-
Notifications
You must be signed in to change notification settings - Fork 0
/
H8.i
217 lines (202 loc) · 4.86 KB
/
H8.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Hackathon benchmark problems.
# Spinodal Decomposition
# Spherical geometry
# No boundary condition
# Solution Time Adaptative Time Stepper
#sphere geometry
[Mesh]
#type = FileMesh
file = sphere_mesh.e
uniform_refine = 4
[]
#Both variables are linear Lagrange shape functions
[Variables]
[./c]
order = FIRST
family = LAGRANGE
#scaling = 3
[../]
[./chem_pot]
order = FIRST
family = LAGRANGE
[../]
[]
[AuxVariables]
[./f_density]
order = CONSTANT
family = MONOMIAL
[../]
[]
[AuxKernels]
[./f_density]
type = TotalFreeEnergy
variable = 'f_density'
f_name = f_loc
interfacial_vars = 'c'
kappa_names = 'kappa_c'
[../]
[]
[Kernels]
[./chem_pot_dot]
type = CoupledTimeDerivative
variable = 'chem_pot'
v = 'c'
[../]
[./coupled_parsed]
type = SplitCHParsed
variable = 'c'
f_name = f_loc
kappa_name = 'kappa_c'
w = 'chem_pot'
[../]
[./coupled_res]
type = SplitCHWRes
variable = 'chem_pot'
mob_name = 'M'
[../]
[]
# Initial conditions for c.
[ICs]
[./IC_c]
type = FunctionIC
function = ICFunction
variable = 'c'
[../]
[]
#[Functions]
# [./ICFunction]
# type = ParsedFunction
# value = 'C0+Epsilon*(cos(8*acos(z/r))*cos(15*atan(y/x))+(cos(12*acos(z/r))*cos(10*atan(y/x)))^2+cos(2.5*acos(z/r)-1.5*atan(y/x))*cos(7*acos(z/r)-2*atan(y/x)))'
# vars = 'C0 Epsilon r'
# vals = '0.5 0.05 100'
# [../]
#[]
[Functions]
[./ICFunction]
type = ParsedFunction
vars = 'C0 Epsilon'
vals = '0.5 0.05'
value = 'C0+Epsilon*(cos(8*acos(z/sqrt(x^2+y^2+z^2)))*cos(15*atan(y/x))+(cos(12*acos(z/sqrt(x^2+y^2+z^2)))*cos(10*atan(y/x)))^2+cos(2.5*acos(z/sqrt(x^2+y^2+z^2))-1.5*atan(y/x))*cos(7*acos(z/sqrt(x^2+y^2+z^2))-2*atan(y/x)))'
[../]
[]
# Definition of the free energy Fbulk
[Materials]
[./mat]
type = GenericConstantMaterial
prop_names = ' kappa_c M'
prop_values = '2 5'
[../]
[./local_free_energy] # Local free energy function
type = DerivativeParsedMaterial
f_name = f_loc
args = 'c'
function = 'RhoS*(c-Calpha)^2*(Cbeta-c)^2'
constant_names = 'Calpha Cbeta RhoS'
constant_expressions = '0.3 0.7 5'
derivative_order = 2
[../]
# To determine the fraction of the high concentration phase
# return 1/surface_sphere when in a precipitate
[./precipitate_indicator]
type = ParsedMaterial
f_name = prec_ind
args = c
function = if(c>0.5,0.0000079365,0)
[../]
[]
[Postprocessors]
[./evaluations] # Cumulative residual calculations for simulation
type = NumResidualEvaluations
[../]
[./active_time]
type = RunTime
time_type = active
[../]
[./precipitate_area]
type = ElementIntegralMaterialProperty
mat_prop = prec_ind
[../]
[./num_features] # Number of precipitates formed
type = FeatureFloodCount
variable = c
threshold = 0.6
[../]
[./concentration]
type = ElementIntegralVariablePostprocessor
variable = c
[../]
[./f_density]
type = ElementIntegralVariablePostprocessor
variable = f_density
[../]
[./iterations] # Number of iterations needed to converge timestep
type = NumNonlinearIterations
[../]
[./nodes] # Number of nodes in mesh
type = NumNodes
[../]
[./end_criterion] # End Criterion
type = ElementAverageTimeDerivative
variable = f_density
[../]
[]
[UserObjects]
[./end]
type = Terminator
expression = 'abs(end_criterion)<1e-14'
[../]
[]
[Preconditioning]
[./c_chem_pot_coupling]
type = SMP
full = true
[../]
[]
[Executioner]
type = Transient
solve_type = NEWTON # full Newton Method for Spinodal decomposition
nl_rel_tol = 1e-8 # 1e-8 given by the paper
nl_abs_tol = 1e-11 # 1e-11 given by the paper
end_time = 3000000
dt=1
l_max_its = 30
nl_max_its = 50
l_tol = 1e-5
#nl_rel_step_tol = 1e-5
#nl_abs_step_tol = 1e-5
petsc_options_iname = '-pc_type -ksp_gmres_restart -sub_ksp_type -sub_pc_type -pc_asm_overlap'
petsc_options_value = 'asm 31 preonly lu 2'
timestep_tolerance = 1e-1
# Mesh Adaptivity: The objective is to have at least 5 elements in interface.
[./Adaptivity]
refine_fraction = 0.9
coarsen_fraction = 0.05
max_h_level = 2
initial_adaptivity = 2
[../]
# Time Stepper: Using Solution Time Adaptative here.
# maximum of 5% increase per time step
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 1 #arbitrary
percent_change = 0.05
[../]
[]
# It converges faster if all the residuals are at the same magnitude
[Debug]
show_var_residual_norms = true
[../]
[Outputs]
[./exodus]
type = Exodus
use_problem_dimension = false
sync_times = '1 5 10 20 100 200 500 1000 2000 3000 10000 400000'
sync_only = true
[../]
console = true
csv = true
[./console]
type = Console
max_rows = 10
[../]
[]