-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmake_fig11.m
64 lines (57 loc) · 1.98 KB
/
make_fig11.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
%{
make_fig11.py
Reproduces Figure 11 in O'Shaughnessy et al., 'Generative causal
explanations of black-box classifiers,' Proc. NeurIPS 2020: partial details
of parameter tuning procedure for MNIST 3/8 example used to select K, L,
and lambda.
Note: this script uses pre-saved results in results/tuning_mnist38_*.mat.
These .mat files contain additional information from the parameter turning
process shown.
%}
figure(1); clf;
col = [12, 123, 220] / 255;
linew = 2;
fsize = 20;
export_plots = true;
%Data fidelity vs L:
load('results/tuning_mnist38_selectz.mat');
subplot(1,3,1);
h = errorbar(z_dim, -nll_final, -nll_final_std);
set(h,'linewidth',linew,'color',col); grid on;
axis([z_dim(1) z_dim(end) -42 -26]);
title('Step 1: select latent space dimension','fontsize',fsize);
xlabel('$$K+L$$','interpreter','latex');
ylabel('$$\mathcal{D}$$','interpreter','latex');
%Causal objective vs K:
load('results/tuning_mnist38_selectK.mat');
subplot(1,3,2);
h = errorbar(alpha_dim, -ce_finalLam, -ce_finalLam_std);
set(h,'linewidth',linew,'color',col); grid on;
axis([alpha_dim(1)-0.1, alpha_dim(end)+0.1 0.65 0.70]);
title('Steps 2-3: increment causal factors','fontsize',fsize);
xlabel('$$K$$','interpreter','latex')
ylabel('$$\mathcal{C}$$','interpreter','latex')
%Data fidelity vs lambda for selected N_alpha
load('results/tuning_mnist38_selectlambda.mat');
subplot(1,3,3);
h = errorbar(lambda, -nll_final, -nll_final_std);
set(h,'linewidth',linew,'color',col); grid on;
title('Steps 2-3: adjust \lambda','fontsize',fsize);
axis([min(lambda) max(lambda) -36 -26]);
xlabel('$$\lambda$$','interpreter','latex');
ylabel('$$\mathcal{D}$$','interpreter','latex');
set(gca,'XScale','log');
for i = 1:3
subplot(1,3,i);
a = gca;
a.XAxis.FontSize = fsize;
a.YAxis.FontSize = fsize;
set(gca,'fontname','Times New Roman');
end
set(gcf,'color','white');
if export_plots
fprintf('Exporting...');
export_fig('./figs/fig_11.pdf')
saveas(gcf,'./figs/fig_11.svg');
fprintf('done!\n');
end