step[0],
extraction_step[1],extraction_step[2])
print("Shape of Predicted Output Groundtruth Images:",images_pred.shape,
np.min(images_pred), np.max(images_pred),
np.mean(images_pred),np.mean(labels_test))
# To save the images
test_idx = [1, 14]
for i in range(F.number_test_images):
# pred2d=np.reshape(images_pred[i],(220*220*48))
# lab2d=np.reshape(labels_test[i],(220*220*48))
save_image(F.results_dir, images_pred[i], test_idx[i])
# Evaluation
pred2d=np.reshape(images_pred,(images_pred.shape[0]*220*220*48))
lab2d=np.reshape(labels_test,(labels_test.shape[0]*220*220*48))
F1_score = f1_score(lab2d, pred2d, [0, 1, 2, 3, 4, 5, 6, 7, 8], average=None)
print("Testing Dice Coefficient.... ")
print("Background:", F1_score[0])
print("Cortical Gray Matter:", F1_score[1])
print("Basal ganglia:", F1_score[2])
print("White matter:", F1_score[3])
print("White matter lesions:", F1_score[4])
print("Cerebrospinal fluid in the extracerebral space:", F1_score[5])
print("Ventricles:", F1_score[6])
print("Cerebellum:", F1_score[7])
print("Brain stem:", F1_score[8])
for i in range(F.number_test_images):
print("Test Image : " + str(test_idx[i]))
evaluate(os.path.join(F.results_dir, 'result_' + str(test_idx[i]) + '.nii.gz'),
os.path.join(F.data_directory + "/test/" + str(test_idx[i]), 'segm.nii.gz'))
return