-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathKNN.py
94 lines (77 loc) · 2.82 KB
/
KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#we have to predict class
'''
1.IMPORT DATASET
1.B PREPROCESSING
2.SPLIT
3.TRAINING +TEST
4.X_TRAIN,Y_TRAIN
5.MODEL
6.ACCESS -CONFUSION MATRIX
7.PLOT GRAPH
p=1 manhattan
p=2 minkowski
'''
#K-NEAREST NEIGHBOURS
#IMPORTING LIBRARIES
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#IMPORTING THE DATASET
dataset=pd.read_csv('Social_Network_Ads.csv')
X=dataset.iloc[:,[2,3]].values #independent variable x
y=dataset.iloc[:,4].values
#SPLITTING THE DATASETINTO TRAINING+TEST
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)
# FEATURE SCALING
#from sklearn.preprocessing import StandardScaler
#sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.transform(X_test)
#FITTING KNN TO TRAINING SET
from sklearn.neighbors import KNeighborsClassifier
classifier=KNeighborsClassifier(n_neighbors=7,metric='minkowski',p=2)
classifier.fit(X_train,y_train)
#PREDICTING THE TEST
y_pred=classifier.predict(X_test)
#MAKING CONFUSION MATRIX
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)
#VISUALISING TRAINING SET RESULTS
from matplotlib.colors import ListedColormap
X_set,y_set=X_train,y_train
X1,X2=np.meshgrid(np.arange(start=X_set[:,0].min()-1,stop=X_set[:,0].max()+1,step=0.01),
np.arange(start=X_set[:,1].min()-1,stop=X_set[:,1].max()+1,step=0.01))
plt.contourf(X1,X2,classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
alpha=0.75,cmap=ListedColormap(('red','green')))
#ravel function do flattening of array
#.T is for transfering into column
#alpha is used for intensity variation lowe alpha lower intensity
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],
c=ListedColormap(('red','green'))(i),label=j)
plt.title('K-NN training set')
plt.xlabel('AGE')
plt.ylabel('ESTIMATED SALARY')
plt.legend()
plt.show()
#VISUALISING TEST SET RESULTS
from matplotlib.colors import ListedColormap
X_set,y_set=X_test,y_test
X1,X2=np.meshgrid(np.arange(start=X_set[:,0].min()-1,stop=X_set[:,0].max()+1,step=0.01),
np.arange(start=X_set[:,1].min()-1,stop=X_set[:,1].max()+1,step=0.01))
plt.contourf(X1,X2,classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
alpha=0.75,cmap=ListedColormap(('red','green')))
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set==j,0],X_set[y_set==j,1],
c=ListedColormap(('red','green'))(i),label=j)
plt.title('K-NN test set')
plt.xlabel('AGE')
plt.ylabel('ESTIMATED SALARY')
plt.legend()
plt.show()
#WORKING CODE