Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The unexpected result #36

Open
pribadihcr opened this issue Jun 28, 2024 · 0 comments
Open

The unexpected result #36

pribadihcr opened this issue Jun 28, 2024 · 0 comments

Comments

@pribadihcr
Copy link

pribadihcr commented Jun 28, 2024

I have trained controlnet using this tutorial https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README.md with custom dataset

The conditioning image
179_triple

the generated image:
output

But the X-Adapter didn't produce the expected result.

I made some change in inference_controlnet.py to adapt with the condition_type arg

if args.condition_type == "canny":
        controlnet_path = args.controlnet_canny_path
        canny = CannyDetector()
    elif args.condition_type == "depth":
        controlnet_path = args.controlnet_depth_path  # todo: haven't defined in args
        depth = MidasDetector.from_pretrained("lllyasviel/Annotators")
    elif args.condition_type == "mask":
        controlnet_path = args.controlnet_mask_path
    else:
        raise NotImplementedError("not implemented yet")

    prompt = args.prompt
    if args.prompt_sd1_5 is None:
        prompt_sd1_5 = prompt
    else:
        prompt_sd1_5 = args.prompt_sd1_5

    if args.negative_prompt is None:
        negative_prompt = ""
    else:
        negative_prompt = args.negative_prompt

    torch.set_grad_enabled(False)
    torch.backends.cudnn.benchmark = True

    # load controlnet
    print(controlnet_path)
    
    controlnet = ControlNetModel.from_pretrained(
        controlnet_path, torch_dtype=weight_dtype
    )
    print('successfully load controlnet')

    input_image = Image.open(args.input_image_path)
    # input_image = input_image.resize((512, 512), Image.LANCZOS)
    input_image = input_image.resize((args.width_sd1_5, args.height_sd1_5), Image.LANCZOS)
    if args.condition_type == "canny":
        control_image = canny(input_image)
        control_image.save(f'{args.save_path}/{prompt[:10]}_canny_condition.png')
    elif args.condition_type == "depth":
        control_image = depth(input_image)
        control_image.save(f'{args.save_path}/{prompt[:10]}_depth_condition.png')
    elif args.condition_type == "mask":
        control_image = input_image
        control_image.save(f'{args.save_path}/{prompt[:10]}_mask_condition.png')

the command:

python inference.py --plugin_type "controlnet" --prompt "a metal_nut with a bent" --condition_type "mask" --input_image_path ".mvtec/metal_nut/bent/source/179_triple.png"  --controlnet_condition_scale_list 1.0 2.0 --adapter_guidance_start_list 1.00 --adapter_condition_scale_list 1.0 1.20 --height 1024 --width 1024 --height_sd1_5 512 --width_sd1_5 512

the screenshot of conditioning and the generated image:
Screenshot from 2024-06-28 09-29-46

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant