-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test_utils.py
142 lines (126 loc) · 4.72 KB
/
train_test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import torch
import pandas as pd
import matplotlib.pyplot as plt
import os
import torch.nn.functional as F
from model import Model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# fill genres columns
def find_genres_columns(current_genres, genres_title_list):
temp_list = []
for genre in genres_title_list:
if genre in current_genres:
temp_list.append(1)
else:
temp_list.append(0)
temp_list = np.array(temp_list)
return temp_list
def create_movie_features(movies_df):
# find all genres and their names
genres_title_list = []
for row in movies_df.values:
genres = row[2].split("|")
for genre in genres:
if genre not in genres_title_list:
genres_title_list.append(genre)
# splitting the genres of movies from their string
temp = movies_df.copy(deep=True)
year_list = []
name_list = []
genres_list = []
for row in temp.values:
id = row[0]
name = str(row[1]).strip()
name_inx = str(name).find('(')
year = name[-5:-1]
try:
year = int(year)
except Exception as e:
year = -1
genres = row[2].split('|')
genres = find_genres_columns(genres, genres_title_list)
genres_list.append(genres)
name = name[:name_inx-1].replace('(', '').replace(')', '')
year_list.append(year)
name_list.append(name)
genres_list = np.array(genres_list)
year_list = np.array(year_list)
name_list = np.array(name_list)
temp['title'] = name_list
temp['year'] = year_list
temp['genres'] = list(genres_list)
for i, genre in enumerate(genres_title_list):
temp[genre] = genres_list[:, i]
if '(no genres listed)' in list(temp.columns):
temp = temp[temp['(no genres listed)'] == 0]
del temp['(no genres listed)']
temp.head()
movies_df = temp
del movies_df['genres']
# creating dictionaries for movies
movie_dict = dict()
movie_name_dict = dict()
count = 0
movies_features = []
for row in movies_df.values:
movie_dict[row[0]] = count
movie_name_dict[row[1]] = row[1]
count+=1
movies_features.append(np.array(row[3:]))
# movies_features =np.array(movies_features, dtype=np.int64)
# movies_features =np.array(movies_features)
movies_features =np.array(movies_features, dtype=np.float32)
print(movies_features.shape)
movies_features = torch.from_numpy(movies_features)
return movies_features, movie_dict
def weighted_mse_loss(pred, target, weight=None):
weight = 1. if weight is None else weight[target].to(pred.dtype)
return (weight * (pred - target.to(pred.dtype)).pow(2)).mean()
def train_test_model(train_data=None, val_data=None, test_data=None, data=None, lr = 0.01, epochs_num = 101, print_logs = True):
model = Model(hidden_channels=64, data=data).to(device)
with torch.no_grad():
model.encoder(train_data.x_dict, train_data.edge_index_dict)
weight = torch.bincount(train_data['user', 'movie'].edge_label)
weight = weight.max() / weight
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
def train():
model.train()
optimizer.zero_grad()
pred = model(train_data.x_dict, train_data.edge_index_dict,
train_data['user', 'movie'].edge_label_index)
target = train_data['user', 'movie'].edge_label
loss = weighted_mse_loss(pred, target, weight)
loss.backward()
optimizer.step()
return float(loss)
@torch.no_grad()
def test(data):
model.eval()
pred = model(data.x_dict, data.edge_index_dict,
data['user', 'movie'].edge_label_index)
pred = pred.clamp(min=0, max=10)
target = data['user', 'movie'].edge_label.float()
rmse = F.mse_loss(pred / 2, target / 2).sqrt()
return float(rmse)
loss_list = []
for epoch in range(0, epochs_num):
loss = train()
train_rmse = test(train_data)
val_rmse = test(val_data)
test_rmse = test(test_data)
loss_list.append([train_rmse, val_rmse, test_rmse])
if epoch % 10 == 0 and print_logs == True:
print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Train: {train_rmse:.4f}, Val: {val_rmse:.4f}, Test: {test_rmse:.4f}')
loss_list = np.array(loss_list)
return loss_list, model
def plot_losses(loss_list, min_tresh, max_tresh):
plt.figure(figsize=(12, 10))
plt.plot(loss_list[:, 0], label='train')
plt.plot(loss_list[:, 1], label='val')
plt.plot(loss_list[:, 2], label='test')
plt.legend()
plt.ylim(min_tresh, max_tresh)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()