forked from pkmital/tensorflow_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09_convolutional_autoencoder.py
175 lines (152 loc) · 4.92 KB
/
09_convolutional_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Tutorial on how to create a convolutional autoencoder w/ Tensorflow.
Parag K. Mital, Jan 2016
"""
import tensorflow as tf
import numpy as np
import math
from libs.activations import lrelu
from libs.utils import corrupt
# %%
def autoencoder(input_shape=[None, 784],
n_filters=[1, 10, 10, 10],
filter_sizes=[3, 3, 3, 3],
corruption=False):
"""Build a deep denoising autoencoder w/ tied weights.
Parameters
----------
input_shape : list, optional
Description
n_filters : list, optional
Description
filter_sizes : list, optional
Description
Returns
-------
x : Tensor
Input placeholder to the network
z : Tensor
Inner-most latent representation
y : Tensor
Output reconstruction of the input
cost : Tensor
Overall cost to use for training
Raises
------
ValueError
Description
"""
# %%
# input to the network
x = tf.placeholder(
tf.float32, input_shape, name='x')
# %%
# ensure 2-d is converted to square tensor.
if len(x.get_shape()) == 2:
x_dim = np.sqrt(x.get_shape().as_list()[1])
if x_dim != int(x_dim):
raise ValueError('Unsupported input dimensions')
x_dim = int(x_dim)
x_tensor = tf.reshape(
x, [-1, x_dim, x_dim, n_filters[0]])
elif len(x.get_shape()) == 4:
x_tensor = x
else:
raise ValueError('Unsupported input dimensions')
current_input = x_tensor
# %%
# Optionally apply denoising autoencoder
if corruption:
current_input = corrupt(current_input)
# %%
# Build the encoder
encoder = []
shapes = []
for layer_i, n_output in enumerate(n_filters[1:]):
n_input = current_input.get_shape().as_list()[3]
shapes.append(current_input.get_shape().as_list())
W = tf.Variable(
tf.random_uniform([
filter_sizes[layer_i],
filter_sizes[layer_i],
n_input, n_output],
-1.0 / math.sqrt(n_input),
1.0 / math.sqrt(n_input)))
b = tf.Variable(tf.zeros([n_output]))
encoder.append(W)
output = lrelu(
tf.add(tf.nn.conv2d(
current_input, W, strides=[1, 2, 2, 1], padding='SAME'), b))
current_input = output
# %%
# store the latent representation
z = current_input
encoder.reverse()
shapes.reverse()
# %%
# Build the decoder using the same weights
for layer_i, shape in enumerate(shapes):
W = encoder[layer_i]
b = tf.Variable(tf.zeros([W.get_shape().as_list()[2]]))
output = lrelu(tf.add(
tf.nn.conv2d_transpose(
current_input, W,
tf.stack([tf.shape(x)[0], shape[1], shape[2], shape[3]]),
strides=[1, 2, 2, 1], padding='SAME'), b))
current_input = output
# %%
# now have the reconstruction through the network
y = current_input
# cost function measures pixel-wise difference
cost = tf.reduce_sum(tf.square(y - x_tensor))
# %%
return {'x': x, 'z': z, 'y': y, 'cost': cost}
# %%
def test_mnist():
"""Test the convolutional autoencder using MNIST."""
# %%
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt
# %%
# load MNIST as before
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
mean_img = np.mean(mnist.train.images, axis=0)
ae = autoencoder()
# %%
learning_rate = 0.01
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(ae['cost'])
# %%
# We create a session to use the graph
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# %%
# Fit all training data
batch_size = 100
n_epochs = 10
for epoch_i in range(n_epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, _ = mnist.train.next_batch(batch_size)
train = np.array([img - mean_img for img in batch_xs])
sess.run(optimizer, feed_dict={ae['x']: train})
print(epoch_i, sess.run(ae['cost'], feed_dict={ae['x']: train}))
# %%
# Plot example reconstructions
n_examples = 10
test_xs, _ = mnist.test.next_batch(n_examples)
test_xs_norm = np.array([img - mean_img for img in test_xs])
recon = sess.run(ae['y'], feed_dict={ae['x']: test_xs_norm})
print(recon.shape)
fig, axs = plt.subplots(2, n_examples, figsize=(10, 2))
for example_i in range(n_examples):
axs[0][example_i].imshow(
np.reshape(test_xs[example_i, :], (28, 28)))
axs[1][example_i].imshow(
np.reshape(
np.reshape(recon[example_i, ...], (784,)) + mean_img,
(28, 28)))
fig.show()
plt.draw()
plt.waitforbuttonpress()
# %%
if __name__ == '__main__':
test_mnist()