-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.py
673 lines (485 loc) · 25.2 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import plotly.express as px
import plotly.graph_objs as go
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from animation import animation
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('mode.use_inf_as_na', True)
st.set_page_config(
page_title="VizIt",
page_icon="📈",
layout="wide"
)
# with st.sidebar:
# selected_radio = st.radio(
# "",
# ("Data Description and Exploration", "Data Cleaning", "Data Visualization", "Linear Regression", "Logistic Regression")
# )
# print("selected radio: ", selected_radio)
st.markdown("<h1 style='text-align: center; color: #D04848; font-size: 60px'>VizIt</h1>", unsafe_allow_html=True)
st.markdown(animation,unsafe_allow_html=True)
css_style = """
<style>
.st-emotion-cache-1erivf3 {
background: #D04848;
}
h3 {
color: rgba(255, 220, 90, 0.95);
}
</style>
"""
st.markdown(css_style, unsafe_allow_html=True)
uploaded_file = st.file_uploader(label="Choose a CSV file", type=["csv"])
df = None
numeric_columns = []
categorical_columns = []
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
st.subheader("Data Editor")
st.data_editor(df, width=1000)
numeric_columns = list(df.select_dtypes(['float', 'int']).columns)
categorical_columns = [None] + list(df.select_dtypes(exclude='number').columns)
except Exception as e:
print(e)
try:
if uploaded_file:
st.markdown("<h2 style='text-align: center; color: #D04848;'>Data Exploration</h2>", unsafe_allow_html=True)
st.header("1. Structure")
st.subheader("How big is the file")
bytes_data = uploaded_file.getvalue()
file_size_MB = round(len(bytes_data) / (1024 * 1024), 6)
st.write(str(file_size_MB) + "MB")
st.subheader("Data shape")
st.write(df.shape)
st.write("Number of rows: " + str(df.shape[0]))
st.write("Number of columns: " + str(df.shape[1]))
col21, col22 = st.columns([0.5, 0.5])
with col21:
st.subheader("All columns")
column_names = df.columns.tolist()
st.write(column_names)
with col22:
st.subheader("Column types")
st.dataframe(df.dtypes, width=300)
st.subheader("Head of data")
head_number = st.number_input("Enter number of lines to return in head" , min_value=1, max_value=20, value=5, step=1, key="head-1")
st.write(df.head(head_number))
st.subheader("Tail of data")
tail_number = st.number_input("Enter number of lines to return in tail" , min_value=1, max_value=20, value=5, step=1, key="tail-1")
st.write(df.tail(tail_number))
st.subheader("Description")
st.write("For numerical columns")
st.write(df.describe())
# describing categorical data
st.write("For categorical columns")
st.write(df.describe(include=['object']))
st.header("2. Granularity")
st.subheader("Unique values")
unique_counts = df.nunique()
st.write("Number of unique values in each column: ")
st.dataframe(unique_counts, width=500)
cat_col = st.selectbox('Choose a categorical column:', options=categorical_columns, index=0, key="unique-1")
if cat_col:
unique_values = df[cat_col].unique()
st.write(unique_values)
st.header("3. Scope")
st.write("How incomplete is your data")
col23, col24, col25 = st.columns([0.33, 0.33, 0.33])
with col23:
missing_values = df.isnull().sum()
st.write("Missing values:")
st.dataframe(missing_values, width=300)
with col24:
blank_values = (df == '').sum()
st.write("Blank values:")
st.dataframe(blank_values, width=300)
with col25:
nan_values = df.isna().sum()
st.write("NaN values:")
st.dataframe(nan_values, width=300)
st.header("4. Temporality")
st.write("Please choose a column that represents valid datetime")
time_col_option = st.selectbox('Choose a categorical column:', options=df.columns, index=0, key="time-1")
try:
time_col = pd.to_datetime(df[time_col_option], errors="coerce")
st.dataframe(time_col, width=500)
min_time = time_col.min()
max_time = time_col.max()
