-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfra_clay_encode.py
198 lines (162 loc) · 5.67 KB
/
fra_clay_encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
# import geopandas as gpd
import numpy as np
# import pandas as pd
# import pystac_client
# import stackstac
import torch
import yaml
from box import Box
from matplotlib import pyplot as plt
from rasterio.enums import Resampling
from shapely import Point
from sklearn import decomposition, svm
from torchvision.transforms import v2
from src.model import ClayMAEModule
import rasterio
import os
import datetime
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
torch.set_default_device(device)
def read_tif(file_path):
with rasterio.open(file_path) as src:
array = src.read()
return array
def tif_center(file_path):
with rasterio.open(file_path) as src:
bounds = src.bounds
# Assuming you have the latitude and longitude of the center of the footprint
lat_center = (bounds.top + bounds.bottom) / 2
lon_center = (bounds.left + bounds.right) / 2
return lat_center, lon_center
def rearrange_bands(array):
"""reorders bands to be in the order expected by the model
R,G,B,NIR,SWIR1,SWIR2
"""
return array[[2,1,0,3,4,5],:,:]
def get_transform(platform:str="landsat-c2l1",
metadata_yml:str="configs/metadata.yaml",
bands:list=["red","green","blue","nir08","swir16","swir22"]
):
metadata = Box(yaml.safe_load(open(metadata_yml)))
mean = []
std = []
waves = []
# Use the band names to get the correct values in the correct order.
for band in bands:
mean.append(metadata[platform].bands.mean[band])
std.append(metadata[platform].bands.std[band])
waves.append(metadata[platform].bands.wavelength[band])
# Prepare the normalization transform function using the mean and std values.
transform = v2.Compose(
[
v2.Normalize(mean=mean, std=std),
]
)
print(mean)
print(std)
print(waves)
print(transform)
return transform, waves
def normalize_timestamp(date):
"""Prep datetimes embedding using a normalization function from the model code"""
week = date.isocalendar().week * 2 * np.pi / 52
hour = date.hour * 2 * np.pi / 24
return (math.sin(week), math.cos(week)), (math.sin(hour), math.cos(hour))
def normalize_latlon(lat, lon):
"""# Prep lat/lon embedding using the lat/lon of sample"""
lat = lat * np.pi / 180
lon = lon * np.pi / 180
return (math.sin(lat), math.cos(lat)), (math.sin(lon), math.cos(lon))
def make_datacube(platform:str,
pixels:np.ndarray,
week_norm:tuple,
hour_norm:tuple,
lat_norm:tuple,
lon_norm:tuple,
gsd:int,
waves:list,
device=None):
"""Create a datacube from the input data
Can be one or multiple samples
"""
datacube = {
"platform": platform,
"time": torch.tensor(
np.hstack((week_norm, hour_norm)),
dtype=torch.float32,
device=device,
),
"latlon": torch.tensor(
np.hstack((lat_norm, lon_norm)), dtype=torch.float32, device=device
),
"pixels": pixels.to(device),
"gsd": torch.tensor(gsd, device=device),
"waves": torch.tensor(waves, device=device),
}
return datacube
def load_model(ckpt_file:str,
metadata_path:str):
ckpt = ckpt_file
model = ClayMAEModule.load_from_checkpoint(
ckpt,
metadata_path=metadata_path,#"../../configs/metadata.yaml",
shuffle=False,
mask_ratio=0
)
model.eval()
model = model.to(device)
return model
def encode(model,
datacube):
with torch.no_grad():
unmsk_patch, unmsk_idx, msk_idx, msk_matrix = model.model.encoder(datacube)
# The first embedding is the class token, which is the
# overall single embedding. We extract that for PCA below.
embeddings = unmsk_patch[:, 0, :].cpu().numpy()
return embeddings
###### TEsting
dir = "/home/kyle/code_repos/clay-fra/data/classify-fao-fra/gez16_hex_subsamples_50_50_200_200_tifs/StableForest"
files = os.listdir(dir)[:2]
samples = [read_tif(os.path.join(dir,file)) for file in files]
samples = [rearrange_bands(sample) for sample in samples]
transform, waves = get_transform()
pixels = torch.from_numpy(np.stack(samples,axis=0).astype(np.float32))
pixels = transform(pixels)
# normalize time
dates = []
for file in files:
if 't1' in file:
date_str = os.path.basename(file).split('_')[-3]
else:
date_str = os.path.basename(file).split('_')[-2]
date = datetime.datetime(int(date_str), 1, 1,0, 0, 0)
dates.append(date)
datetimes = [datetime.datetime(int(date_str), 1, 1,0, 0, 0) for date in dates]
times = [normalize_timestamp(dat) for dat in datetimes]
week_norm = [dat[0] for dat in times]
hour_norm = [dat[1] for dat in times]
# normalize location
lat_norm=[]
lon_norm=[]
for file in files:
lat,lon = tif_center(os.path.join(dir,file))
norm = normalize_latlon(lat, lon)
lat_norm.append(norm[0])
lon_norm.append(norm[1])
datacube = make_datacube(platform="landsat-c2l1",
pixels=pixels,
week_norm=week_norm,
hour_norm=hour_norm,
lat_norm=lat_norm,
lon_norm=lon_norm,
waves=waves,
gsd=30,
device=device)
# load model and run sample thru it
model = load_model("checkpoints/clay-v1-base.ckpt",
"configs/metadata.yaml")
embeddings = encode(model,datacube)
print(embeddings.shape)
print(embeddings)
print('done')