forked from Graph-COM/Neural_Higher-order_Pattern_Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.py
175 lines (154 loc) · 6.29 KB
/
histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import scale
from matplotlib.ticker import FuncFormatter
"""
for drawing the figure
"""
# # # def plot_hist(save_img_path, hist_array, bins, xmin, xmax, save_figure_name, figure_title):
def plot_hist(hist_array, bins, xmin, xmax, figure_title, file_addr, density=False, CDF=False):
'''This function is used to plot the histogram, and the sum of it is 1'''
# save_img_path : the path where you want to save the image
# hist_array : the array that you want to plot its histogram
# bins : how many bins do you want to plot
# xmin, xmax : the minimun and the maximum of the x-axis
# save_figure_name : the image file name
# figure_title : the figure title
plt.figure()
n, bin, patches = plt.hist(hist_array, bins, (xmin, xmax), density=density)
plt.close()
plt.figure()
plot_hist = n #/ bins
fontsize = 20
plt.title(figure_title, fontsize=fontsize)
# manager = plt.get_current_fig_manager()
# manager.resize(*manager.window.maxsize())
x = np.arange(xmin, xmax, (xmax - xmin) / bins)
# print(x, plot_hist)
if CDF:
plot_hist = np.cumsum(plot_hist * (xmax - xmin) / bins)
plt.bar(x, plot_hist, align='center', width=(xmax - xmin) / bins)
# print(file_addr)
save_img_path = ('./'+ file_addr + '/Figure_' + figure_title+ '.png')
plt.savefig(save_img_path)
plt.title(figure_title)
# plt.show()
def to_percent(temp, position):
if temp == 1:
return '%1.1f$\mathregular{T_w}$'%(temp)
else:
return '%1.1f'%(temp)
def plot_hist_multi(hist_array, bins, figure_title, file_addr, density=False, CDF=False, ndim=2, label=None, unit=False):
'''This function is used to plot the histogram, and the sum of it is 1'''
# save_img_path : the path where you want to save the image
# hist_array : the array that you want to plot its histogram
# bins : how many bins do you want to plot
# xmin, xmax : the minimun and the maximum of the x-axis
# save_figure_name : the image file name
# figure_title : the figure title
ndim = len(hist_array)
n_bin = bins
xmin = 1e10
xmax = -1e10
fontsize = 20
plt.rcParams.update({'font.size': fontsize})
plt.figure()
if unit:
plt.xlim(0,1)
if CDF:
plt.ylim(0,0.1)
for i in hist_array:
xmin = min(xmin, min(i))
xmax = max(xmax, max(i))
for i in range(ndim):
# n, bin, patches = plt.hist(hist_array, bins, (xmin, xmax), density=density)
list_X = hist_array[i]
n, bin_edges = np.histogram(list_X, bins=n_bin)
print(n)
if density and not CDF:
n = n / sum(n)
print(n, sum(n))
# plt.close()
# plt.figure()
plot_hist = n #/ bins
# manager = plt.get_current_fig_manager()
# manager.resize(*manager.window.maxsize())
# print(x, plot_hist)
if CDF:
plot_hist = np.cumsum(plot_hist * (xmax - xmin) / n_bin)
# plt.bar(x, plot_hist, align='center', width=(xmax - xmin) / n_bin, alpha=0.2)
# bin_centers = 0.5*(bin_edges[1:] + bin_edges[:-1])
bin_centers = bin_edges[:-1]
if unit:
x = np.arange(0, 1, 1 / n_bin)
plt.plot(x, plot_hist, '-', label=label[i])
else:
plt.plot(bin_centers, plot_hist, '-', label=label[i])
# if CDF:
plt.ylim(0,0.1)
plt.xlim(0,2) #DAWN congress-bills 20 threads-ask-ubuntu 2 tags 10
# print(file_addr)
fontsize = 20
plt.legend()
plt.title(figure_title, fontsize=fontsize)
# plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))
# plt.gca().xaxis.set_major_formatter(FuncFormatter(to_percent))
# plt.xlabel('10% T')
save_img_path = ('./'+ file_addr + '/Figure_' + figure_title+ '.png')
plt.savefig(save_img_path)
# plt.title(figure_title)
# plt.show()
# def plot_hist_multi_bk(hist_array, bins, figure_title, file_addr, density=False, CDF=False, ndim=2, label=None, unit=False):
# '''This function is used to plot the histogram, and the sum of it is 1'''
# # save_img_path : the path where you want to save the image
# # hist_array : the array that you want to plot its histogram
# # bins : how many bins do you want to plot
# # xmin, xmax : the minimun and the maximum of the x-axis
# # save_figure_name : the image file name
# # figure_title : the figure title
# ndim = len(hist_array)
# n_bin = bins
# xmin = 1e10
# xmax = -1e10
# fontsize = 20
# plt.rcParams.update({'font.size': fontsize})
# plt.figure()
# if unit:ls
# plt.xlim(0,1)
# if CDF:
# plt.ylim(0,1)
# for i in hist_array:
# xmin = min(xmin, min(i))
# xmax = max(xmax, max(i))
# for i in range(ndim):
# # n, bin, patches = plt.hist(hist_array, bins, (xmin, xmax), density=density)
# list_X = hist_array[i]
# n, bin_edges = np.histogram(list_X, bins=n_bin, normed=density)
# # print(n)
# # if density and not CDF:
# # n = n / sum(n)
# # print(n, sum(n))
# # plt.close()
# # plt.figure()
# plot_hist = n #/ bins
# # manager = plt.get_current_fig_manager()
# # manager.resize(*manager.window.maxsize())
# # print(x, plot_hist)
# if CDF:
# plot_hist = np.cumsum(plot_hist * (xmax - xmin) / n_bin)
# # plt.bar(x, plot_hist, align='center', width=(xmax - xmin) / n_bin, alpha=0.2)
# # bin_centers = 0.5*(bin_edges[1:] + bin_edges[:-1])
# bin_centers = bin_edges[:-1]
# if unit:
# x = np.arange(0, 1, 1 / n_bin)
# plt.plot(x, plot_hist, '-', label=label[i])
# else:
# plt.plot(bin_centers, plot_hist, '-', label=label[i])
# # print(file_addr)
# fontsize = 20
# plt.legend()
# plt.title(figure_title, fontsize=fontsize)
# save_img_path = ('./'+ file_addr + '/Figure_' + figure_title+ '.png')
# plt.savefig(save_img_path)
# # plt.title(figure_title)
# # plt.show()