-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
615 lines (514 loc) · 25.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# https://huggingface.co/spaces/MAGAer13/mPLUG-Owl/blob/main/app.py
# https://huggingface.co/spaces/MAGAer13/mPLUG-Owl2
# https://github.com/allenai/s2-folks/blob/main/examples/python/find_and_recommend_papers/find_papers.py
# https://www.gradio.app/guides/creating-a-chatbot-fast
# https://huggingface.co/spaces/librarian-bots/recommend_similar_papers/blob/main/app.py
# https://huggingface.co/spaces/badayvedat/LLaVA
"""
This file demos a simple chatbot based on gradio and openai api
"""
import pathlib, json
import time
import gradio as gr
import os
import re
import argparse
import requests
import openai
from typing import Any
import datetime
import pandas as pd
from evaluate import load
# Set openai credentials
openai.api_key = os.environ.get("OPENAI_API_KEY")
S2_API_KEY = os.getenv('S2_API_KEY')
# Function to set the OpenAI API key
def set_apikey(api_key):
if 'OPENAI_API_KEY' not in os.environ:
os.environ['OPENAI_API_KEY'] = api_key
return "OpenAI API key is Set"
def get_conv_log_filename():
t = datetime.datetime.now()
cur_dir = pathlib.Path(__file__).parent.resolve()
log_dir = f"{cur_dir}/logs/"
os.makedirs(log_dir, exist_ok=True)
name = os.path.join(log_dir, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def vote_last_response(state, vote_type, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"state": state, #.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, request: gr.Request):
# logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", request)
return ""
def downvote_last_response(state, request: gr.Request):
# logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", request)
return ""
example_abstract = """We explore the zero-shot abilities of recent large language models (LLMs) for the task of writing the literature review of a scientific research paper conditioned on its abstract and the content of related papers."""
examples_html = [
f"<div style='text-align: left;'>{example_abstract}</div>"
]
# Create a custom HTML block to left-align text
custom_html = "<div style='text-align: left;'>Examples:</div>"
title_markdown = ("""
<h1 align="center"><a href=""><img src="/file=resources/download.png", alt="Writing Assistant - LitCraft" border="0" style="margin: 0 auto; height: 50px;" /></a> </h1>
<h2 align="center">🔥 LitLLM: A Toolkit for Scientific Literature Review</h2>
""")
# <h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update. </h2>
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user data for future research.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
block_css = """
h1 {
text-align: center;
display:block;
}
h2 {
text-align: center;
display:block;
}
#buttons button {
min-width: min(120px,100%);
}
#display_mrkdwn {
display: block;
border-width: var(--block-border-width);
border-color: var(--block-border-color);
border-radius: var(--block-radius);
background: var(--block-background-fill);
padding: var(--input-padding);
}
.gallery.svelte-1viwdyg {
text-align: justify;
}
"""
def parse_arxiv_id_from_paper_url(url):
arxiv_id = url.split("/")[-1]
if arxiv_id[-4:] == ".pdf":
arxiv_id = arxiv_id[:-4]
return arxiv_id
def load_json(path: str) -> Any:
"""
This function opens and JSON file path
and loads in the JSON file.
:param path: Path to JSON file
:type path: str
:return: the loaded JSON file
:rtype: dict
"""
with open(path, "r", encoding="utf-8") as file:
json_object = json.load(file)
return json_object
def load_all_prompts(file_path: str = None) -> str:
"""
Loads the api key from json file path
:param file_path:
:return:
"""
cur_dir = pathlib.Path(__file__).parent.resolve()
# Load prompts from file
if not file_path:
# Default file path
file_path = f"{cur_dir}/resources/prompts.json"
prompts = load_json(file_path)
return prompts
def run_open_ai_api(json_data, model_name="gpt-4", max_tokens: int = 500, temperature: float = 0.2) -> str:
"""
This function actually calls the OpenAI API
Models such as gpt-4-32k, gpt-4-1106-preview
:param json_data:
:return:
"""
completion = openai.ChatCompletion.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"{json_data['prompt']}"},
],
)
# stream=True
# partial_message = ""
# for chunk in completion:
# if len(chunk['choices'][0]['delta']) != 0:
# partial_message = partial_message + chunk['choices'][0]['delta']['content']
# yield partial_message
return completion["choices"][0]["message"]["content"]
def format_results_into_markdown(recommendations):
comment = "The following papers were found by the Semantic Scholar API \n\n"
for index, r in enumerate(recommendations):
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
comment += f"[{index+1}] [{r['title']}]({r['url']}) ({r['year']}) Cited by {r['citationCount']} <br>"
return comment
def find_basis_paper(query, num_papers_api=20):
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
rsp = requests.get('https://api.semanticscholar.org/graph/v1/paper/search',
headers={'X-API-KEY': S2_API_KEY},
params={'query': query, 'limit': num_papers_api, 'fields': fields})
rsp.raise_for_status()
results = rsp.json()
total = results["total"]
if not total:
print('No matches found. Please try another query.')
print(f'Found {total} results. Showing up to {num_papers_api}.')
papers = results['data']
# df = pd.DataFrame(papers)
return papers #[:result_limit]
def get_recommendations_from_semantic_scholar(url: str, num_papers_api=20):
"""
https://www.semanticscholar.org/product/api/tutorial
"""
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
arxiv_id = parse_arxiv_id_from_paper_url(url)
query_id = f"ArXiv:{arxiv_id}"
rsp = requests.post(
"https://api.semanticscholar.org/recommendations/v1/papers/",
json={
"positivePaperIds": [query_id],
},
params={"fields": fields, "limit": num_papers_api},
)
results = rsp.json()
papers = results['recommendedPapers']
return papers
def get_paper_data(paper_url):
"""
Retrieves data of one paper based on URL
"""
fields = 'title,url,abstract,citationCount,journal,isOpenAccess,fieldsOfStudy,year,journal'
rsp = requests.get(f"https://api.semanticscholar.org/graph/v1/paper/URL:{paper_url}",
headers={'X-API-KEY': S2_API_KEY},
params={'fields': fields})
results = rsp.json()
return results
def sort_papers(papers, sort_by):
"""
sort by categories: "Relevance", "Citations", "Year
"""
df = pd.DataFrame(papers)
if sort_by == "Citations":
df = df.sort_values(by="citationCount", ascending=False)
elif sort_by == "Year":
df = df.sort_values(by="year", ascending=False)
papers_list = df.to_dict(orient='records')
return papers_list
def get_markdown_query_text(papers):
display_markdown = format_results_into_markdown(papers)
cite_text = format_abstracts_as_references(papers)
return display_markdown, cite_text
def filter_recommendations(recommendations, max_paper_count=5):
# include only arxiv papers
arxiv_paper = [
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
]
if len(arxiv_paper) > max_paper_count:
arxiv_paper = arxiv_paper[:max_paper_count]
return arxiv_paper
# def format_recommendation_into_markdown(arxiv_id, recommendations):
# comment = "The following papers were recommended by the Semantic Scholar API \n\n"
# for r in recommendations:
# hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
# comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
# return comment
def format_abstracts_as_references(papers):
# cite_list = ["@cite_1", "@cite_2", "@cite_3"]
cite_text = ""
for index, paper in enumerate(papers):
# citation = f"@cite_{index+1}"
citation = f"{index+1}"
cite_text = f"{cite_text}[{citation}]: {paper['abstract']}\n"
return cite_text
def format_prompt(base_prompt, abstract, cite_text, plan=""):
if plan:
data = f"Abstract: {abstract} \n {cite_text} \n Plan: {plan}"
else:
data = f"Abstract: {abstract} \n {cite_text}"
complete_prompt = f"{base_prompt}\n```{data}```"
return complete_prompt
def get_complete_prompt_for_summarization(base_prompt, data):
"""
This prompt helps in getting keywords to be used by S2 API
"""
complete_prompt = f"{base_prompt}\n```Abstract: {data}```"
return complete_prompt
def check_matching_paper(wer, abstract, papers, check_papers: int =3, wer_threshold = 0.12):
"""
Check if the user put the abstract of already existing paper and it is in the retrieved papers.