# Display min and max times
st.write(f"Min time represented in {time_col_option}: {min_time.strftime('%Y-%m-%d %H:%M:%S')}")
st.write(f"Max time represented in {time_col_option}: {max_time.strftime('%Y-%m-%d %H:%M:%S')}")
except Exception as e:
print(e)
st.write("The selected column cannot be changed to datetime type")
st.markdown("<h2 style='text-align: center; color: #D04848;'>Data Cleaning</h2>", unsafe_allow_html=True)
st.subheader("Drop rows or columns with missing values")
drop_all = st.checkbox("Both rows and columns")
drop_rows = st.checkbox("Rows")
drop_columns = st.checkbox("Columns")
if drop_all:
df.dropna(inplace=True)
if drop_rows:
df.dropna(axis=0, inplace=True)
if drop_columns:
df.dropna(axis=1, inplace=True)
st.write("NaN count after dropping")
na_count_rows = df.isna().sum()
st.dataframe(na_count_rows, width=600)
st.subheader("Fill missing values with a specific value")
fill_col_option_numeric = st.selectbox('Numeric columns', options=[None]+numeric_columns, index=0, key="fill-num-0")
if fill_col_option_numeric != None:
fill_options = st.radio("Select among the following",["none of the below", "0", "median", "mode"])
if fill_options == "constant":
fill_value = st.number_input("Enter constant value and press enter", value=0, step=1)
elif fill_options == "Median":
fill_value = df[fill_col_option_numeric].median()
elif fill_options == "Mode":
fill_value = df[fill_col_option_numeric].mode().iloc[0]
elif fill_options == "0":
fill_value = 0
else:
fill_value = None
if fill_value:
df[fill_col_option_numeric].fillna(fill_value, inplace=True)
fill_col_option_categorical = st.selectbox('Categorical columns', options=categorical_columns, index=0, key="fill-num-1")
if fill_col_option_categorical != None:
fill_options_2 = st.radio("Select among the following",["none of the below", "Mode", "Unknown", "Custom"])
if fill_options_2 == "Custom":
fill_value = st.text_input("Enter text value and press enter")
elif fill_options_2 == "Mode":
fill_value = df[fill_col_option_categorical].mode().iloc[0]
elif fill_options_2 == "Unknown":
fill_value = "Unknown"
else:
fill_value = None
if fill_value:
df[fill_col_option_categorical].fillna(fill_value, inplace=True)
st.write("NaN count after dropping")
na_count_rows = df.isna().sum()
st.dataframe(na_count_rows, width=600)
st.subheader("Remove duplicates")
duplicate_count = df.duplicated().sum()
st.write("Number of duplicates in data: ", duplicate_count)
duplicates = df[df.duplicated(keep=False)]
st.dataframe(duplicates, width=700)
remove_duplicates_options = st.radio("Select among the following", ["no", "yes"])
if remove_duplicates_options == "yes":
df.drop_duplicates(inplace=True)
duplicate_count = df.duplicated().sum()
st.write("Number of duplicates in data now: ", duplicate_count)
st.markdown("<h2 style='text-align: center; color: #D04848;'>Data Visualization</h2>", unsafe_allow_html=True)
with st.expander("Bar Plot"):
col3, col4 = st.columns([0.25, 0.75])
with col3:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=3)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=4)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=34-1)
with col4:
fig, ax = plt.subplots()
if c_axis is not None:
sns.barplot(x=x_values, y=y_values, data=df, palette='pastel', hue=c_axis)
else:
sns.barplot(x=x_values, y=y_values, data=df)
st.pyplot(fig)
plt.close(fig)
with st.expander("Line Plot"):
col15, col16 = st.columns([0.25, 0.75])
with col15:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=15)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=16)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=1516-1)
style = st.selectbox('Style: ', options=categorical_columns, key=1516-2)
with col16:
fig, ax = plt.subplots()
if c_axis is not None:
sns.lineplot(x=x_values, y=y_values, data=df, hue=c_axis, style=style, palette='pastel')
else:
sns.lineplot(x=x_values, y=y_values, data=df, style=style, )
