We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have trained controlnet using this tutorial https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README.md with custom dataset
The conditioning image
the generated image:
But the X-Adapter didn't produce the expected result.
I made some change in inference_controlnet.py to adapt with the condition_type arg
if args.condition_type == "canny": controlnet_path = args.controlnet_canny_path canny = CannyDetector() elif args.condition_type == "depth": controlnet_path = args.controlnet_depth_path # todo: haven't defined in args depth = MidasDetector.from_pretrained("lllyasviel/Annotators") elif args.condition_type == "mask": controlnet_path = args.controlnet_mask_path else: raise NotImplementedError("not implemented yet") prompt = args.prompt if args.prompt_sd1_5 is None: prompt_sd1_5 = prompt else: prompt_sd1_5 = args.prompt_sd1_5 if args.negative_prompt is None: negative_prompt = "" else: negative_prompt = args.negative_prompt torch.set_grad_enabled(False) torch.backends.cudnn.benchmark = True # load controlnet print(controlnet_path) controlnet = ControlNetModel.from_pretrained( controlnet_path, torch_dtype=weight_dtype ) print('successfully load controlnet') input_image = Image.open(args.input_image_path) # input_image = input_image.resize((512, 512), Image.LANCZOS) input_image = input_image.resize((args.width_sd1_5, args.height_sd1_5), Image.LANCZOS) if args.condition_type == "canny": control_image = canny(input_image) control_image.save(f'{args.save_path}/{prompt[:10]}_canny_condition.png') elif args.condition_type == "depth": control_image = depth(input_image) control_image.save(f'{args.save_path}/{prompt[:10]}_depth_condition.png') elif args.condition_type == "mask": control_image = input_image control_image.save(f'{args.save_path}/{prompt[:10]}_mask_condition.png')
the command:
python inference.py --plugin_type "controlnet" --prompt "a metal_nut with a bent" --condition_type "mask" --input_image_path ".mvtec/metal_nut/bent/source/179_triple.png" --controlnet_condition_scale_list 1.0 2.0 --adapter_guidance_start_list 1.00 --adapter_condition_scale_list 1.0 1.20 --height 1024 --width 1024 --height_sd1_5 512 --width_sd1_5 512
the screenshot of conditioning and the generated image:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I have trained controlnet using this tutorial https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README.md with custom dataset
The conditioning image
the generated image:
But the X-Adapter didn't produce the expected result.
I made some change in inference_controlnet.py to adapt with the condition_type arg
the command:
the screenshot of conditioning and the generated image:
The text was updated successfully, but these errors were encountered: