-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy path5_pupil_field.py
40 lines (30 loc) · 1.63 KB
/
5_pupil_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
Calculates the pupil field of a lens at a given point in space by coherent ray tracing.
Technical Paper:
Xinge Yang, Matheus Souza, Kunyi Wang, Praneeth Chakravarthula, Qiang Fu and Wolfgang Heidrich, "End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model," Siggraph Asia 2024.
This code and data is released under the Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC.) In a nutshell:
# The license is only for non-commercial use (commercial licenses can be obtained from authors).
# The material is provided as-is, with no warranties whatsoever.
# If you publish any code, data, or scientific work based on this, please cite our work.
"""
import torch
from torchvision.utils import save_image
from deeplens import GeoLens
def main():
# Better to use a high sensor resolution (4000x4000 is small!)
lens = GeoLens(filename="./lenses/cellphone/cellphone80deg.json")
lens.prepare_sensor(sensor_res=[4000, 4000])
lens.double()
# Calculate the pupil field
wavefront, _ = lens.pupil_field(
point=torch.tensor([0.0, 0.0, -10000.0]), spp=10000000
)
save_image(wavefront.angle(), "./wavefront_phase.png")
save_image(torch.abs(wavefront), "./wavefront_amp.png")
# Compare coherent and incoherent PSFs
psf_coherent = lens.psf_coherent(torch.tensor([0.0, 0.0, -10000.0]), ks=101)
save_image(psf_coherent, "./psf_coherent.png", normalize=True)
psf_incoherent = lens.psf(torch.tensor([0.0, 0.0, -10000.0]), ks=101)
save_image(psf_incoherent, "./psf_incoherent.png", normalize=True)
if __name__ == "__main__":
main()