plt.close(fig)
st.pyplot(fig)
with st.expander("Scatter Plot"):
col1 , col2 = st.columns([0.25, 0.75])
with col1:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=1)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=2)
c_axis = st.selectbox('Color: ', options=categorical_columns)
style = st.selectbox('Style: ', options=categorical_columns)
with col2:
fig, ax = plt.subplots()
if c_axis is not None:
sns.scatterplot(x=x_values, y=y_values, data=df, hue=c_axis, palette='pastel', style=style)
else:
sns.scatterplot(x=x_values, y=y_values, data=df, style=style)
plt.close(fig)
st.pyplot(fig)
with st.expander("Histogram"):
col23 , col24 = st.columns([0.25, 0.75])
with col23:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=23)
kde = st.selectbox('KDE: ', options=[True, False], key=2324-1)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=2324-2)
with col24:
fig, ax = plt.subplots()
if c_axis is not None:
sns.histplot(x=x_values, data=df, kde=kde, hue=c_axis, palette='pastel')
else:
sns.histplot(x=x_values, data=df, kde=kde)
plt.close(fig)
st.pyplot(fig)
with st.expander("Pie Chart"):
col21, col22 = st.columns([0.25, 0.75])
pastel_colors = sns.color_palette('pastel')
with col21:
pie_column = st.selectbox('Select a column for Pie chart:', options=categorical_columns)
with col22:
try:
fig, ax = plt.subplots()
plt.pie(df[pie_column].value_counts(), labels=df[pie_column].unique(), autopct='%1.1f%%', colors=pastel_colors)
st.pyplot(fig)
plt.close(fig)
except:
st.write("")
with st.expander("Box Plot"):
col7, col8 = st.columns([0.25, 0.75])
with col7:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=7)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=8)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=78-1)
orient = st.selectbox('Orientation: ', options=['v', 'h'], key=78-2)
with col8:
fig, ax = plt.subplots()
if c_axis is not None:
sns.boxplot(x=x_values, y=y_values, data=df, palette='pastel', hue=c_axis, orient=orient)
else:
sns.boxplot(x=x_values, y=y_values, data=df, orient=orient)
st.pyplot(fig)
plt.close(fig)
with st.expander("Point Plot"):
col11, col12 = st.columns([0.25, 0.75])
with col11:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=11)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=12)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=1112-1)
with col12:
fig, ax = plt.subplots()
if c_axis is not None:
sns.pointplot(x=x_values, y=y_values, data=df, hue=c_axis, palette='pastel')
else:
sns.pointplot(x=x_values, y=y_values, data=df)
st.pyplot(fig)
plt.close(fig)
with st.expander("Density Plot"):
col25 , col26 = st.columns([0.25, 0.75])
with col25:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=25)
shade = st.selectbox('Shade: ', options=[True, False], key=26)
with col26:
try:
fig, ax = plt.subplots()
sns.kdeplot(df[x_values], fill=shade)
st.pyplot(fig)
plt.close(fig)
except:
st.write("")
with st.expander("Swarm Plot"):
col5, col6 = st.columns([0.25, 0.75])
with col5:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=5)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=6)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=56-1)
orient = st.selectbox('Orientation: ', options=['v', 'h'], key=56-2)
with col6:
fig, ax = plt.subplots()
if c_axis is not None:
sns.swarmplot(x=x_values, y=y_values, data=df, hue=c_axis, orient=orient, palette='pastel')
else:
sns.swarmplot(x=x_values, y=y_values, data=df, orient=orient)
st.pyplot(fig)
plt.close(fig)
with st.expander("Violin Plot"):
col9, col10 = st.columns([0.25, 0.75])
with col9:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=9)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=10)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=910-1)
orient = st.selectbox('Orientation: ', options=['v', 'h'], key=910-2)
with col10:
fig, ax = plt.subplots()
