-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
246 lines (218 loc) · 7.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
from pathlib import Path
from collections import deque
import torch
from tensorboardX import SummaryWriter
from gensim.models import KeyedVectors
import pandas as pd
from tqdm import tqdm
from dataset import HierarchicalDataset, FlatDataset
from models import Han, Fan
from test import test_func
from config import (
BATCH_SIZE,
EPOCHS,
LEARNING_RATE,
MOMENTUM,
PATIENCE,
PADDING,
DEVICE,
TQDM,
WORD_HIDDEN_SIZE,
SENT_HIDDEN_SIZE,
MODEL_DIR,
LOG_DIR,
Yelp,
Yahoo,
Amazon,
Synthetic,
)
def main():
parser = argparse.ArgumentParser(
description="Train the FAN or the HAN model"
)
parser.add_argument(
"dataset",
choices=["yelp", "yahoo", "amazon", "synthetic"],
help="Choose the dataset",
)
parser.add_argument(
"model",
choices=["fan", "han"],
help="Choose the model to be trained (flat or hierarchical)",
)
args = parser.parse_args()
if args.dataset == "yelp":
dataset_config = Yelp
elif args.dataset == "yahoo":
dataset_config = Yahoo
elif args.dataset == "amazon":
dataset_config = Amazon
elif args.dataset == "synthetic":
dataset_config = Synthetic
else:
# should not end there
exit()
wv = KeyedVectors.load(dataset_config.EMBEDDING_FILE)
train_df = pd.read_csv(dataset_config.TRAIN_DATASET).fillna("")
train_documents = train_df.text
train_labels = train_df.label
if args.model == "fan":
train_dataset = FlatDataset(
train_documents,
train_labels,
wv.vocab,
dataset_config.WORDS_PER_DOC[PADDING],
)
else:
train_dataset = HierarchicalDataset(
train_documents,
train_labels,
wv.vocab,
dataset_config.SENT_PER_DOC[PADDING],
dataset_config.WORDS_PER_SENT[PADDING],
)
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,
)
val_df = pd.read_csv(dataset_config.VAL_DATASET).fillna("")
val_documents = val_df.text
val_labels = val_df.label
if args.model == "fan":
val_dataset = FlatDataset(
val_documents,
val_labels,
wv.vocab,
dataset_config.WORDS_PER_DOC[PADDING],
)
else:
val_dataset = HierarchicalDataset(
val_documents,
val_labels,
wv.vocab,
dataset_config.SENT_PER_DOC[PADDING],
dataset_config.WORDS_PER_SENT[PADDING],
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=BATCH_SIZE, shuffle=True
)
logdir = Path(f"{LOG_DIR}/{args.dataset}/{args.model}")
logdir.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(str(logdir / f"{PADDING}pad"))
if args.model == "fan":
model = Fan(
embedding_matrix=wv.vectors,
word_hidden_size=WORD_HIDDEN_SIZE,
num_classes=len(train_labels.unique()),
batch_size=BATCH_SIZE,
).to(DEVICE)
else:
model = Han(
embedding_matrix=wv.vectors,
word_hidden_size=WORD_HIDDEN_SIZE,
sent_hidden_size=SENT_HIDDEN_SIZE,
num_classes=len(train_labels.unique()),
batch_size=BATCH_SIZE,
).to(DEVICE)
criterion = torch.nn.NLLLoss().to(DEVICE)
optimizer = torch.optim.SGD(
(p for p in model.parameters() if p.requires_grad),
lr=LEARNING_RATE,
momentum=MOMENTUM,
)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.1, patience=PATIENCE - 2, verbose=True,
)
train_losses = []
train_accs = []
val_losses = []
val_accs = []
best_val_loss = 1_000_000
best_state_dict = model.state_dict()
actual_patience = 0
for epoch in range(1, EPOCHS + 1):
train_loss, train_acc = train_func(
model, train_data_loader, criterion, optimizer, writer
)
train_losses.append(train_loss)
train_accs.append(train_acc)
val_loss, val_acc = test_func(model, val_data_loader, criterion)
val_losses.append(val_loss)
val_accs.append(val_acc)
print(f"Epoch {epoch}")
print(
f" Train loss: {train_loss:.4}, Train acc: {train_acc * 100:.1f}%"
)
print(f" Val loss: {val_loss:.4}, Val acc: {val_acc * 100:.1f}%")
lr_scheduler.step(val_loss)
writer.add_scalar("Train/Loss", train_loss, epoch)
writer.add_scalar("Train/Accuracy", train_acc, epoch)
writer.add_scalar("Validation/Loss", val_loss, epoch)
writer.add_scalar("Validation/Accuracy", val_acc, epoch)
writer.add_scalar(
"Learning rate", optimizer.param_groups[0]["lr"], epoch
)
# Early stopping with patience
if val_loss < best_val_loss:
actual_patience = 0
best_val_loss = val_loss
best_state_dict = model.state_dict()
else:
actual_patience += 1
if actual_patience == PATIENCE:
model.load_state_dict(best_state_dict)
break
writer.add_text(
"Hyperparameters",
f"BATCH_SIZE = {BATCH_SIZE}; "
f"MOMENTUM = {MOMENTUM}; "
f"PATIENCE = {PATIENCE}; "
f"PADDING = {PADDING}",
)
writer.close()
modeldir = Path(MODEL_DIR)
modeldir.mkdir(parents=True, exist_ok=True)
torch.save(
model.state_dict(),
f"{modeldir}/{args.dataset}-{args.model}-{PADDING}pad.pth",
)
def train_func(model, data_loader, criterion, optimizer, writer, last_val=50):
"""
Train the model and return the training loss and accuracy
of the `last_val` batches.
"""
model.train()
losses = deque(maxlen=last_val)
accs = deque(maxlen=last_val)
for iteration, (labels, features) in tqdm(
enumerate(data_loader), total=len(data_loader), disable=(not TQDM)
):
labels = labels.to(DEVICE)
features = features.to(DEVICE)
batch_size = len(labels)
optimizer.zero_grad()
model.init_hidden_state(batch_size)
predictions = model(features)
loss = criterion(predictions, labels)
assert not torch.isnan(loss)
loss.backward()
optimizer.step()
losses.append(loss.item())
accs.append(
(predictions.argmax(1) == labels).sum().item() / batch_size
)
# if iteration % 1_000 == 999:
# for param_name, param_value in zip(
# model.state_dict(), model.parameters()
# ):
# if param_value.requires_grad:
# param_name = param_name.replace(".", "/")
# writer.add_histogram(
# param_name, param_value, iteration,
# )
# # writer.add_histogram(
# # param_name + "/grad", param_value.grad, iteration,
# # )
return sum(losses) / len(losses), sum(accs) / len(accs)
if __name__ == "__main__":
main()