forked from e-lab/clustering-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_data_svhn.lua
136 lines (110 loc) · 4.4 KB
/
1_data_svhn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
----------------------------------------------------------------------
-- This script loads the SVHN dataset
-- training data, and pre-process it to facilitate learning.
-- Clement Farabet, E. Culurciello
----------------------------------------------------------------------
require 'torch' -- torch
require 'image' -- to visualize the dataset
www = 'http://data.neuflow.org/data/housenumbers/'
train_file = '../../datasets//housenumbers/train_32x32.t7'
test_file = '../../datasets//housenumbers/test_32x32.t7'
extra_file = '../../datasets//housenumbers/extra_32x32.t7'
if not paths.filep(train_file) then
os.execute('wget ' .. www .. train_file)
end
if not paths.filep(test_file) then
os.execute('wget ' .. www .. test_file)
end
if opt.size == 'extra' and not paths.filep(extra_file) then
os.execute('wget ' .. www .. extra_file)
end
----------------------------------------------------------------------
-- training/test size
trsize = 73257
tesize = 26032
if opt.size == 'extra' then
print '==> using extra training data'
trsize = 73257 + 531131
tesize = 26032
elseif opt.size == 'full' then
print '==> using regular, full training data'
trsize = 73257
tesize = 26032
elseif opt.size == 'small' then
print '==> using reduced training data, for fast experiments'
trsize = 10000
tesize = 2000
end
----------------------------------------------------------------------
print '==> loading dataset'
-- We load the dataset from disk, and re-arrange it to be compatible
-- with Torch's representation. Matlab uses a column-major representation,
-- Torch is row-major, so we just have to transpose the data.
-- Note: the data, in X, is 4-d: the 1st dim indexes the samples, the 2nd
-- dim indexes the color channels (RGB), and the last two dims index the
-- height and width of the samples.
loaded = torch.load(train_file,'ascii')
trainData = {
data = loaded.X:transpose(3,4),
labels = loaded.y[1],
size = function() return trsize end
}
-- If extra data is used, we load the extra file, and then
-- concatenate the two training sets.
if opt.size == 'extra' then
loaded = torch.load(extra_file,'ascii')
trdata = torch.Tensor(trsize,3,32,32)
trdata[{ {1,(#trainData.data)[1]} }] = trainData.data
trdata[{ {(#trainData.data)[1]+1,-1} }] = loaded.X:transpose(3,4)
trlabels = torch.Tensor(trsize)
trlabels[{ {1,(#trainData.labels)[1]} }] = trainData.labels
trlabels[{ {(#trainData.labels)[1]+1,-1} }] = loaded.y[1]
trainData = {
data = trdata,
labels = trlabels,
size = function() return trsize end
}
end
-- Finally we load the test data.
loaded = torch.load(test_file,'ascii')
testData = {
data = loaded.X:transpose(3,4),
labels = loaded.y[1],
size = function() return tesize end
}
----------------------------------------------------------------------
print '==> preprocessing data'
-- Preprocessing requires a floating point representation (the original
-- data is stored on bytes). Types can be easily converted in Torch,
-- in general by doing: dst = src:type('torch.TypeTensor'),
-- where Type=='Float','Double','Byte','Int',... Shortcuts are provided
-- for simplicity (float(),double(),cuda(),...):
trainData.data = trainData.data:float()
testData.data = testData.data:float()
channels = {'r','g','b'}
-- Normalize each channel, and store mean/std
-- per channel. These values are important, as they are part of
-- the trainable parameters. At test time, test data will be normalized
-- using these values.
print '==> preprocessing data: normalize each feature (channel) globally'
mean = {}
std = {}
for i,channel in ipairs(channels) do
-- normalize each channel globally:
mean[i] = trainData.data[{ {},i,{},{} }]:mean()
std[i] = trainData.data[{ {},i,{},{} }]:std()
trainData.data[{ {},i,{},{} }]:add(-mean[i])
trainData.data[{ {},i,{},{} }]:div(std[i])
testData.data[{ {},i,{},{} }]:add(-mean[i])
testData.data[{ {},i,{},{} }]:div(std[i])
testData.data[{ {},i,{},{} }]:add(-mean[i])
testData.data[{ {},i,{},{} }]:div(std[i])
end
----------------------------------------------------------------------
print '==> visualizing data'
-- Visualization is quite easy, using image.display(). Check out:
-- help(image.display), for more info about options.
if opt.visualize then
first256Samples_r = trainData.data[{ {1,256},1 }]
image.display{image=first256Samples_r, nrow=16, legend='Some training examples: ' ..channels[1].. ' channel'}
end