-
Notifications
You must be signed in to change notification settings - Fork 0
/
Python Code
151 lines (130 loc) · 4.71 KB
/
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Import necessary libraries
!pip install -q torchsummary
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split as tts
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, TensorDataset
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch.optim as opt
from torchsummary import summary
# Configuration class
class cfg:
batch_size = 32
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.Resize((28, 28))
]
)
epochs = 20
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
lr = 0.001
momentum = 0.9
weight_decay = 1e-4
# Load datasets
data = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
sub = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv")
# Custom Dataset class for training data
class DigitDataset(Dataset):
def __init__(self, data, labels, transform=None):
self.data = data
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img = self.data[idx].astype("float32").reshape(28, 28) / 255.0
label = self.labels[idx]
if self.transform:
img = self.transform(img)
return img, label
# Custom Dataset class for test data
class TestDataset(Dataset):
def __init__(self, data, transform=None):
self.data = data
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img = self.data.iloc[idx, :].values.astype("float32").reshape(28, 28)
if self.transform:
img = self.transform(img)
return img
# Prepare datasets and dataloaders
x, y = data.iloc[:, 1:].values, data.iloc[:, 0].values
train = DigitDataset(x, y, transform=cfg.transform)
test = TestDataset(test, transform=cfg.transform)
train_loader = DataLoader(train, batch_size=cfg.batch_size, shuffle=True)
test = DataLoader(test, batch_size=cfg.batch_size, shuffle=False)
# Define the CNN model
class Model(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 5 * 5, 256)
self.fc2 = nn.Linear(256, num_classes)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.maxpool(x)
x = F.relu(self.bn2(self.conv2(x)))
x = self.maxpool(x)
x = x.view(-1, 64 * 5 * 5)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# Instantiate and summarize the model
model = Model().to(cfg.device)
summary(model, (1, 28, 28))
# Define optimizer, criterion, and scheduler
optimizer = opt.Adam(model.parameters(), lr=cfg.lr, weight_decay=cfg.weight_decay)
criterion = nn.CrossEntropyLoss()
scheduler = opt.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
# Training loop
for epoch in range(cfg.epochs):
running_loss = 0.0
for img, label in train_loader:
img = img.to(cfg.device)
label = label.to(cfg.device)
optimizer.zero_grad()
output = model(img)
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
scheduler.step()
print(f"Epoch {epoch + 1} loss: {running_loss / len(train_loader)}")
# Evaluate model accuracy on training data
correct = 0
total = 0
with torch.no_grad():
for img, label in train_loader:
img = img.to(cfg.device)
label = label.to(cfg.device)
output = model(img)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
print(f"Accuracy: {100 * correct / total}%")
# Generate predictions for test dataset
prediction = []
with torch.no_grad():
for img in test:
img = img.to(cfg.device)
output = model(img)
_, predicted = torch.max(output.data, 1)
prediction.extend(predicted.cpu().numpy())
# Create submission file
submission = pd.DataFrame({'ImageId': list(range(1, len(prediction) + 1)), 'Label': prediction})
submission.to_csv('submission.csv', index=False)