if c_axis is not None:
sns.violinplot(x=x_values, y=y_values, data=df, hue=c_axis, orient=orient, palette='pastel')
else:
sns.violinplot(x=x_values, y=y_values, data=df, orient=orient)
st.pyplot(fig)
plt.close(fig)
with st.expander("KDE Plot"):
col13, col14 = st.columns([0.25, 0.75])
with col13:
x_values = st.selectbox('X axis:', options=numeric_columns, index=0, key=13)
y_values = st.selectbox('Y axis:', options=numeric_columns, index=1, key=14)
c_axis = st.selectbox('Color: ', options=categorical_columns, key=1314-1)
fill = st.selectbox('Fill: ', options=[True, False], key=1314-2)
with col14:
fig, ax = plt.subplots()
if c_axis is not None:
sns.kdeplot(x=x_values, y=y_values, data=df, hue=c_axis, fill=fill, palette='pastel')
else:
sns.violinplot(x=x_values, y=y_values, data=df, orient=orient)
st.pyplot(fig)
plt.close(fig)
with st.expander("Correlation Plot"):
col17, col18 = st.columns([0.25, 0.75])
with col17:
x_values = st.selectbox('X axis:', options=[None], index=0, key=17)
y_values = st.selectbox('Y axis:', options=[None], index=0, key=18)
with col18:
try:
fig, ax = plt.subplots()
sns.heatmap(df.select_dtypes(include='number').corr(),
cmap=sns.cubehelix_palette(20, light=0.95, dark=0.45))
st.pyplot(fig)
plt.close(fig)
except:
st.write("")
with st.expander("Heat Map"):
col19, col20 = st.columns([0.25, 0.75])
with col19:
x_values = st.selectbox('X axis:', options=[None], index=0, key=19)
y_values = st.selectbox('Y axis:', options=[None], index=0, key=20)
with col20:
try:
fig, ax = plt.subplots()
sns.heatmap(df.select_dtypes(['float', 'int']), cmap=sns.cubehelix_palette(20, light=0.69, dark=0.25))
st.pyplot(fig)
plt.close(fig)
except:
st.write("")
st.markdown("<h2 style='text-align: center; color: #D04848;'>Simple Linear Regression</h2>", unsafe_allow_html=True)
st.subheader("Correlation")
st.write(df[numeric_columns].corr())
x = st.selectbox('x ', options=[None]+numeric_columns, index=0, key="simple-linear-x")
y = st.selectbox('Y (target): ', options=[None]+numeric_columns, index=0, key="simple-linear-y")
if x != None and y != None:
df[x] = df[x] + np.random.randn(len(df))/2
df[y] = df[y] + np.random.randn(len(df))/2
st.subheader("Scatterplot of x and Y")
fig = px.scatter(df, x=x, y=y)
st.plotly_chart(fig)
predicted_y = y + '_predicted'
def predict_mean_y(actual):
return df.loc[np.abs(df[x] - actual) <= 0.5, y].mean()
st.subheader("Head of data")
df[predicted_y] = df[x].apply(predict_mean_y)
st.write(df.head())
st.subheader("Scatterplot of x, Y and Predicted Means")
fig = go.Figure()
fig.add_trace(go.Scatter(x=df[x], y=df[y], mode='markers', name='actual'))
fig.add_trace(go.Scatter(x=df[x], y=df[predicted_y], mode='markers', name='predicted means', line=dict(color='gold')))
fig.update_layout(xaxis_title=x, yaxis_title=y)
st.plotly_chart(fig)
st.subheader("Implementing optimal coefficients and plotting linear model")
def calculate_coefficients(X, Y):
x_mean = X.mean()
y_mean = Y.mean()
xy_mean = (X * Y).mean()
x_square_mean = (X ** 2).mean()
m = ((x_mean * y_mean) - xy_mean) / ((x_mean) ** 2 - x_square_mean)
b = y_mean - (m * x_mean)
return m, b
X = df[x]
Y = df[y]
m, b = calculate_coefficients(X, Y)
st.write("m= ", str(np.round(m, 2)))
st.write("b= ", str(np.round(b, 2)))
fig = go.Figure()
fig.add_trace(go.Scatter(x=df[x], y=df[y], mode='markers', name='actual'))
fig.add_trace(go.Scatter(x=df[x], y=df[predicted_y], mode='markers', name='predicted means', line=dict(color='gold')))
fig.add_trace(go.Scatter(x = df[x], y = m * df[x] + b, name = 'linear model', line=dict(color='red')))
fig.update_layout(xaxis_title=x, yaxis_title=y)
st.plotly_chart(fig)
st.subheader("Visualizing Loss Surface")
def mse(y, yhat):
return np.mean((y - yhat)**2)
def mse_for_height_model(t):
a, b = t
return mse(df[x], a + b*df[y])
num_points = 200 # increase for better resolution, but it will run more slowly.
