forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
156 lines (139 loc) · 6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import copy as cp
import torch
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook,
build_optimizer)
from mmcv.runner.hooks import Fp16OptimizerHook
from ..core import (DistEvalHook, EvalHook, OmniSourceDistSamplerSeedHook,
OmniSourceRunner)
from ..datasets import build_dataloader, build_dataset
from ..utils import PreciseBNHook, get_root_logger
def train_model(model,
dataset,
cfg,
distributed=False,
validate=False,
timestamp=None,
meta=None):
"""Train model entry function.
Args:
model (nn.Module): The model to be trained.
dataset (:obj:`Dataset`): Train dataset.
cfg (dict): The config dict for training.
distributed (bool): Whether to use distributed training.
Default: False.
validate (bool): Whether to do evaluation. Default: False.
timestamp (str | None): Local time for runner. Default: None.
meta (dict | None): Meta dict to record some important information.
Default: None
"""
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('train_dataloader', {}))
if cfg.omnisource:
# The option can override videos_per_gpu
train_ratio = cfg.data.get('train_ratio', [1] * len(dataset))
omni_videos_per_gpu = cfg.data.get('omni_videos_per_gpu', None)
if omni_videos_per_gpu is None:
dataloader_settings = [dataloader_setting] * len(dataset)
else:
dataloader_settings = []
for videos_per_gpu in omni_videos_per_gpu:
this_setting = cp.deepcopy(dataloader_setting)
this_setting['videos_per_gpu'] = videos_per_gpu
dataloader_settings.append(this_setting)
data_loaders = [
build_dataloader(ds, **setting)
for ds, setting in zip(dataset, dataloader_settings)
]
else:
data_loaders = [
build_dataloader(ds, **dataloader_setting) for ds in dataset
]
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
model = MMDataParallel(
model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids)
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
Runner = OmniSourceRunner if cfg.omnisource else EpochBasedRunner
runner = Runner(
model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(cfg.lr_config, optimizer_config,
cfg.checkpoint_config, cfg.log_config,
cfg.get('momentum_config', None))
if distributed:
if cfg.omnisource:
runner.register_hook(OmniSourceDistSamplerSeedHook())
else:
runner.register_hook(DistSamplerSeedHook())
# precise bn setting
if cfg.get('precise_bn', False):
precise_bn_dataset = build_dataset(cfg.data.train)
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=0, # save memory and time
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
data_loader_precise_bn = build_dataloader(precise_bn_dataset,
**dataloader_setting)
precise_bn_hook = PreciseBNHook(data_loader_precise_bn,
**cfg.get('precise_bn'))
runner.register_hook(precise_bn_hook)
if validate:
eval_cfg = cfg.get('evaluation', {})
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('val_dataloader', {}))
val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
eval_hook = DistEvalHook if distributed else EvalHook
runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner_kwargs = dict()
if cfg.omnisource:
runner_kwargs = dict(train_ratio=train_ratio)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs, **runner_kwargs)