forked from manuel-pm/atatutils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mpdcdataextractor.py
executable file
·250 lines (220 loc) · 8.9 KB
/
mpdcdataextractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""Analyze MC data.
Author:
Ilias Bilionis
Date:
1/24/2013
Modified:
Manuel Aldegunde
Date:
05/2016
"""
from __future__ import print_function
import glob
import os
import re
import shutil
import warnings
import numpy as np
from atatutils.clusterfileparser import ClustersFileParser
def split_path(path):
""" Splits a path into its components """
dirname = path
path_split = []
while True:
dirname, leaf = os.path.split(dirname.rstrip('/\\'))
if leaf:
# Adds one element, at the beginning of the list
path_split = [leaf] + path_split
else:
# Uncomment the following line to have also the drive, e.g. "Z:\"
# path_split = [dirname] + path_split
break
return path_split
def extract_from_dirname(dirname, varname):
""" Extract the value corresponding to varname from dirname in a string
of the form "xxxvarname1=..._xxxvarname2=..._...varnameN=..." """
i0 = dirname.find(varname)
i1 = i0 + dirname[i0:].find('=')
i2 = dirname[i1:].find('_')
if i2 != -1:
return float(dirname[i1 + 1:i1 + i2])
else:
return float(dirname[i1 + 1:])
class MpdcDataExtractor:
""" Extracts data (energy, temperature, concentration) from the results
of the MPDC code """
def __init__(self, prefix, output=None, verbosity=0):
""" Initializes class variables and gets parameters from the
simulation output file """
warnings.filterwarnings('error')
# self.nproc = nproc
self.prefix = prefix
self.parent_folder = split_path(self.prefix)[0]
self.folder_prefix = split_path(self.prefix)[-1]
self.verbosity = verbosity
self.data = None
self.restart_folders = ['empty']
clusters = ClustersFileParser()
clusters.parse()
self.nclusters = clusters.size()
supercel_size_line = 'Simple supercell created'
supercel_size_line2 = 'MC simulation cell size'
ofilename = 'output.log'
if output is not None:
ofilename = output
# file = open('jobid_' + str(nproc), "r")
# for line in file:
# continue
# jobid = line.rstrip()
# file = open('slurm-' + jobid + '.out', "r")
ofile = open(ofilename, 'r')
for line in ofile:
if re.search(supercel_size_line, line):
break
ofile.close()
size = line.split()[-3:]
try:
self.size = [int(s) for s in size]
except:
ofile = open(ofilename, 'r')
for line in ofile:
if re.search(supercel_size_line2, line):
break
ofile.close()
size = line.split()[-3:]
self.size = [int(s) for s in size]
self.natoms_p_supercell = self.size[0] * self.size[1] * self.size[2]
self.nfolders = 0
for d in glob.glob(prefix + '_beta=*_mu=*'):
if (not os.path.isdir(d) or
not os.path.isfile(os.path.join(d, 'phi.dat'))):
continue
self.nfolders += 1
def archive(self, filename=None):
""" Archives the simulation directory """
ofilename = split_path(self.parent_folder)[-1]
if filename is not None:
ofilename = filename
shutil.make_archive(ofilename, 'gztar', base_dir=self.parent_folder)
def dump_correlation(self, which=2):
""" Writes the \emph{which}-correlation from the design matrix phi """
if isinstance(which, int):
which = [which]
rootdir = os.path.abspath('.')