Using Word error rate as the metric on the top check_papers
"""
references = [abstract]
for i in range(check_papers):
predictions = [papers[i]['abstract']]
wer_score = wer.compute(predictions=predictions, references=references)
if wer_score < wer_threshold:
papers.pop(i)
return papers
return papers
class GradioChatApp:
"""
Class to define Gradio based chat app
"""
def __init__(self):
self.name = "GradioChatApp"
self.prompts = load_all_prompts()
self.role_template = self.prompts["role_template"]
self.plan_prompt = self.prompts["plan_template"]
self.vanilla_prompt = self.prompts["vanilla_template"]
self.sample_plan = self.prompts["plan"]
self.summarization_prompt = self.prompts["summarization_template"]
self.ranking_prompt = self.prompts["ranking_template"]
self.wer = load("wer")
def add_text(self, history, text, base_paper_textbox, keyword_textbox, rerank: bool = True,
num_papers: int = 3, model_name="gpt-4", sort_by="relevance", temperature = 0.2, max_tokens = 300, num_papers_api: int = 20):
"""
Add text to history
"""
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
history = history + [(f"User provided abstract: \n {text}", None)]
# print("All textboxes:", plan_textbox, base_paper_textbox, keyword_textbox)
try:
if base_paper_textbox:
hist_response = f"Finding recommendations from S2 API based on the paper \n {base_paper_textbox}"
papers = get_recommendations_from_semantic_scholar(base_paper_textbox, num_papers_api)
else:
if keyword_textbox:
query = keyword_textbox
else:
# query = "multi document summarization"
prompt = get_complete_prompt_for_summarization(self.summarization_prompt, text)
json_data = {"prompt": prompt}
query = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
# print(query)
hist_response = f"LLM summarized keyword query to be used for S2 API: \n {query}"
papers = find_basis_paper(query, num_papers_api)
except:
history = history + [("No papers found using S2. Try providing keywords or a seed paper!", None)]
return history, "", "No papers found", "", "", ""
if not papers:
history = history + [("No papers found using S2. Try providing keywords or changing seed paper!", None)]
return history, "", "No papers found", "", "", ""
history = history + [(hist_response, None)]
# print(rerank, sort_by)
try:
papers = check_matching_paper(self.wer, text, papers)
except:
print("WER failed")
papers = sort_papers(papers, sort_by)
display_markdown, cite_text = get_markdown_query_text(papers)
if rerank == "True":
# print(f"{self.role_template}{self.ranking_prompt}")
try:
complete_prompt = format_prompt(base_prompt=f"{self.role_template} {self.ranking_prompt}", abstract=text, cite_text=cite_text)
json_data = {"prompt": complete_prompt}
response = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
# print(response)
# [1] > [2] > [4] > [3] > [6] > [5]
new_order = [int(s) for s in re.findall(r'\d+', response)]
# print(new_order)
papers = [papers[i-1] for i in new_order]
except:
print("LLM not able to rerank!")
