forked from v-iashin/SpecVQGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
764 lines (673 loc) · 31.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import argparse
import datetime
import glob
import importlib
import os
import signal
import sys
from pathlib import Path
import librosa
import numpy as np
import pytorch_lightning as pl
import soundfile
import torch
import torchvision
import yaml
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities.distributed import rank_zero_only
from torch.utils.data import DataLoader, Dataset
from feature_extraction.extract_mel_spectrogram import inv_transforms
from vocoder.modules import Generator
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit('.', 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
'-n',
'--name',
type=str,
const=True,
default='',
nargs='?',
help='postfix for logdir',
)
parser.add_argument(
'-r',
'--resume',
type=str,
const=True,
default='',
nargs='?',
help='resume from logdir or checkpoint in logdir',
)
parser.add_argument(
'-b',
'--base',
nargs='*',
metavar='base_config.yaml',
help='paths to base configs. Loaded from left-to-right. '
'Parameters can be overwritten or added with command-line options of the form `--key value`.',
default=list(),
)
parser.add_argument(
'-t',
'--train',
type=str2bool,
const=True,
default=False,
nargs='?',
help='train',
)
parser.add_argument(
'--no-test',
type=str2bool,
const=True,
default=False,
nargs='?',
help='disable test',
)
parser.add_argument('-p', '--project', help='name of new or path to existing project')
parser.add_argument(
'-d',
'--debug',
type=str2bool,
nargs='?',
const=True,
default=False,
help='enable post-mortem debugging',
)
parser.add_argument(
'-s',
'--seed',
type=int,
default=23,
help='seed for seed_everything',
)
parser.add_argument(
'-f',
'--postfix',
type=str,
default='',
help='post-postfix for default name',
)
return parser
def nondefault_trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
def instantiate_from_config(config):
if not 'target' in config:
raise KeyError('Expected key `target` to instantiate.')
return get_obj_from_str(config['target'])(**config.get('params', dict()))
class WrappedDataset(Dataset):
'''Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset'''
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(self, batch_size, train=None, validation=None, test=None,
wrap=False, num_workers=None):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size*2
if train is not None:
self.dataset_configs['train'] = train
self.train_dataloader = self._train_dataloader
if validation is not None:
self.dataset_configs['validation'] = validation
self.val_dataloader = self._val_dataloader
if test is not None:
self.dataset_configs['test'] = test
self.test_dataloader = self._test_dataloader
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_dataloader(self):
return DataLoader(self.datasets['train'], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=self.worker_init_fn,
shuffle=True)
def _val_dataloader(self):
return DataLoader(self.datasets['validation'], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=self.worker_init_fn)
def _test_dataloader(self):
return DataLoader(self.datasets['test'], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=self.worker_init_fn)
@staticmethod
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
class SpectrogramDataModuleFromConfig(DataModuleFromConfig):
'''avoiding duplication of hyper-parameters in the config by gross patching here '''
def __init__(self, batch_size, num_workers, spec_dir_path=None,
sample_rate=None, mel_num=None, spec_len=None, spec_crop_len=None,
random_crop=None, train=None, validation=None, test=None, wrap=False):
specs_dataset_cfg = {
# 'spec_dir_name': Path(spec_dir_path).name,
'spec_dir_path': spec_dir_path,
'random_crop': random_crop,
# 'sample_rate': sample_rate,
'mel_num': mel_num,
'spec_len': spec_len,
'spec_crop_len': spec_crop_len,
}
for name, split in {'train': train, 'validation': validation, 'test': test}.items():
