-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathConnecting Dots
69 lines (59 loc) · 2.44 KB
/
Connecting Dots
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
Gary has a board of size NxM. Each cell in the board is a coloured dot. There exist only 26 colours denoted by uppercase Latin characters (i.e. A,B,...,Z). Now Gary is getting bore and wants to play a game. The key of this game is to find a cycle that contain dots of same colour. Formally, we call a sequence of dots d1, d2, ..., dk a cycle if and only if it meets the following condition:
1. These k dots are different: if i ≠ j then di is different from dj.
2. k is at least 4.
3. All dots belong to the same colour.
4. For all 1 ≤ i ≤ k - 1: di and di + 1 are adjacent. Also, dk and d1 should also be adjacent. Cells x and y are called adjacent if they share an edge.
Since Gary is colour blind, he wants your help. Your task is to determine if there exists a cycle on the board.
Assume input to be 0-indexed based.
Input Format :
Line 1 : Two integers N and M, the number of rows and columns of the board
Next N lines : a string consisting of M characters, expressing colors of dots in each line. Each character is an uppercase Latin letter.
Output Format :
Return 1 if there is a cycle else return 0
Constraints :
2 ≤ N, M ≤ 50
Sample Input :
3 4
AAAA
ABCA
AAAA
Sample Output :
1
Solution:
#include <cstring>
bool is_cycle(char board[][MAXN], int si, int sj, int ei, int ej, int n, int m, bool **visited, char c, int len)
{
if(len >= 4 && si == ei && sj == ej)
return true;
if(ei < 0 || ei >= n || ej < 0 || ej >= m || visited[ei][ej] == true || board[ei][ej] != c)
return false;
visited[ei][ej] = true;
bool l = is_cycle(board, si, sj, ei, ej - 1, n, m, visited, c, len + 1);
bool r = is_cycle(board, si, sj, ei, ej + 1, n, m, visited, c, len + 1);
bool u = is_cycle(board, si, sj, ei - 1, ej, n, m, visited, c, len + 1);
bool d = is_cycle(board, si, sj, ei + 1, ej, n, m, visited, c, len + 1);
if(l || r || u || d)
return true;
visited[ei][ej] = false;
return false;
}
int solve(char board[][MAXN],int n, int m)
{
bool **visited = new bool*[n];
for(int i = 0; i < n; i++)
{
visited[i] = new bool[m];
for(int j = 0; j < m; j++)
visited[i][j] = false;
}
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
bool ans = is_cycle(board, i, j, i, j, n, m, visited, board[i][j], 0);
if(ans == true)
return 1;
}
}
return 0;
}