-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlangchain_example.py
executable file
·179 lines (150 loc) · 5.31 KB
/
langchain_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#! env python
import json
import logging
import os
import subprocess
import sys
from typing import Any
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.llms import OpenAI
from langchain.schema import AgentAction, LLMResult
from langchain.vectorstores import Chroma
from prompt_toolkit import PromptSession
from prompt_toolkit import prompt as input
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.styles import Style
from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.key_binding.bindings.vi import load_vi_bindings
#
logger = logging.getLogger(__name__)
# Enable to save to disk & reuse the model (for repeated runs on the same data)
PERSIST = True # False
STREAMING = True
DEBUG = False
MODEL = "gpt-4" # "gpt-3.5-turbo",
class StreamTokenMetaData(StreamingStdOutCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
sys.stdout.write(f" {kwargs=}")
sys.stdout.flush()
def get_local_credentials():
keypath = subprocess.check_output(
".llm_venv/bin/llm keys path".split(), text=True
).strip()
if DEBUG:
print(keypath)
with open(keypath) as f:
return json.load(f)["openai"]
def loop(k=3):
os.environ["OPENAI_API_KEY"] = os.environ.get(
"OPENAI_API_KEY", get_local_credentials()
)
query = None
if len(sys.argv) > 1:
query = sys.argv[1]
# loader = TextLoader("data/data.txt")
loader = DirectoryLoader("data/", recursive=True, show_progress=True, glob="*.txt")
if PERSIST:
if os.path.exists("persist"):
print("Loading index...\n")
persistent_vectorstore = Chroma(
persist_directory="persist", embedding_function=OpenAIEmbeddings()
)
index = VectorStoreIndexWrapper(vectorstore=persistent_vectorstore)
else:
print("Creating index...\n")
vsic = VectorstoreIndexCreator(
vectorstore_cls=Chroma,
vectorstore_kwargs={
# "persist": True,
"persist_directory": "persist",
# "embedding_function": OpenAIEmbeddings(),
},
)
index = vsic.from_loaders([loader])
else:
print("creating in-memory index...\n")
index = VectorstoreIndexCreator().from_loaders([loader])
chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(
model=MODEL,
streaming=STREAMING,
callbacks=[
StreamingStdOutCallbackHandler(),
# StreamTokenMetaData(),
],
temperature=0.0,
),
retriever=index.vectorstore.as_retriever(
search_kwargs={"k": k, "return_source_documents": True}
),
)
chat_history = [] # the simplest memory possible
prompt_session = PromptSession(
enable_history_search=True,
)
conference_completer = WordCompleter(
[
"Rally Innovation",
"conference",
"talk",
"presentation",
"session",
"moderator",
"speaker",
]
)
vim_bindings = load_vi_bindings()
while True:
if not query:
query = prompt_session.prompt(
[
("class:prompt", "\n\nPrompt (q to quit): "),
],
style=Style.from_dict(
{
"prompt": "#00ff66",
}
),
completer=conference_completer,
complete_while_typing=False,
key_bindings=vim_bindings,
)
if query in [":q", "quit", "q", "exit"]:
sys.exit()
# debugging the retrieval
if PERSIST:
# for the persisted chromadb
found_docs = index.vectorstore.max_marginal_relevance_search(
query, k=k, fetch_k=20
)
else:
found_docs = chain.retriever._get_relevant_documents(
query, run_manager=chain.callback_manager
)
if DEBUG:
for i, doc in enumerate(found_docs):
print(f"DEBUG: {i + 1}.", doc.page_content, "\n", file=sys.stderr)
result = chain(
{
"system": f"Moderators are speakers."
f" Talks, presentations and sessions are the same thing."
" Remember to answer the question. DO NOT ask questions.",
"question": f" {query}",
"chat_history": chat_history,
}
)
if not STREAMING:
print(result["answer"])
chat_history.append((query, result["answer"]))
query = None
if __name__ == "__main__":
LOGLEVEL = os.environ.get("LOGLEVEL", "WARNING").upper()
logging.basicConfig(level=LOGLEVEL)
loop(k=10)