-
Notifications
You must be signed in to change notification settings - Fork 0
/
Machine Learning: kNN-based Strategy
231 lines (175 loc) · 9.27 KB
/
Machine Learning: kNN-based Strategy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © capissimo
//@version=5
indicator('Machine Learning: kNN-based Strategy', 'ML-kNN', true, max_labels_count=300, format=format.price, precision=2, timeframe="", timeframe_gaps=true)
// kNN-based Strategy (FX and Crypto)
// Description:
// This strategy uses a classic machine learning algorithm - k Nearest Neighbours (kNN) -
// to let you find a prediction for the next (tomorrow's, next month's, etc.) market move.
// Being an unsupervised machine learning algorithm, kNN is one of the most simple learning algorithms.
// To do a prediction of the next market move, the kNN algorithm uses the historic data,
// collected in 3 arrays - feature1, feature2 and directions, - and finds the k-nearest
// neighbours of the current indicator(s) values.
// The two dimensional kNN algorithm just has a look on what has happened in the past when
// the two indicators had a similar level. It then looks at the k nearest neighbours,
// sees their state and thus classifies the current point.
// The kNN algorithm offers a framework to test all kinds of indicators easily to see if they
// have got any *predictive value*. One can easily add cog, wpr and others.
// Note: TradingViews's playback feature helps to see this strategy in action.
// Warning: Signals ARE repainting.
// Style tags: Trend Following, Trend Analysis
// Asset class: Equities, Futures, ETFs, Currencies and Commodities
// Dataset: FX Minutes/Hours+++/Days
//-- Preset Dates
int startdate = timestamp('01 Jan 2000 00:00:00 GMT+10')
int stopdate = timestamp('31 Dec 2025 23:45:00 GMT+10')
//-- Inputs
StartDate = input.time (startdate, 'Start Date')
StopDate = input.time (stopdate, 'Stop Date')
Indicator = input.string('All', 'Indicator', ['RSI','ROC','CCI','Volume','All'])
ShortWinow = input.int (14, 'Short Period [1..n]', 1)
LongWindow = input.int (28, 'Long Period [2..n]', 2)
BaseK = input.int (252, 'Base No. of Neighbours (K) [5..n]', 5)
Filter = input.bool (false, 'Volatility Filter')
Bars = input.int (300, 'Bar Threshold [2..5000]', 2, 5000)
//-- Constants
var int BUY = 1
var int SELL =-1
var int CLEAR = 0
var int k = math.floor(math.sqrt(BaseK)) // k Value for kNN algo
//-- Variable
// Training data, normalized to the range of [0,...,100]
var array<float> feature1 = array.new_float(0) // [0,...,100]
var array<float> feature2 = array.new_float(0) // ...
var array<int> directions = array.new_int(0) // [-1; +1]
// Result data
var array<int> predictions = array.new_int(0)
var float prediction = 0.0
var array<int> bars = array.new<int>(1, 0) // array used as a container for inter-bar variables
// Signals
var int signal = CLEAR
//-- Functions
minimax(float x, int p, float min, float max) =>
float hi = ta.highest(x, p), float lo = ta.lowest(x, p)
(max - min) * (x - lo)/(hi - lo) + min
cAqua(int g) => g>9?#0080FFff:g>8?#0080FFe5:g>7?#0080FFcc:g>6?#0080FFb2:g>5?#0080FF99:g>4?#0080FF7f:g>3?#0080FF66:g>2?#0080FF4c:g>1?#0080FF33:#00C0FF19
cPink(int g) => g>9?#FF0080ff:g>8?#FF0080e5:g>7?#FF0080cc:g>6?#FF0080b2:g>5?#FF008099:g>4?#FF00807f:g>3?#FF008066:g>2?#FF00804c:g>1?#FF008033:#FF008019
inside_window(float start, float stop) =>
time >= start and time <= stop ? true : false
//-- Logic
bool window = inside_window(StartDate, StopDate)
// 3 pairs of predictor indicators, long and short each
float rs = ta.rsi(close, LongWindow), float rf = ta.rsi(close, ShortWinow)
float cs = ta.cci(close, LongWindow), float cf = ta.cci(close, ShortWinow)
float os = ta.roc(close, LongWindow), float of = ta.roc(close, ShortWinow)
float vs = minimax(volume, LongWindow, 0, 99), float vf = minimax(volume, ShortWinow, 0, 99)
// TOADD or TOTRYOUT:
// ta.cmo(close, LongWindow), ta.cmo(close, ShortWinow)
// ta.mfi(close, LongWindow), ta.mfi(close, ShortWinow)
// ta.mom(close, LongWindow), ta.mom(close, ShortWinow)
float f1 = switch Indicator
'RSI' => rs
'CCI' => cs
'ROC' => os
'Volume' => vs
=> math.avg(rs, cs, os, vs)
float f2 = switch Indicator
'RSI' => rf
'CCI' => cf
'ROC' => of
'Volume' => vf
=> math.avg(rf, cf, of, vf)
// Classification data, what happens on the next bar
int class_label = int(math.sign(close[1] - close[0])) // eq. close[1]<close[0] ? SELL: close[1]>close[0] ? BUY : CLEAR
// Use particular training period
if window
// Store everything in arrays. Features represent a square 100 x 100 matrix,
// whose row-colum intersections represent class labels, showing historic directions
array.push(feature1, f1)
array.push(feature2, f2)
array.push(directions, class_label)
// Ucomment the followng statement (if barstate.islast) and tab everything below
// between BOBlock and EOBlock marks to see just the recent several signals gradually
// showing up, rather than all the preceding signals
//if barstate.islast
//==BOBlock
// Core logic of the algorithm
int size = array.size(directions)
float maxdist = -999.0
// Loop through the training arrays, getting distances and corresponding directions.
