diff --git a/README.md b/README.md index 0f67b46..f08d6b4 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -![](https://i.imgur.com/Okdo3qc.jpg) +![](https://i.imgur.com/9ASYY1n.jpg) ![](https://camo.githubusercontent.com/d38e6cc39779250a2835bf8ed3a72d10dbe3b05fa6527baa3f6f1e8e8bd056bf/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f64652d507974686f6e2d696e666f726d6174696f6e616c3f7374796c653d666c6174266c6f676f3d707974686f6e266c6f676f436f6c6f723d776869746526636f6c6f723d326262633861) ![](https://badgen.net/badge/status/WIP/blue) @@ -7,7 +7,6 @@ *** - **mllibs** is a Machine Learning (ML) library which utilises natural language processing (NLP) -- In this notebook, we look at implementing an **NLP interpreter** module for ML related operations - Development of such helper modules are motivated by the fact that everyones understanding of coding & subject matter (ML in this case) may be different - Often we see people create **functions** and **classes** to simplify the process of achieving something (which is good practice) - Likewise, **NLP interpreters** follow this trend as well, except, in this case our only inputs for activating certain code is **natural language** @@ -67,7 +66,7 @@ nlp_interpreter(input) # [0, 1, 1, 2, 3]
-#### **3. LETS LOOK AT AN EXAMPLE** +#### **3. LETS LOOK AT AN EXAMPLE USING MLLIBS** *** @@ -123,14 +122,7 @@ Here are some anwsers: (2) custom added modules, for mllibs these library are associated with **machine learning** -- `loader` - file management module, who's role is to access data, so it can be used (testing module) -- `simple_eda` - exploratory data analysis module (testing module) -- `eda_plot` - exploratory data analysis module associated with static graph plots (utilises seaborn) -- `encoder` - nlp related module for converting text to numeric representation (text encoding) -- `embedding` - nlp related module for generating embeddings for tokenised text data -- `cleantext` - nlp related module for cleaning input text data -- `sklinear` - Linear Regression module (testing module) -- `hf_pipeline` - nlp related module for accessing huggingface pipelines +You can check all the activations functions using session.fl() as shown in the sample notebooks
@@ -187,6 +179,8 @@ configure_sample = {'corpus':corpus_sample,'info':info_sample} #### **8. CREATING A COLLECTION** +There are two ways to start an interpreter session, manually importing and grouping modules or using interface class + *** First we need to combine all our module components together, this will link all passed modules together @@ -214,14 +208,22 @@ collection.train() Lastly, pass the collection of modules (`nlpm` instance) to the interpreter `nlpi` ```python -interpreter = nlpi(collection) +session = nlpi(collection) ``` class `nlpi` can be used with method `exec` for user input interpretation ```python -interpreter.exec('create a scatterplot using data with x dimension1 y dimension2') +session.exec('create a scatterplot using data with x dimension1 y dimension2') ``` +*** + +The faster way, includes all loaded modules and groups them together for us: + +```python +from mllibs.interface import interface +session = interface() +```