if split is not None:
split.params.specs_dataset_cfg = specs_dataset_cfg
super().__init__(batch_size, train, validation, test, wrap, num_workers)
class ConditionedSpectrogramDataModuleFromConfig(DataModuleFromConfig):
'''avoiding duplication of hyper-parameters in the config by gross patching here '''
def __init__(self, batch_size, num_workers, spec_dir_path=None, rgb_feats_dir_path=None,
flow_feats_dir_path=None, sample_rate=None, mel_num=None, spec_len=None, spec_crop_len=None,
random_crop=None, replace_feats_with_random=None,
feat_depth=None, feat_len=None, feat_crop_len=None, crop_coord=None,
for_which_class=None, feat_sampler_cfg=None, train=None, validation=None, test=None,
wrap=False):
specs_dataset_cfg = {
# 'spec_dir_name': Path(spec_dir_path).name,
'spec_dir_path': spec_dir_path,
'random_crop': random_crop,
# 'sample_rate': sample_rate,
'mel_num': mel_num,
'spec_len': spec_len,
'spec_crop_len': spec_crop_len,
'crop_coord': crop_coord,
'for_which_class': for_which_class,
}
condition_dataset_cfg = {
'rgb_feats_dir_path': rgb_feats_dir_path,
'flow_feats_dir_path': flow_feats_dir_path,
'feat_depth': feat_depth,
'feat_len': feat_len,
'feat_crop_len': feat_crop_len,
'random_crop': random_crop,
'for_which_class': for_which_class,
'feat_sampler_cfg': feat_sampler_cfg,
'replace_feats_with_random': replace_feats_with_random,
}
for name, split in {'train': train, 'validation': validation, 'test': test}.items():
if split is not None:
if (split.target.split('.')[-1].startswith('VGGSoundSpecsCondOnFeats') \
or split.target.split('.')[-1].startswith('VASSpecsCondOnFeats')):
split_path = split.params.condition_dataset_cfg.split_path
condition_dataset_cfg['split_path'] = split_path
split.params.condition_dataset_cfg = condition_dataset_cfg
split.params.specs_dataset_cfg = specs_dataset_cfg
super().__init__(batch_size, train, validation, test, wrap, num_workers)
class SetupCallback(Callback):
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
def on_pretrain_routine_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
print('Project config')
print(self.config.pretty())
OmegaConf.save(self.config, os.path.join(self.cfgdir, '{}-project.yaml'.format(self.now)))
print('Lightning config')
print(self.lightning_config.pretty())
OmegaConf.save(OmegaConf.create({'lightning': self.lightning_config}),
os.path.join(self.cfgdir, '{}-lightning.yaml'.format(self.now)))
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, 'child_runs', name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class VocoderMelGan(object):
def __init__(self, ckpt_vocoder):
ckpt_vocoder = Path(ckpt_vocoder)
vocoder_sd = torch.load(ckpt_vocoder / 'best_netG.pt', map_location='cpu')
with open(ckpt_vocoder / 'args.yml', 'r') as f:
vocoder_args = yaml.load(f, Loader=yaml.UnsafeLoader)
self.generator = Generator(vocoder_args.n_mel_channels, vocoder_args.ngf,
vocoder_args.n_residual_layers)
self.generator.load_state_dict(vocoder_sd)
self.generator.eval()
def vocode(self, spec, global_step=None):
with torch.no_grad():
return self.generator(torch.from_numpy(spec).unsqueeze(0)).squeeze().numpy()
class VocoderGriffinLim(object):
def __init__(self, spec_dir_name):
self.spec_dir_name = spec_dir_name
def vocode(self, spec, global_step):
# inv_transform may stuck when the mel spec is bad. We time it out and replace with other sound
signal.signal(signal.SIGALRM, self.timeout_handler)
# no need to wait long time during the first couple of epochs
if global_step < 4096:
signal.alarm(7)
else:
signal.alarm(30)
try:
wave = inv_transforms(spec, self.spec_dir_name)
signal.alarm(0)
except TimeoutError as msg:
wave, _ = librosa.load('./data/10s_rick_roll_22050.wav', sr=None)
print(msg)
return wave
@classmethod
def timeout_handler(signum, frame):
raise TimeoutError('Bad spec: took too much time to reconstruct the sound from spectrogram')
class ImageLogger(Callback):
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