# If paper based on seed paper, insert it at 0th index
if base_paper_textbox:
try:
base_paper_data = get_paper_data(paper_url=base_paper_textbox)
papers.insert(0,base_paper_data)
except:
print("Cant retrieve data for base paper!")
papers = papers[:num_papers]
display_markdown, cite_text = get_markdown_query_text(papers)
return history, text, display_markdown, cite_text, base_paper_textbox, keyword_textbox
def bot(self, history, cite_text, text, plan_textbox, request: gr.Request, model_name="gpt-4",
temperature = 0.2, max_tokens = 300, regenerate: bool = False):
"""
Calls the openai api
"""
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
# Cache headers, ip address
# if request:
# print("Request headers dictionary:", request.headers)
# print("IP address:", request.client.host)
if cite_text =="":
return "How may I help?"
if plan_textbox:
complete_prompt = format_prompt(base_prompt=self.plan_prompt, abstract=text, cite_text=cite_text, plan=plan_textbox)
# history = history + [(f"Using plan: \n {plan_textbox}", None)]
else:
self.vanilla_prompt = self.vanilla_prompt.format(max_tokens=max_tokens)
# print(self.vanilla_prompt)
complete_prompt = format_prompt(base_prompt=self.vanilla_prompt, abstract=text, cite_text=cite_text, plan="")
# print(complete_prompt)
# if regenerate=="True":
# history.pop()
# print(complete_prompt)
json_data = {"prompt": complete_prompt}
response = run_open_ai_api(json_data, model_name=model_name, max_tokens=max_tokens, temperature=temperature)
history[-1][1] = ""
for character in response:
history[-1][1] += str(character)
time.sleep(0.005)
yield history
# history[-1][1] = response
# time.sleep(1)
# yield history
def launch_app(self):
"""
Gradio app defined here
"""
# Close all apps running on servers
gr.close_all()
textbox = gr.Textbox(lines=2, show_label=False, placeholder="Enter the abstract of your paper", container=False)
plan_textbox = gr.Textbox(show_label=False, placeholder="Enter sentence plan (Default none). Example: Cite [1] on line 2.", container=False)
base_paper_textbox = gr.Textbox(show_label=False, placeholder="Provide link of most relevant paper", container=False)
keyword_textbox = gr.Textbox(show_label=False, placeholder="Enter optional keywords for querying (Default none)", container=False)
with gr.Blocks(title="Writing Assistant", theme=gr.themes.Default(), css=block_css) as demo:
prompt = gr.State()
gr.Markdown(title_markdown)
# with gr.Row():
# gr.Image("resources/download.png", width=64, height=64)
with gr.Accordion("How to use (click to expand)", open=False):
gr.Markdown(
"""
Search and write literature review for your research idea/proposal or a draft abstract with this powerful AI tool.
TLDR; We query Semantic Scholar (S2) to retrieve relevant papers and optionally rerank them using another LLM.
With the principles of Retrieval Augmented Generation, LLM generates the related work section for your paper.
There are three strategies for AI search:
* We summarize your abstract with GPT-4 to get keywords which are then used to search S2
* You provide keywords that could be used as a search query
* Provide a seed paper used for recommendation
For generation, you could also provide a sentence plan to the LLM which contains the number of sentences and citations to produce
"""
)
with gr.Row():
with gr.Column(scale=3):
# TODO: OpenAI Keys
# with gr.Accordion("OpenAI key", open=False) as key_row:
# with gr.Row():
# api_key = gr.Textbox(placeholder='Enter OpenAI API key', show_label=False, interactive=True, scale=3)
# change_api_key = gr.Button('Change Key', scale=1)
with gr.Accordion("Ranking Parameters", open=False) as parameter_row:
# https://platform.openai.com/docs/models/overview
model_name = gr.Dropdown(["gpt-3.5-turbo", "gpt-4", "gpt-4-32k", "gpt-4-1106-preview"], value="gpt-4", interactive=True, label="Model") # scale=1, min_width=0
num_papers = gr.Slider(minimum=1, maximum=10, value=4, step=1, interactive=True, label="Cite # papers")
sort_by = gr.Dropdown(["Relevance", "Citations", "Year"], value="Relevance", interactive=True, label="Sort by") # scale=1, min_width=0