for i=0 to size-1
// Calculate the euclidean distance of current point to all historic points,
// here the metric used might as well be a manhattan distance or any other.
float d = math.sqrt(math.pow(f1 - array.get(feature1, i), 2) + math.pow(f2 - array.get(feature2, i), 2))
if d > maxdist
maxdist := d
if array.size(predictions) >= k
array.shift(predictions)
array.push(predictions, array.get(directions, i))
//==EOBlock
// Note: in this setup there's no need for distances array (i.e. array.push(distances, d)),
// but the drawback is that a sudden max value may shadow all the subsequent values.
// One of the ways to bypass this is to:
// 1) store d in distances array,
// 2) calculate newdirs = bubbleSort(distances, directions), and then
// 3) take a slice with array.slice(newdirs) from the end
// Get the overall prediction of k nearest neighbours
prediction := array.sum(predictions)
bool filter = Filter ? ta.atr(10) > ta.atr(40) : true // filter out by volatility or ex. ta.atr(1) > ta.atr(10)...
// Now that we got a prediction for the next market move, we need to make use of this prediction and
// trade it. The returns then will show if everything works as predicted.
// Over here is a simple long/short interpretation of the prediction,
// but of course one could also use the quality of the prediction (+5 or +1) in some sort of way,
// ex. for position sizing.
bool long = prediction > 0 and filter
bool short = prediction < 0 and filter
bool clear = not(long and short)
if array.get(bars, 0)==Bars // stop by trade duration
signal := CLEAR
array.set(bars, 0, 0)
else
array.set(bars, 0, array.get(bars, 0) + 1)
signal := long ? BUY : short ? SELL : clear ? CLEAR : nz(signal[1])
int changed = ta.change(signal)
bool startLongTrade = changed and signal==BUY
bool startShortTrade = changed and signal==SELL
// bool endLongTrade = changed and signal==SELL
// bool endShortTrade = changed and signal==BUY
bool clear_condition = changed and signal==CLEAR //or (changed and signal==SELL) or (changed and signal==BUY)
float maxpos = ta.highest(high, 10)
float minpos = ta.lowest (low, 10)
//-- Visuals
plotshape(startLongTrade ? minpos : na, 'Buy', shape.labelup, location.belowbar, cAqua(int(prediction*5)), size=size.small) // color intensity correction
plotshape(startShortTrade ? maxpos : na, 'Sell', shape.labeldown, location.abovebar, cPink(int(-prediction*5)), size=size.small)
// plot(endLongTrade ? ohlc4 : na, 'StopBuy', cAqua(6), 3, plot.style_cross)
// plot(endShortTrade ? ohlc4 : na, 'StopSell', cPink(6), 3, plot.style_cross)
plot(clear_condition ? close : na, 'ClearPos', color.yellow, 4, plot.style_cross)
//-- Notification
// if changed and signal==BUY
// alert('Buy Alert', alert.freq_once_per_bar) // alert.freq_once_per_bar_close
// if changed and signal==SELL
// alert('Sell Alert', alert.freq_once_per_bar)
alertcondition(startLongTrade, 'Buy', 'Go long!')
alertcondition(startShortTrade, 'Sell', 'Go short!')
//alertcondition(startLongTrade or startShortTrade, 'Alert', 'Deal Time!')
//-------------------- Backtesting (TODO)
// show_cumtr = input.bool (false, 'Show Trade Return?')
// lot_size = input.float(100.0, 'Lot Size', [0.1,0.2,0.3,0.5,1,2,3,5,10,20,30,50,100,1000,2000,3000,5000,10000])
// var start_lt = 0.
// var long_trades = 0.
// var start_st = 0.
// var short_trades = 0.
// if startLongTrade
// start_lt := ohlc4
// if endLongTrade
// long_trades := (open - start_lt) * lot_size
// if startShortTrade
// start_st := ohlc4
// if endShortTrade
// short_trades := (start_st - open) * lot_size
// cumreturn = ta.cum(long_trades) + ta.cum(short_trades)
// var label lbl = na
// if show_cumtr //and barstate.islast
// lbl := label.new(bar_index+10, close, 'CumReturn: ' + str.tostring(cumreturn, '#.#'), xloc.bar_index, yloc.price,
// color.new(color.blue, 100), label.style_label_left, color.black, size.small, text.align_left)
// label.delete(lbl[1])