# if (num_points <= 100):
uvalues = np.linspace(20, 32, num_points)
vvalues = np.linspace(-1, 3, num_points)
(u,v) = np.meshgrid(uvalues, vvalues)
thetas = np.vstack((u.flatten(),v.flatten()))
MSE = np.array([mse_for_height_model(t) for t in thetas.T])
try:
loss_surface = go.Surface(x=u, y=v, z=np.reshape(MSE, u.shape))
opt_point = go.Scatter3d(x=[m], y=[b], z=[mse_for_height_model((m, b))],
mode='markers', name='optimal parameters',
marker=dict(size=1, color='gold'))
fig = go.Figure(data=[loss_surface])
fig.add_trace(opt_point)
fig.update_layout(scene=dict(
xaxis_title="theta0",
yaxis_title="theta1",
zaxis_title="MSE"))
# Display the plot on Streamlit
st.write("This plot is interactive!")
st.plotly_chart(fig)
except:
st.write("Plot too large to display")
st.markdown("<h2 style='text-align: center; color: #D04848;'>Multinomial Logistic Regression</h2>", unsafe_allow_html=True)
target_column = st.selectbox("Select target: ", options=categorical_columns)
feature_columns = st.multiselect("Select features: ", options=numeric_columns)
target_values = df[target_column].unique()
st.subheader("Values in target ")
st.write(target_values)
col_log_1, col_log_2 = st.columns([0.65, 0.35])
with col_log_1:
st.subheader("Count plot for target")
for value in target_values:
count = df[df[target_column] == value].shape[0]
st.write(f"{value}: {count}")
with col_log_2:
fig, ax = plt.subplots(figsize=(8, 6))
sns.countplot(x=target_column, data=df, ax=ax)
st.pyplot(fig)
plt.close(fig)
target_dict = {val: idx for idx, val in enumerate(target_values)}
target_column_name = target_column+"_num"
df[target_column_name] = df[target_column].map(target_dict)
st.subheader("Converting target values:")
st.write(target_dict)
X_log = df[feature_columns]
y_log = df[target_column_name]
X_train, X_test, y_train, y_test = train_test_split(X_log, y_log, test_size=0.25, random_state=42)
multinomial_model = LogisticRegression(multi_class='multinomial', solver='lbfgs')
multinomial_model.fit(X_train, y_train)
score = multinomial_model.score(X_test, y_test)
st.subheader('New Instance Prediction')
new_instance = {}
for feature in feature_columns:
new_instance[feature] = st.number_input(f'Enter value for {feature}:')
new_instance_df = pd.DataFrame([new_instance])
prediction = multinomial_model.predict(new_instance_df)
predicted_category = list(target_dict.keys())[prediction[0]]
st.markdown(f"<h3 style='color: #FFFFFF; font-size: 25px'>Predicted category - {predicted_category}</h3>", unsafe_allow_html=True)
st.subheader("Metrics")
score = multinomial_model.score(X_test, y_test)
st.write(f'The accuracy of the model is: {score}')
st.write("Classification report: ")
y_pred = multinomial_model.predict(X_test)
target_names = list(target_dict.keys())
classification_rep = pd.DataFrame(classification_report(y_test, y_pred, target_names=target_names, output_dict=True)).T
# classification_str = str(classification_rep)
st.dataframe(classification_rep)
else:
st.write("Please upload a file first")
except Exception as e:
print(e)
st.markdown("<div style='text-align: center; color: #D04848; font-size: 14px; margin-top: 50px'>©VizIt 2024</div>", unsafe_allow_html=True)