llm_rerank = gr.Radio(choices=["True", "False"], value="True", interactive=True, label="LLM Re-rank (May override sorting)")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", scale=1)
max_tokens = gr.Slider(minimum=0, maximum=3000, value=500, step=64, interactive=True, label="Max output tokens", scale=2)
display_1 = gr.Markdown(value=f"Retrieved papers", label="Retrieved papers!", elem_id="display_mrkdwn") #, visible=True)
# with gr.Accordion("Generation Parameters", open=False) as parameter_row:
# top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P")
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="Chatbot", label="ReviewGPT", height=480)
with gr.Row():
with gr.Column(scale=3):
with gr.Accordion("Example", open=False) as example_row:
gr.Examples(label="Example: Abstract", examples=[
[example_abstract],
], inputs=[textbox], elem_id="example_abstract")
gr.Examples(label="Example: Query keywords (Optional)", examples=[
["multi document summarization of scientific articles"],
], inputs=[keyword_textbox])
gr.Examples(label="Example: Most relevant paper (Optional)", examples=[
["https://arxiv.org/abs/2010.14235"],
], inputs=[base_paper_textbox])
gr.Examples(label="Example: Sentence plan (Optional)", examples=[
[self.sample_plan],
], inputs=[plan_textbox])
with gr.Column(scale=8):
with gr.Row():
with gr.Column(scale=6):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row():
gr.Markdown("""Optionally, improve the API Search by either providing keywords or a very relevant seed paper. Seed paper takes priority if provided both.""")
with gr.Row():
with gr.Column(scale=2):
keyword_textbox.render()
with gr.Column(scale=2):
base_paper_textbox.render()
with gr.Row():
gr.Markdown("""Optionally, provide a sentence plan to be used for generation""")
with gr.Row():
with gr.Column(scale=5):
plan_textbox.render()
with gr.Column(scale=2, min_width=50):
plan_generate_btn = gr.Button(value="Regenerate with plan", variant="primary")
# with gr.Row(elem_id="buttons") as button_row:
# upvote_btn = gr.Button(value="👍 Upvote")
# downvote_btn = gr.Button(value="👎 Downvote")
# # flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# # #stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
# regenerate_btn = gr.Button(value="🔄 Regenerate")
# clear_btn = gr.Button(value="🗑️ Clear")
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
# btn_list = [regenerate_btn, clear_btn]
# TODO: OpenAI Keys
# api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key])
# change_api_key.click(fn=set_apikey, inputs=[api_key], outputs=[api_key])
textbox.submit(
self.add_text,
[chatbot, textbox, base_paper_textbox, keyword_textbox, llm_rerank, num_papers, model_name, sort_by, temperature, max_tokens],
[chatbot, textbox, display_1, prompt, base_paper_textbox, keyword_textbox],
queue=False
).then(
self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot]
)
submit_btn.click(
self.add_text,
[chatbot, textbox, base_paper_textbox, keyword_textbox, llm_rerank, num_papers, model_name, sort_by, temperature, max_tokens],
[chatbot, textbox, display_1, prompt, base_paper_textbox, keyword_textbox],
queue=False
).then(
self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot]
)
plan_generate_btn.click(self.bot,
[chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
[chatbot])
# upvote_btn.click(upvote_last_response, prompt, [textbox], queue=False)
# downvote_btn.click(downvote_last_response, prompt, [textbox], queue=False)
# regenerate_btn.click(self.bot,
# [chatbot, prompt, textbox, plan_textbox, model_name, temperature, max_tokens],
# [chatbot])
# # state can also be cached https://github.com/gradio-app/gradio/issues/730
# txt.submit(self.add_text, [chatbot, txt], [chatbot, txt]).then(
# self.bot, chatbot, chatbot
# )
# clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch(allowed_paths=["resources/"])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=1)
# demo = build_demo()
# demo.queue(concurrency_count=args.concurrency_count,
# status_update_rate=10, api_open=False).launch(server_name=args.host,
# debug=args.debug, server_port=args.port, share=False)
test_app = GradioChatApp()
test_app.launch_app()