-
Notifications
You must be signed in to change notification settings - Fork 55
/
trainer_configs.py
204 lines (166 loc) · 7.81 KB
/
trainer_configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Configuration setup for TrainerBase. Moved to separate file to avoid circular imports.
"""
from copy import deepcopy
from typing import Dict, List, Optional
from nntrainer import lr_scheduler, optimization, typext, utils
from nntrainer.utils import ConfigNamesConst
class BaseTrainerState(typext.SaveableBaseModel):
"""
Current trainer state that must be saved for training continuation..
"""
# total time bookkeeping
time_total: float = 0
time_val: float = 0
# state info TO SAVE
start_epoch: int = 0
current_epoch: int = 0
epoch_step: int = 0
total_step: int = 0
det_best_field_current: float = 0
det_best_field_best: Optional[float] = None
# state info lists
infos_val_epochs: List[int] = []
infos_val_steps: List[int] = []
infos_val_is_good: List[int] = []
# logging
last_grad_norm: int = 0
class BaseExperimentConfig(typext.ConfigClass):
"""
Base configuration class, loads the dict from yaml config files for an experiment.
This is where the entire config dict will be loaded into first.
Args:
config: Configuration dictionary to be loaded.
Attributes:
...
"""
def __init__(self, config: Dict, strict: bool = True) -> None:
self.config_orig = deepcopy(config) # backup original input dict
self.config = config # bind dict to class
self.strict = strict
utils.resolve_sameas_config_recursively(config) # resolve "same_as" reference fields to dictionary objects.
self.description: str = config.pop("description", "no description given.")
self.random_seed: Optional[int] = config.pop("random_seed")
self.config_type: str = config.pop("config_type")
self.use_cuda: bool = config.pop("use_cuda")
self.use_multi_gpu: bool = config.pop("use_multi_gpu")
self.cudnn_enabled: bool = config.pop("cudnn_enabled")
self.cudnn_benchmark: bool = config.pop("cudnn_benchmark")
self.cudnn_deterministic: bool = config.pop("cudnn_deterministic")
self.cuda_non_blocking: bool = config.pop("cuda_non_blocking")
self.fp16_train: bool = config.pop("fp16_train")
self.fp16_val: bool = config.pop("fp16_val")
def post_init(self):
"""
Check config dict for correctness and raise
Returns:
"""
if self.strict:
utils.check_config_dict(self.__class__.__name__, self.config)
class DefaultExperimentConfig(BaseExperimentConfig):
"""
Default configuration class.
Args:
config: Configuration dictionary to be loaded.
"""
def __init__(self, config: Dict) -> None:
super().__init__(config)
self.name = "config_default"
self.train = BaseTrainConfig(config.pop(ConfigNamesConst.TRAIN))
self.val = BaseValConfig(config.pop(ConfigNamesConst.VAL))
self.dataset_train = BaseDatasetConfig(config.pop(ConfigNamesConst.DATASET_TRAIN))
self.dataset_val = BaseDatasetConfig(config.pop(ConfigNamesConst.DATASET_VAL))
self.logging = BaseLoggingConfig(config.pop(ConfigNamesConst.LOGGING))
self.saving = BaseSavingConfig(config.pop(ConfigNamesConst.SAVING))
self.optimizer = optimization.OptimizerConfig(config.pop(ConfigNamesConst.OPTIMIZER))
self.lr_scheduler = lr_scheduler.SchedulerConfig(config.pop(ConfigNamesConst.LR_SCHEDULER))
class BaseTrainConfig(typext.ConfigClass):
"""
Base configuration class for training.
Args:
config: Configuration dictionary to be loaded, training part.
"""
def __init__(self, config: Dict) -> None:
self.batch_size: int = config.pop("batch_size")
assert isinstance(self.batch_size, int) and self.batch_size > 0
self.num_epochs: int = config.pop("num_epochs")
assert isinstance(self.num_epochs, int) and self.num_epochs > 0
self.loss_func: str = config.pop("loss_func")
assert isinstance(self.loss_func, str)
self.clip_gradient: float = config.pop("clip_gradient")
assert isinstance(self.clip_gradient, (int, float)) and self.clip_gradient >= -1
class BaseValConfig(typext.ConfigClass):
"""
Base configuration class for validation.
Args:
config: Configuration dictionary to be loaded, validation part.
"""
def __init__(self, config: Dict) -> None:
self.batch_size: int = config.pop("batch_size")
assert isinstance(self.batch_size, int) and self.batch_size > 0
self.val_freq: int = config.pop("val_freq")
assert isinstance(self.val_freq, int) and self.val_freq > 0
self.val_start: int = config.pop("val_start")
assert isinstance(self.val_start, int) and self.val_start >= 0
# self.val_train_set: bool = config.pop("val_train_set")
# assert isinstance(self.val_train_set, bool)
self.det_best_field: str = config.pop("det_best_field")
assert isinstance(self.det_best_field, str)
self.det_best_compare_mode: str = config.pop("det_best_compare_mode")
assert isinstance(self.det_best_compare_mode, str) and self.det_best_compare_mode in ["min", "max"]
self.det_best_threshold_mode: str = config.pop("det_best_threshold_mode")
assert isinstance(self.det_best_threshold_mode, str) and self.det_best_threshold_mode in ["rel", "abs"]
self.det_best_threshold_value: float = config.pop("det_best_threshold_value")
assert isinstance(self.det_best_threshold_value, (int, float)) and self.det_best_threshold_value >= 0
self.det_best_terminate_after: float = config.pop("det_best_terminate_after")
assert isinstance(self.det_best_terminate_after, int) and self.det_best_terminate_after >= -1
class BaseSavingConfig(typext.ConfigClass):
"""
Base Saving Configuration Class
Args:
config: Configuration dictionary to be loaded, saving part.
Attributes:
keep_freq: Frequency to keep epochs. 1: Save after each epoch. Default -1: Keep nothing except best and last.
save_last: Keep last epoch. Needed to continue training. Default: true
save_best: Keep best epoch. Default: true
save_opt_state: Save optimizer and lr scheduler. Needed to continue training. Default: true
"""
def __init__(self, config: Dict) -> None:
self.keep_freq: int = config.pop("keep_freq")
self.save_last: bool = config.pop("save_last")
self.save_best: bool = config.pop("save_best")
self.save_opt_state: bool = config.pop("save_opt_state")
assert self.keep_freq >= -1
class BaseDatasetConfig(typext.ConfigClass):
"""
Base Dataset Configuration class
Args:
config: Configuration dictionary to be loaded, dataset part.
"""
def __init__(self, config: Dict) -> None:
# general dataset info
self.name: str = config.pop("name")
self.data_type: str = config.pop("data_type")
self.subset: str = config.pop("subset")
self.split: str = config.pop("split")
self.max_datapoints: int = config.pop("max_datapoints")
self.shuffle: bool = config.pop("shuffle")
# general dataloader configuration
self.pin_memory: bool = config.pop("pin_memory")
self.num_workers: int = config.pop("num_workers")
self.drop_last: bool = config.pop("drop_last")
class BaseLoggingConfig(typext.ConfigClass):
"""
Base Logging Configuration Class
Args:
config: Configuration dictionary to be loaded, logging part.
"""
def __init__(self, config: Dict) -> None:
self.step_train: int = config.pop("step_train")
self.step_val: int = config.pop("step_val")
self.step_gpu: int = config.pop("step_gpu")
self.step_gpu_once: int = config.pop("step_gpu_once")
assert self.step_train >= -1
assert self.step_val >= -1
assert self.step_gpu >= -1
assert self.step_gpu_once >= -1