for d in glob.glob(self.prefix + '_beta=*_mu=*'):
os.chdir(d)
if not os.path.isfile('phi.dat'):
continue
correlations = np.loadtxt('phi.dat')
for i in which:
np.savetxt('{}_correlation.dat'.format(i),
correlations[i::self.nclusters])
os.chdir(rootdir)
def get_data(self):
""" Returns the extracted data as a numpy array """
if self.data is not None:
return self.data
self.extract_data()
return self.data
def extract_data(self):
""" Extracts the data from the simulation """
self.data = np.empty((self.nfolders, 10))
idx = 0
max_beta = -1.e16
# print(self.prefix)
for d in glob.glob(self.prefix + '_beta=*_mu=*'):
if not os.path.isdir(d):
continue
if self.verbosity == 1:
print('Entering folder ' + d)
beta = extract_from_dirname(d, 'beta')
mu = extract_from_dirname(d, 'mu')
if beta > max_beta and \
os.path.isfile(os.path.join(d, 'x.dat')) and \
os.path.isfile(os.path.join(d, 'energy.dat')) and \
os.path.isfile(os.path.join(d, 'weights.dat')):
all_particles = True
for p in range(64):
if not os.path.isfile(
os.path.join(d, 'particle_{}.dat.gz'.format(str(
p)))):
all_particles = False
break
if all_particles:
max_beta = beta
self.restart_folders.append(d)
try:
if not os.path.isfile(os.path.join(d, 'phi.dat')):
continue
if self.verbosity == 1:
print('Extracting in foder ' + d)
energy = np.loadtxt(os.path.join(d, 'energy.dat'))
log_w = np.loadtxt(os.path.join(d, 'weights.dat'))
pair = np.loadtxt(os.path.join(d,
'phi.dat'))[2::self.nclusters]
except:
if self.verbosity == 1:
print('Skipping foder ' + d)
continue
w = np.exp(log_w)
mean_energy = np.dot(energy, w)
mean_energy2 = np.dot(energy ** 2, w)
var_energy = mean_energy2 - mean_energy ** 2
mean_pair = np.dot(pair, w)
mean_pair2 = np.dot(pair*pair, w)
var_pair = mean_pair2 - mean_pair ** 2
x = np.loadtxt(os.path.join(d, 'x.dat'))
mean_x = np.dot(x, w)
mean_x2 = np.dot(x ** 2, w)
var_x = mean_x2 - mean_x ** 2
# Quantities of interest
k_b = 8.6173325e-5 # 8.6173324(78)x10-5 eV/K
temp = 1. / (k_b * beta)
c_p = beta * beta * k_b * var_energy / self.natoms_p_supercell
# eV K^-1 atom^-1
c_p *= 1.60218e-16 * 6.02214129e23 # mJ mol^-1 K^-1
if self.verbosity == 2:
print('{0:1.12f} {1:2.12f} {2:2.12} {3:2.12} {4:2.12} '
'{5:2.12} {6:2.12} {7:2.12} {8:1.12f} {9:1.12f}'.format(
beta, mu, mean_energy, var_energy, mean_x, var_x,
mean_pair, var_pair, temp, c_p))
self.data[idx, 0] = beta
self.data[idx, 1] = mu
self.data[idx, 2] = mean_energy / self.natoms_p_supercell
self.data[idx, 3] = var_energy / self.natoms_p_supercell
self.data[idx, 4] = (mean_x / self.natoms_p_supercell + 1.) / 2.
self.data[idx, 5] = var_x / (self.natoms_p_supercell * 2.0)**2
self.data[idx, 6] = mean_pair
self.data[idx, 7] = var_pair
self.data[idx, 8] = temp
self.data[idx, 9] = c_p
idx += 1
# Sort in order of increasing temperature
self.restart_folders.sort()
self.data = self.data[self.data[:, 8].argsort()]
# np.savetxt(prefix + '.dat', self.data)
temp_max = self.data[self.data[:, 9].argmax(), 8]
print("Maximum specific heat at T={} K".format(temp_max))
print("Minimum temperature T={} K (beta={})".format(self.data[0, 8],
self.data[0, 0]))
print("Last restart point: {}".format(self.restart_folders[-1]))
def get_restart_folder(self, which=-1):
""" Returns the latest folder than can be used for restarting a MC
simulation """
return self.restart_folders[which]
def save_data(self, filename=None):
""" Saves extracted data to a file """
if self.data is None:
print('WARNING: extracting data...')
self.extract_data()
ofilename = self.folder_prefix + self.parent_folder[6:] + '.dat'
if filename is not None:
ofilename = filename
np.savetxt(ofilename, self.data)
def load_data(self, filename=None):
""" Loads the simulation data from a file """
ifilename = self.folder_prefix + self.parent_folder[6:] + '.dat'
# ifilename = self.folder_prefix + '.dat'
if filename is not None:
ifilename = filename
self.data = np.loadtxt(ifilename)