for_specs=False, vocoder_cfg=None, spec_dir_name=None, sample_rate=None):
super().__init__()
self.batch_freq = batch_frequency
self.max_images = max_images
self.logger_log_images = {
pl.loggers.TestTubeLogger: self._testtube,
}
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.for_specs = for_specs
self.spec_dir_name = spec_dir_name
self.sample_rate = sample_rate
print('We will not save audio for conditioning and conditioning_rec')
if self.for_specs:
self.vocoder = instantiate_from_config(vocoder_cfg)
def _visualize_attention(self, attention, scale_by_prior=True):
if scale_by_prior:
B, H, T, T = attention.shape
# attention weight is 1/T: if we have a seq with length 3 the weights are 1/3, 1/3, and 1/3
# making T by T matrix with zeros in the upper triangular part
attention_uniform_prior = 1 / torch.arange(1, T+1).view(1, T, 1).repeat(B, 1, T)
attention_uniform_prior = attention_uniform_prior.tril().view(B, 1, T, T).to(attention.device)
attention = attention - attention_uniform_prior
attention_agg = attention.sum(dim=1, keepdims=True)
return attention_agg
def _log_rec_audio(self, specs, tag, global_step, pl_module=None, save_rec_path=None):
# specs are (B, 1, F, T)
for i, spec in enumerate(specs):
spec = spec.data.squeeze(0).cpu().numpy()
# audios are in [-1, 1], making them in [0, 1]
spec = (spec + 1) / 2
wave = self.vocoder.vocode(spec, global_step)
wave = torch.from_numpy(wave).unsqueeze(0)
if pl_module is not None:
pl_module.logger.experiment.add_audio(f'{tag}_{i}', wave, pl_module.global_step, self.sample_rate)
# in case we would like to save it on disk
if save_rec_path is not None:
try:
librosa.output.write_wav(save_rec_path, wave.squeeze(0).numpy(), self.sample_rate)
except AttributeError:
soundfile.write(save_rec_path, wave.squeeze(0).numpy(), self.sample_rate, 'FLOAT')
@rank_zero_only
def _testtube(self, pl_module, images, batch, batch_idx, split):
if pl_module.__class__.__name__ == 'Net2NetTransformer':
cond_stage_model = pl_module.cond_stage_model.__class__.__name__
else:
cond_stage_model = None
for k in images:
tag = f'{split}/{k}'
if cond_stage_model in ['ClassOnlyStage', 'FeatsClassStage'] and k in ['conditioning', 'conditioning_rec']:
# saving the classes for the current batch
pl_module.logger.experiment.add_text(tag, '; '.join(batch['label']))
# breaking here because we don't want to call add_image
if cond_stage_model == 'FeatsClassStage':
grid = torchvision.utils.make_grid(images[k]['feature'].unsqueeze(1).permute(0, 1, 3, 2), nrow=1, normalize=True)
else:
continue
elif k in ['att_nopix', 'att_half', 'att_det']:
B, H, T, T = images[k].shape
grid = torchvision.utils.make_grid(self._visualize_attention(images[k]), nrow=H, normalize=True)
elif cond_stage_model in ['RawFeatsStage', 'VQModel1d', 'FeatClusterStage'] and k in ['conditioning', 'conditioning_rec']:
grid = torchvision.utils.make_grid(images[k].unsqueeze(1).permute(0, 1, 3, 2), nrow=1, normalize=True)
else:
if self.for_specs:
# flipping values along frequency dim, otherwise mels are upside-down (1, F, T)
grid = torchvision.utils.make_grid(images[k].flip(dims=(2,)), nrow=1)
# also reconstruct waveform given the spec and inv_transform
if k not in ['conditioning', 'conditioning_rec', 'att_nopix', 'att_half', 'att_det']:
self._log_rec_audio(images[k], tag, pl_module.global_step, pl_module=pl_module)
else:
grid = torchvision.utils.make_grid(images[k])
# attention is already in [0, 1] therefore ignoring this line
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
pl_module.logger.experiment.add_image(tag, grid, global_step=pl_module.global_step)
@rank_zero_only
def log_local(self, pl_module, split, images, batch, batch_idx):
root = os.path.join(pl_module.logger.save_dir, 'images', split)
if pl_module.__class__.__name__ == 'Net2NetTransformer':
cond_stage_model = pl_module.cond_stage_model.__class__.__name__
else:
cond_stage_model = None
for k in images:
if cond_stage_model in ['ClassOnlyStage', 'FeatsClassStage'] and k in ['conditioning', 'conditioning_rec']:
