forked from open-compass/opencompass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_internlm_flames_chat.py
125 lines (105 loc) · 3.37 KB
/
eval_internlm_flames_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import FlamesSummarizer
# -------------Inferen Stage ----------------------------------------
with read_base():
from opencompass.configs.datasets.flames.flames_gen import flames_datasets
from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import models
datasets = [*flames_datasets]
from opencompass.models import HuggingFaceCausalLM
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-chat-7b-hf',
path='internlm/internlm2-chat-7b',
tokenizer_path='internlm/internlm2-chat-7b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
generation_kwargs = {'eos_token_id': [2, 92542], 'do_sample': True},
batch_padding=True,
)
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration---------------------------------
internlm1_chat_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
)
judge_models = [
dict(
type=HuggingFaceCausalLM,
abbr='flames-scorer',
path='CaasiHUANG/flames-scorer',
tokenizer_path='CaasiHUANG/flames-scorer',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
generation_kwargs = {'do_sample': True},
max_out_len=512,
max_seq_len=4096,
batch_size=8,
meta_template=internlm1_chat_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
]
## ------------- Evaluation Configuration----------------
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='singlescore',
models = models,
judge_models = judge_models,
),
runner=dict(
type=LocalRunner,
max_num_workers=256,
task=dict(
type=SubjectiveEvalTask
)),
)
summarizer = dict(
type=FlamesSummarizer, judge_type = 'general'
)
work_dir = 'outputs/flames/'