filename = '{}_gs-{:06}_e-{:03}_b-{:06}.txt'.format(
k,
pl_module.global_step,
pl_module.current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
# saving the classes for the current batch
with open(path, 'w') as file:
file.write('\n'.join(batch['label']))
# next loop iteration here because we don't want to call add_image
if cond_stage_model == 'FeatsClassStage':
grid = torchvision.utils.make_grid(images[k]['feature'].unsqueeze(1).permute(0, 1, 3, 2), nrow=1, normalize=True)
else:
continue
elif k in ['att_nopix', 'att_half', 'att_det']: # GPT CLass
B, H, T, T = images[k].shape
grid = torchvision.utils.make_grid(self._visualize_attention(images[k]), nrow=H, normalize=True)
elif cond_stage_model in ['RawFeatsStage', 'VQModel1d', 'FeatClusterStage'] and k in ['conditioning', 'conditioning_rec']:
grid = torchvision.utils.make_grid(images[k].unsqueeze(1).permute(0, 1, 3, 2), nrow=1, normalize=True)
else:
if self.for_specs:
# flipping values along frequency dim, otherwise mels are upside-down (1, F, T)
grid = torchvision.utils.make_grid(images[k].flip(dims=(2,)), nrow=1)
else:
grid = torchvision.utils.make_grid(images[k], nrow=4)
# attention is already in [0, 1] therefore ignoring this line
grid = (grid+1.0)/2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0,1).transpose(1,2).squeeze(-1)
grid = grid.numpy()
grid = (grid*255).astype(np.uint8)
filename = '{}_gs-{:06}_e-{:03}_b-{:06}.png'.format(
k,
pl_module.global_step,
pl_module.current_epoch,
batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
Image.fromarray(grid).save(path)
# also save audio on the disk
if self.for_specs:
tag = f'{split}/{k}'
filename = filename.replace('.png', '.wav')
path = os.path.join(root, filename)
if k not in ['conditioning', 'conditioning_rec', 'att_nopix', 'att_half', 'att_det']:
self._log_rec_audio(images[k], tag, pl_module.global_step, save_rec_path=path)
def log_img(self, pl_module, batch, batch_idx, split='train'):
if (self.check_frequency(batch_idx) and # batch_idx % self.batch_freq == 0
hasattr(pl_module, 'log_images') and
callable(pl_module.log_images) and
self.max_images > 0 and
pl_module.first_stage_key != 'feature'):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split=split)
for k in images:
if isinstance(images[k], dict):
N = min(images[k]['feature'].shape[0], self.max_images)
images[k]['feature'] = images[k]['feature'][:N]
if isinstance(images[k]['feature'], torch.Tensor):
images[k]['feature'] = images[k]['feature'].detach().cpu()
if self.clamp:
images[k]['feature'] = torch.clamp(images[k]['feature'], -1., 1.)
else:
N = min(images[k].shape[0], self.max_images)
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().cpu()
if self.clamp:
images[k] = torch.clamp(images[k], -1., 1.)
self.log_local(pl_module, split, images, batch, batch_idx)
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
logger_log_images(pl_module, images, batch, pl_module.global_step, split)
if is_train:
pl_module.train()
def check_frequency(self, batch_idx):
if (batch_idx % self.batch_freq) == 0 or (batch_idx in self.log_steps):
try:
self.log_steps.pop(0)
except IndexError:
pass
return True
return False
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self.log_img(pl_module, batch, batch_idx, split='train')
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
self.log_img(pl_module, batch, batch_idx, split='val')
if __name__ == '__main__':
# adding a random number of seconds so that exp folder names coincide less often
random_seconds_shift = datetime.timedelta(seconds=np.random.randint(60))
now = (datetime.datetime.now() - random_seconds_shift).strftime('%Y-%m-%dT%H-%M-%S')
# add cwd for convenience and to make classes in this file available when
# running as `python train.py`
# (in particular `train.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
parser = Trainer.add_argparse_args(parser)
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
'-n/--name and -r/--resume cannot be specified both.'
'If you want to resume training in a new log folder, '
'use -n/--name in combination with --resume_from_checkpoint'
)
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError('Cannot find {}'.format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split('/')
idx = len(paths)-paths[::-1].index('logs')+1
logdir = '/'.join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip('/')
# ckpt = os.path.join(logdir, 'checkpoints', 'last.ckpt')
# ckpt = sorted(glob.glob(os.path.join(logdir, 'checkpoints', '*.ckpt')))[-1]
if Path(os.path.join(logdir, 'checkpoints', 'last.ckpt')).exists():
ckpt = os.path.join(logdir, 'checkpoints', 'last.ckpt')
else:
ckpt = sorted(Path(logdir).glob('checkpoints/*.ckpt'))[-1]
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, 'configs/*.yaml')))
opt.base = base_configs+opt.base
_tmp = logdir.split('/')
nowname = _tmp[_tmp.index('logs')+1]
else:
if opt.name:
name = '_'+opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = '_'+cfg_name
else:
name = ''
nowname = now+name+opt.postfix
logdir = os.path.join('logs', nowname)
print(nowname)
ckptdir = os.path.join(logdir, 'checkpoints')
cfgdir = os.path.join(logdir, 'configs')
seed_everything(opt.seed)
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop('lightning', OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get('trainer', OmegaConf.create())
# default to ddp
trainer_config['distributed_backend'] = 'ddp'
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if 'gpus' not in trainer_config:
del trainer_config['distributed_backend']
cpu = True
else:
gpuinfo = trainer_config['gpus']
print(f'Running on GPUs {gpuinfo}')
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
default_logger_cfgs = {
'testtube': {
'target': 'pytorch_lightning.loggers.TestTubeLogger',
'params': {
'name': 'testtube',
'save_dir': logdir,
}
},
}
default_logger_cfg = default_logger_cfgs['testtube']
logger_cfg = lightning_config.logger or OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs['logger'] = instantiate_from_config(logger_cfg)
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
# specify which metric is used to determine best models
default_modelckpt_cfg = {
'target': 'pytorch_lightning.callbacks.ModelCheckpoint',
'params': {
'dirpath': ckptdir,
'filename': '{epoch:06}',
'verbose': True,
'save_last': True,
}
}
if hasattr(model, 'monitor'):
print(f'Monitoring {model.monitor} as checkpoint metric.')
default_modelckpt_cfg['params']['monitor'] = model.monitor
default_modelckpt_cfg['params']['save_top_k'] = 3
modelckpt_cfg = lightning_config.modelcheckpoint or OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
trainer_kwargs['checkpoint_callback'] = instantiate_from_config(modelckpt_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
'setup_callback': {
'target': 'train.SetupCallback',
'params': {
'resume': opt.resume,
'now': now,
'logdir': logdir,
'ckptdir': ckptdir,
'cfgdir': cfgdir,
'config': config,
'lightning_config': lightning_config,
}
},
'image_logger': {
'target': 'train.ImageLogger',
'params': {
'batch_frequency': 750,
'max_images': 4,
'clamp': True
}
},
'learning_rate_logger': {
'target': 'train.LearningRateMonitor',
'params': {
'logging_interval': 'step',
#'log_momentum': True
}
},
}
# patching the default config for the spectrogram input
if 'Spectrogram' in config.data.target:
spec_dir_name = Path(config.data.params.spec_dir_path).name
default_callbacks_cfg['image_logger']['params']['spec_dir_name'] = spec_dir_name
default_callbacks_cfg['image_logger']['params']['sample_rate'] = config.data.params.sample_rate
callbacks_cfg = lightning_config.callbacks or OmegaConf.create()
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
trainer_kwargs['callbacks'] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
# configure learning rate
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
if not cpu:
ngpu = len(lightning_config.trainer.gpus.strip(',').split(','))
else:
ngpu = 1
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches or 1
print(f'accumulate_grad_batches = {accumulate_grad_batches}')
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print('Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)'.format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0:
print('Summoning checkpoint.')
ckpt_path = os.path.join(ckptdir, 'last.ckpt')
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb; pudb.set_trace()
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# run
if opt.train:
try:
trainer.fit(model, data)
except Exception:
melk()
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except Exception:
if opt.debug and trainer.global_rank==0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank==0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, 'debug_runs', name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)